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Initial collisions …. 
• common believe: AA 

collisions = collisions of 
two Color Glass 
Condensates ….

in general: there is quite some activity, a lot of models, 
(impressive)(lattice) calculations and much more 

question: what do we really know about the validity of this 
formalism, its applicability etc + how can we improve?
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The origins — DIS at HERA: parton distribution functions

gluon g(x) and sea-quark S(x) 
distribution like powers ~ x-λ  for 
x→0  
 
→ invalidates probability 
interpretation if continued forever 
(integral over x diverges)  
 
→ at some x, new QCD dynamics 
must set in

DIS & QCD

Electron-nucleus/-on scattering
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+ measure scattered electron control kinematics
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HERA collider (92-07): Deep Inelastic Scattering (DIS) of  
of electrons on protons

Electron-nucleus/-on scattering
I knowldege of scattering enery + nucleon mass

+ measure scattered electron control kinematics

Deep Inelastic Scattering - �tot for �

�+nucleon/-us! X
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DIS & QCD

Electron-nucleus/-on scattering
I knowldege of scattering enery + nucleon mass

+ measure scattered electron control kinematics

Deep Inelastic Scattering - �tot for ��+nucleon/-us! X
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Open Questions

The proton at high energies: saturation

theory considerations:

Geometric
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I e↵ective finite size 1/Q of
partons at finite Q2

I at some x ⌧ 1, partons
‘overlap’ = recominbation
e↵ects

I turning it around: system is
characterized by saturation
scale Q

s

I grows with energy Q
s

⇠ x��,
� > 0 & can reach in
principle perturbative values
Q

s

> 1GeV
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One strong hint: BK evolution and 
geometrical scaling

• non-linear evolution equation in Y = ln(1/x) for 
dipole amplitude N;  

• low density N ≪1, high density N~1

BK.Equation

rewrite'in'terms'of'a'Fourier'transform:

here χ is a'BFKL'characteristic function

there'exists'a'theorem'from'the''‘30'(Fisher,'Kolomogorov,'Petrovsky,'Piscounov)
that'nonOlinear'equations'of'this'sort'have'asymptotically'travelling'wave'solutions

Y.V.'Kovchegov, Phys.'Rev.'D'61'(2000)'074018



• BK evolution “generates” 
saturation scale  

• “travelling waves” solution 
to BK evolution equation 

• implies: observable which 
depend only on one scale 
→geometric scaling 

One strong hint: BK evolution and 
geometrical scaling

Travelling.waves.in.QCD
imply.Geometrical.Scaling

observable a function of 
𝞃 = k2/Qs2(x)



Michal.Praszalowicz

Saturation.scale:.
energy.and.x dependence

18

A.M.'Stasto,'K.'J.'GolecOBiernat,'
J.'Kwiecinski
PRL 86'(2001)'596O599'

M.Praszalowicz'and'T.Stebel
JHEP'1303,'090'(2013)'
arXiv:1211.5305'[hepOph]
and
JHEP'1304,'169'(2013)
arXiv:1302.4227'[hepOph]

Example process: DIS   

slide: Michal Praszalowicz; QCD challenges 2016



Michal.Praszalowicz

Saturation scale:.
energy and.x dependence

19

large x

λ = 0.329 ± 0.005
up to  x = 0.08 (!)

more ”sophisticated”.scaling
variables do.not.work well

Example process: DIS   

slide: Michal Praszalowicz; QCD challenges 2016



Phenomenological evidence
• geometric scaling: a property of the BK evolution equation → 

seen in data ✅ 

• problem: same data well described by intrinsically dilute 
framework (= collinear factorization) 
geometric scaling in BK evolution requires non-linear term N~1 
→ gluon densities are high (we see that), but are they 
sufficiently high? 

• common argument: collinear fits “abuse” their freedom to fix 
initial conditions at low Q2 and all x; likely to be true, but need 
to demonstrate failure of dilute approach 

• in general: strong (& convincing) hints, not yet substantial 
evidence



will discuss 2 processes/questions:  

• J/Psi and Upsilon production in ultra-peripheral 
collisions  → pA collisions where the nucleus acts 
as a photon source (+ HERA data) 

• Are there processes that can tell us whether we are 
in a dilute or in a dense regime → tentative yes



BFKL & exclusive Vector Mesons

photo-production of J/ and ⌥: explore proton at ultra-small x

[Bautista, Ferandez-Tellez, MH; 1607.05203]

J/ ,⌥

e, p, Pb

W

2

t

q

p

I measured at HERA (ep) and
LHC (pp, ultra-peripheral pPb)

I charm and bottom mass provide
hard scale pQCD

I exclusive process, but allows to
relate to inclusive gluon

reach values down to x = 4 ⇥ 10�6 ! (unique ?) opportunity to explore
the low x gluon
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exclusive VM production in UPC@LHC

    



data well described by saturation models
• there exists description based on 

saturation models (reproduce 
essential feature of BK + 
phenomenological corrections) 

• And there are DGLAP fits → also 
work pretty well  
[Jones, Martin, Ryskin, Teubner, 
1507.06942, 1312.6795]
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FIG. 2: Total J/ψ cross-section as a function of Wγp, compared to results from the b-CGC and IP-Sat models with
parameters of the models determined via a fit to the recent combined data from HERA [11, 12] and the old F2 structure
function [15] (dashed-dotted line, labeled b-CGC 2008). The data are from fixed target experiments [72], the H1, ZEUS
[43, 73–75], LHCb [41] and ALICE (preliminary data) [42] Collaborations. We also show the LHeC pseudo-data obtained
from a simulation [4].

Fig. 4 right panel). It is seen that the ALICE [42] and LHCb [41] data are in good agreement with the CGC
predictions while there seem to be some tensions between the experimental data and the pQCD results (labeled
MNRT LO and NLO) at high Wγp. It was recently shown that including the LHCb data in the pQCD fit,
allows a better constraint on the low-x gluon distribution [49].

In Fig. 4, we show the charm-mass dependence of the total J/ψ cross-section as a function of Wγp. Within
the saturation models, a lower charm mass about mc ≈ 1.27 GeV is preferred. However, in the non-saturation
version of the IP-Sat model (1-Pomeron), a larger charm mass about mc ≈ 1.4 GeV provides a better agreement
with experimental data (see the right panel of that figure). In Fig. 4 right panel, we also show ALICE preliminary
data [42], the LHCb updated data (labeled LHCb 2014) [41] and earlier LHCb data [40] (labeled LHCb 2013).
It is seen that the combined ALICE and LHCb updated 2014 data are more in favour of the saturation than
of the 1-Pomeron model results at high Wγp. Nevertheless, in order to clearly discriminate among models one
should first more accurately determine the charm mass. This can be done by precise measurements of the charm
structure function F c

2 or a reduced cross-section for charm production in a wider range of kinematics, including
at small virtualities, than those currently available at HERA (restricted to Q2 ≥ 2.5GeV2 and x ≥ 3 × 10−5

[45]). Such measurements can in principle be done in the projected LHeC [4].

In Fig. 5, we show the total cross-section of elastic diffractive photoproduction of ψ(2s) as a function of Wγp

obtained from the IP-Sat and b-CGC saturation models with different charm masses corresponding to different
parameter sets of the dipole amplitude. Note that the experimental data [77] are for quasi-elastic (Z > 0.95)
photoproduction of ψ(2s) while all theory curves are for elastic diffractive production with elasticity Z = 1.
The elasticity is defined as Z = Eψ(2s)/Eγ ≈ (W 2 −M2

Y )/(W
2 − m2

p) where MY is the effective mass of the
hadrons produced in the dissociation of the proton. In the right panel, we compare the results obtained from
the 1-Pomeron and the saturation models. It is seen that within theoretical uncertainties associated with charm
mass, the 1-Pomeron and the saturation models give rather similar results in the range of energy shown in
Fig. 5. This is mainly due to the fact that the ψ(2s) is heavier than J/ψ, therefore effective dipole sizes r ∼ 1/ϵ
which contribute to the total cross-section are smaller for ψ(2s) than for J/ψ. Note that although the scalar
part of the ψ(2s) wave function extends to large dipole sizes (see Fig. 1), due to the existence of the node, there

[Armesto, Rezaeian; 1402.4831],  
[Goncalves, Moreira, Navarra; 1405.6977]
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Figure 4: Measurements of exclusive ⌥(1S) photoproduction compared to theoretical predictions.
In (a), the ⌥(1S) cross-section in bins of rapidity is shown, compared to LO and NLO predictions.
The LHCb measurements are indicated by black points with error bars for uncorrelated errors,
and solid rectangles indicating the total uncertainty. In (b), the photon-proton cross-sections
extracted from the LHCb results are indicated by black points, where the statistical and
systematic uncertainties are combined in quadrature. The entire W -region in which these LHCb
measurements are sensitive is indicated. Measurements made by H1 and ZEUS in the low-W
region are indicated by red and blue markers, respectively [4, 5, 7]. Predictions from Ref. [1] are
included, resulting from LO and NLO fits to exclusive J/ production data. The filled bands
indicate the theoretical uncertainties on the 7 TeV prediction and the solid lines indicate the
central values of the predictions for 8 TeV. In (b) predictions from Ref. [2] using di↵erent models
for the ⌥(1S) wave function are included, indicated by ‘bCGC’.

The absorptive corrections and photon fluxes are computed following Ref. [1].
The three bins of ⌥(1S) rapidity chosen in this analysis correspond to ranges of W

for the W

+

and W� solutions. The contribution to the total cross-section from the W�
solutions is expected to be small and is therefore neglected. The dominant W

+

solutions
are therefore estimated assuming that they dominate the cross-section, and are shown in
Fig. 4b. The magnitude of the theoretical prediction for the W� solutions is added as
a systematic uncertainty. The good agreement with the NLO prediction seen in Fig. 4a
is reproduced. The LHCb measurements probe a new kinematic region complementary
to that studied at HERA [4,5, 7], as seen in Fig. 4b, and discriminate between LO and
NLO predictions. In Fig. 4b, the LHCb data are also compared to the predictions given in
Ref. [2] using models conforming to the colour glass condensate (CGC) formalism [28] that
take into account the t-dependence of the di↵erential cross-section. All agree well with the
data. The solid (black) and dotted (blue) lines correspond to two di↵erent models for the
scalar part of the vector-meson wave function.
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BFKL & exclusive Vector Mesons

DGLAP vs. saturation (I)
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LHC UPC data

I describes data or not ! re-fit
I if yes: do we really see saturation e↵ects?

i.e. BK type evolution
d

d ln 1/x

G(x) = K ⌦ G(x) � G ⌦ G| {z }
present, relevant?
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BFKL & exclusive Vector Mesons

DGLAP vs. saturation (II)

log(1/x)

fit HERA + LHC data
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evolve to higher scales e.g. M

⌥

at Q

0

' M

J/ 

= fit x dependence

I
J/ ! ⌥ ' evolution 2.4 GeV2 ! 22.4 GeV2

I high density e↵ects die away in collinear limit
I DGLAP unstable at ultra-small x and small scales ...
I convinced: pdf studies highly valuable ! constrain pdf’s at

ultra-small x

I useful benchmark for saturation searches (?)
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• a far better dilute benchmark might be given by 
BFKL evolution 

• BFKL evolution = low x evolution without 
saturation/non-linear effects 

• available up to NLO [Fadin, Lipatov; PLB 429 (1998) 127]; [Ciafaloni, 

Camici; PLB 430 (1998) 349]  + resummation schemes for 
addressing collinear log’s etc are relatively well 
studied by now [Salam; hep-ph/9806482] etc.  



• very good description 
of combined HERA 
data  
[H1 & ZEUS collab. 0911.0884] 

• allows extraction of 
unintegrated gluon 
density → apply fit to 
other processes

BFKL & exclusive Vector Mesons

Good description of cominbed HERA [MH, Salas, Sabio Vera; 1209.1353; 1301.5283]
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data: [H1 & ZEUS collab. 0911.0884]
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NLO BFKL fit to HERA data
[MH, Salas, Sabio Vera; 1209.1353; 1301.5283] 



Very good description of dataBFKL & exclusive Vector Mesons

comparison to data: ⌥ production
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I provide study for two hard scales:
photoproduction scale: Mpp = M

V

/2
impact factor motivated: M

2
if = 8R�2

V

I fix normalization by low energy H1 data point ! K-factor; no further
adjustments

Martin Hentschinski (UDLAP) Forward physics & small x gluon 23/05/2017 21 / 43

BFKL & exclusive Vector Mesons

comparison to data: J/ production
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I NEW (wrt. [Bautista, Fernando Tellez, MH; 1607.05203]): 13 TeV LHCb data

I fix normalization by low energy ALICE data point ! K-factor
believe: related to HERA fit (massless, n

f

= 4, (C1/C2)2 = 2.45)

I often included (not here): GPD motivated factor (“x0 6= x”); known
for collinear [Shuvaev, Golec-Biernat, Martin, Ryskin, hep-ph/9902410]

to be calculated for k

T

factorized BFKL impact factor
⇠ kinematic improvements for � ! V
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[Bautista, Fernando Tellez, MH; 1607.05203]  



NLO BFKL works pretty well 
but there are some issues 

• solutions uses partial perturbative treatment of NLO 
corrections; at very small x/large W this leads to an 
instability → need to wait for the next collider to really see 
this 

• normalization needs to be adjusted by hand (in general 
this is a non-trivial corrections, also for pdf/saturation 
study → would need extra calculation) 

• still pretty good for taking a HERA only fit + LO coefficient 



[Bautista, Fernandez-Tellez, MH; 1607.05203]

10 50 100 500 1000
1

10

100

1000

evolution differs (presence or absence of nonlinear terms),  
                                                 …. but essentially same object
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FIG. 2: Total J/ψ cross-section as a function of Wγp, compared to results from the b-CGC and IP-Sat models with
parameters of the models determined via a fit to the recent combined data from HERA [11, 12] and the old F2 structure
function [15] (dashed-dotted line, labeled b-CGC 2008). The data are from fixed target experiments [72], the H1, ZEUS
[43, 73–75], LHCb [41] and ALICE (preliminary data) [42] Collaborations. We also show the LHeC pseudo-data obtained
from a simulation [4].

Fig. 4 right panel). It is seen that the ALICE [42] and LHCb [41] data are in good agreement with the CGC
predictions while there seem to be some tensions between the experimental data and the pQCD results (labeled
MNRT LO and NLO) at high Wγp. It was recently shown that including the LHCb data in the pQCD fit,
allows a better constraint on the low-x gluon distribution [49].

In Fig. 4, we show the charm-mass dependence of the total J/ψ cross-section as a function of Wγp. Within
the saturation models, a lower charm mass about mc ≈ 1.27 GeV is preferred. However, in the non-saturation
version of the IP-Sat model (1-Pomeron), a larger charm mass about mc ≈ 1.4 GeV provides a better agreement
with experimental data (see the right panel of that figure). In Fig. 4 right panel, we also show ALICE preliminary
data [42], the LHCb updated data (labeled LHCb 2014) [41] and earlier LHCb data [40] (labeled LHCb 2013).
It is seen that the combined ALICE and LHCb updated 2014 data are more in favour of the saturation than
of the 1-Pomeron model results at high Wγp. Nevertheless, in order to clearly discriminate among models one
should first more accurately determine the charm mass. This can be done by precise measurements of the charm
structure function F c

2 or a reduced cross-section for charm production in a wider range of kinematics, including
at small virtualities, than those currently available at HERA (restricted to Q2 ≥ 2.5GeV2 and x ≥ 3 × 10−5

[45]). Such measurements can in principle be done in the projected LHeC [4].

In Fig. 5, we show the total cross-section of elastic diffractive photoproduction of ψ(2s) as a function of Wγp

obtained from the IP-Sat and b-CGC saturation models with different charm masses corresponding to different
parameter sets of the dipole amplitude. Note that the experimental data [77] are for quasi-elastic (Z > 0.95)
photoproduction of ψ(2s) while all theory curves are for elastic diffractive production with elasticity Z = 1.
The elasticity is defined as Z = Eψ(2s)/Eγ ≈ (W 2 −M2

Y )/(W
2 − m2

p) where MY is the effective mass of the
hadrons produced in the dissociation of the proton. In the right panel, we compare the results obtained from
the 1-Pomeron and the saturation models. It is seen that within theoretical uncertainties associated with charm
mass, the 1-Pomeron and the saturation models give rather similar results in the range of energy shown in
Fig. 5. This is mainly due to the fact that the ψ(2s) is heavier than J/ψ, therefore effective dipole sizes r ∼ 1/ϵ
which contribute to the total cross-section are smaller for ψ(2s) than for J/ψ. Note that although the scalar
part of the ψ(2s) wave function extends to large dipole sizes (see Fig. 1), due to the existence of the node, there

[Armesto, Rezaeian; 1402.4831],  
[Goncalves, Moreira, Navarra; 1405.6977]

dipole amplitude/includes saturation BFKL unintegrated gluon
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2NT

�(�)�(1� �)

m

2
f

 
m

2
fR2

8z(1� z)

!2

e

�
m2

fR2

8z(1�z)
e

mfR2

2

✓
8z(1� z)

M

2R2

◆�


U

 
2� �, 1,

m

2
fR2

8z(1� z)

!
+ [z

2
+ (1� z)

2
]

(2� �)

2

U

 
3� �, 2,

m

2
fR2

8z(1� z)

!�
,

[U(a, b, z) hypergeometric function of the second kind or Kummer’s function]

Martin Hentschinski (BUAP) BFKL & the growth of the VM Xsec. September 4, 2016 17 / 31

does mean there’s no saturation/high density effects  
2 potential explanations: 

a) saturation still far away 
b) BFKL can mimic effects in “transition region”→both connected!

NLO BFKL

sat. models



BFKL & exclusive Vector Mesons

A possible way out ...
observables with higher order correlators of Wilson lines
! inclusive observables (no gap) + resolved final sates
(e.g. inclusive di- & tri-hadrons/jets)

N ⇠ 1 � 1
Nc

tr
⇥
V (x)V

†
(y))

⇤
$ G

BFKL
(x, k)

Q(4) ⇠ 1 � 1
Nc

tr
⇥
V (x)V

†
(y)V (y

0
)V

†
(x

0
)

⇤
$ G + #G

2
+ #G

4
+ ...

prelim. study using
bCGC model

... work in progress,
no conclusion to be
drawn yet
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• to manifest non-linear effects, need to evolve over 
(relatively large) regions of phase spacelow x evolution (very schematic)

• BFKL: 
∂ln1/x G(x, k) = K⊗G 

• BK: 
∂ln1/x G(x, k) = K⊗G - G⊗G 

• K: the BFKL kernel 
LL: [Fadin, Kuraev, Lipatov; PLB 60 (1975) 50],  
             [Balitsky, Lipatov, SJNP (1978 822)]  

NLL: [Fadin, Lipatov; PLB 429 (1998) 127];  
                  [Ciafaloni, Camici; PLB 430 (1998) 349] 

• BFKL = low density limit of BK 
evolution
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Question: Can BFKL evolve ‘HERA gluon’ to LHC values 
and describe UPC data on VM production or do already 

require non-linear effects? 

not clear how fast 
the non-linear term 
becomes relevant

• an alternative: observables which reveal non-
linear effects without evolution

Observable ~



a possibility: observables which depend on the 
quadrupole

Current work virtual photon @ NLO
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Current work virtual photon @ NLO

Definitions

N (r, b) =
1

N

c

Tr
⇣
1� V (x)V †(y)

⌘
r = x� y b =

1

2
(x+ y)

N (4)(x1,x2,x3,x4) =
1

N

c

Tr
⇣
1� V (x1)V

†(x2)V (x3)V
†(x4)

⌘

Martin Hentschinski (ICN-UNAM) The glue that binds us all January 14, 2016 20 / 20

p

�q

l

�k1

l � k1

p

�q

l

p� l

Figure 2: Left: Tree diagram with 2 insertions of the vertices Eqs. (7) and (8): the internal mo-

mentum k1 is integrated over like a loop momenta i.e. with

R

d

4
k1/(2⇡)4. Right: Tree diagram with

1 insertion the vertices Eqs. (7) and (8): all momenta are fixed by external momenta

p q

= ⌧

F,ij

(p, q) = 2⇡�(p+ � q

+)
/

n

⇥
Z

d

2

ze

iz·(p�q)

n

✓(p+)
⇥

V

ij

(z)� 1
ij

⇤

� ✓(�p

+)
⇥

V

†
ij

(z)� 1
ij

⇤

o

(7)

p q

= ⌧

ab

G

(p, q) = 2⇡�(p+ � q

+) (�2p+)

⇥
Z

d

2

ze

iz·(p�q)

⇢

✓(p+)
⇥

U

ab(z)� 1
⇤

� ✓(�p

+)
⇥

⇣

U

ab

⌘†
(z)� 1

⇤

�

(8)

with Wilson lines in fundamental (V ) and adjoint (U) representation. They read
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c

ab

= f

acb. To construct amplitudes in the presence of a (strong) background field, it
is convenient to extend conventional QCD momentum space Feynman rules by two additional
rules: (a) adding the vertices Eqs. (7) and (8) and (b) the requirement that all internal
momenta p, i.e. momenta which cannot be expressed in terms of momenta of external

particles, are integrated over with the measure
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(2⇡)

4

, in 1-1 correspondence to conventional

loop momenta. In tree diagrams such internal momenta arise if n � 2 vertices from Eqs. (7)
and (8), are inserted into a single Feynman diagram; see Fig. 2 for an illustrative example. If
the number n of produced colored particles in the final state is small, n  2, the above method
provides an e�cient alternative to the calculation of matrix elements in the presence of large
gluon densities, see [11, 24] for earlier examples. For final states with large multiplicities,
n � 3, the method becomes ine�cient due to the large number of Feynman diagrams which
need to be considered. While the process �⇤+ target ! q + q̄ requires 3 diagrams, one finds
already 16 diagrams for the process �

⇤+ target ! q + q̄ + g. Moreover, calculations based

5

(= 4 gluon exchange doesn’t reduce to effective 2 
gluon exchange on Xsec. level)

contains also 4 
gluon exchange, 
but gathered in 2 
Wilson lines 

BFKL & exclusive Vector Mesons

A possible way out ...
observables with higher order correlators of Wilson lines
! inclusive observables (no gap) + resolved final sates
(e.g. inclusive di- & tri-hadrons/jets)
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believe: worthwhile to go a step beyond and consider 3 cartons 

→more constrains on the quadrupole (= the object where we expect 
effects) 

→ technically a part of the NLO corrections to 2 cartons in DIS 

→ related calculation for diffraction (includes already virtual) 
[Boussarie, Grabovsky, Szymanowski, Wallon; 1405.7676, 1606.00419] 

well known example where this happens:

production of 2 partons in DIS 
 [Dominguez, Marquet, Xiao,Yuan; 1101.0715]



calculation non-trivial 

• # of diagrams grows fast with number of final states 

• complex Dirac & Lorentz structure 

• turns out: momentum space calculation and use of 
spinor helicity techniques help a lot  

→ wont talk on this here, details: arXiv:1701.07143



3

FIG. 1: 3-parton production diagrams. The solid thick line represents interactions with the target (shock wave). The arrows
indicate the direction of fermion charge flow. The photon momentum is incoming whereas all the final state momenta are
outgoing.
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the large NC result
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in terms of correlators of Wilson lines 
& wave functions



the details: correlators of Wilson lines 

• quadrupole S(4) linear & 
quadratic  
→ extra handle to 
explore it wrt. 2 partons

2

partons for a particular angular configuration, in the
transverse momentum region just above the satura-
tion scale. This allows us to work in the dilute limit
of CGC, but still exhibits the main features of the
saturation dynamics. We find that saturation e↵ects
reduce the magnitude of the correlation peak while
simultaneously widening it. We further stress that our
analytic expressions can be used to compute the real
contributions to the Next to Leading Order (NLO) cor-
rections [11] to inclusive di-hadron production in DIS [8].

We consider the process depicted in Fig. 1
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the di↵erential 3-parton production cross-section reads
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For di↵ractive reactions, corresponding to color singlet
exchange between the q, q̄, g state and target, all of the

3.5 Wilson lines and color algebra

To this end we recall that the amplitudes in Eq. (17) carry both fundamental and adjoint
color indices. Making color indices of the fundamental representation explicit, we have Aa

#,ij

where # = 1, . . . , 4. To write down the di↵erential cross-section we are in general dealing
with expressions of the form
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with indices a, i, j summed over. It is now convenient to rewrite this as
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which allows us to define amplitudes with four fundamental color indices only. Extracting
factors of Wilson lines and SU(N

c

) generators, we find in this way
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where the first two lines corresponds to diagram one and two respectively while the last line
gives the corresponding factor of diagrams three and four. To determine the operators of
Wilson lines at cross-section level, we restrict at first to the leading N

c

terms and subtract
contributions without target interaction (as indicated in Eq. (20)). Extracting an overall
factor N2

c

/2 and using the conventional definitions of dipole and quadrupole
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we obtain the following set of operators,
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which are used to write down our final result for the di↵erential cross-section Eq. (73). To
obtain sub-leading terms in N

c

, the operators N (4)

, N

(22)

, N

(24)

, N

(44) need to be replaced by
1/N

c

·N (4)(x
1,

x

1

0
,x

2

0
,x

2

).

19

3.5 Wilson lines and color algebra

To this end we recall that the amplitudes in Eq. (17) carry both fundamental and adjoint
color indices. Making color indices of the fundamental representation explicit, we have Aa

#,ij

where # = 1, . . . , 4. To write down the di↵erential cross-section we are in general dealing
with expressions of the form

Aa

#

1

,ij

Aa,†
#

2

,ij

, #
i

= 1, . . . , 4 (64)

with indices a, i, j summed over. It is now convenient to rewrite this as

Aa

#

1

,ij

Aa,†
#

2

,ij

= 2Aa

#

1

,ij

t

a

kl

t

b

lk

Ab,†
#

2

,ij

, (65)

which allows us to define amplitudes with four fundamental color indices only. Extracting
factors of Wilson lines and SU(N

c

) generators, we find in this way

h

V

†(x
2

)V (x
1

)ta
i

ij

t

a

kl

=
1

2

h

V

†(x
2

)V (x
1

)
i

il

�

jk

� 1

2N
c

h

V

†(x
2

)V (x
1

)
i

ij

�

kl

h

t

a

V

†(x
2

)V (x
1

)
i

ij

t

a

kl

=
1

2
�

il

h

V

†(x
2

)V (x
1

)
i

jk

� 1

2N
c

h

V

†(x
2

)V (x
1

)
i

ij

�

kl

h

V

†(x
2

)tbV (x
1

)
i

ij

U

ab(x
3

)ta
kl

=
h

V

†(x
2

)V (x
3

)taV †(x
3

)V (x
1

)
i

ij

t

a

kl

=
1

2

h

V

†(x
2

)V (x
3

)
i

il

h

V

†(x
3

)V (x
1

)
i

kj

� 1

2N
c

h

V

†(x
2

)V (x
1

)
i

ij

�

kl

(66)

where the first two lines corresponds to diagram one and two respectively while the last line
gives the corresponding factor of diagrams three and four. To determine the operators of
Wilson lines at cross-section level, we restrict at first to the leading N
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terms and subtract
contributions without target interaction (as indicated in Eq. (20)). Extracting an overall
factor N2
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/2 and using the conventional definitions of dipole and quadrupole
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which are used to write down our final result for the di↵erential cross-section Eq. (73). To
obtain sub-leading terms in N

c
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• contain the target 
information 

• written in terms of 
dipoles and quadrupoles

(quadrupole only linear)



the details: wave functions & amplitudes

symmetry relation between amplitudes

3.7 The (large N

c

) result

With ↵

em

and ↵

s

the electromagnetic and strong coupling constants, and e

f

the electro-
magnetic charge of the quark with flavor f we obtain the following leading N
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6

We note that the result presented below slightly di↵ers from the result reported in the letter [1] where an

erroneous overall factor of 1/(2⇡)2 has been included; we further corrected typos present in the expressions

corresponding to Eq. (75) and Eq. (78) in [1].
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We note that the result presented below slightly di↵ers from the result reported in the letter [1] where an

erroneous overall factor of 1/(2⇡)2 has been included; we further corrected typos present in the expressions

corresponding to Eq. (75) and Eq. (78) in [1].
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longitudinal photon
we have for longitudinal photon polarizations

a

(L)

1,++

= � (z
1

z

2

)3/2 (z
1

+ z

3

)

z

3

e

�i✓p |p|� z

1

e

�i✓k |k|
, a

(L)

1,�+

= �
p
z

1

z

3/2

2

(z
1

+ z

3

) 2

z

3

e

�i✓p |p|� z

1

e

�i✓k |k|
,

a

(L)

3,++

=
z

1

z

2

|x
13

|e�i�

x

13

, a

(L)

3,�+

=
z

2

(1� z

2

)

|x
13

|e�i�

x

13

, (77)

while transverse polarization read
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These expressions were already used to study azimuthal angular correlations between the
three produced partons in DIS where it was shown that gluon saturation e↵ects lead to a
broadening and disappearance of the away side peaks. This is qualitatively similar to the
disappearance of di-hadron angular correlations DIS [12] and in the forward rapidity region
of high energy proton (deuteron)-nucleus collisions [9].

4 Summary

We have derived the triple di↵erential cross section for production of a quark, anti-quark and a
gluon in DIS for both transversely and longitudinally polarized photons. The final expression
was already published in a short letter [1], here we show the full details of the calculation.
After a discussion of the contributing diagrams in coordinate and momentum spaces, we
give a brief overview of spinor helicity techniques and apply it to the process considered
which leads to an enormous simplification of the Dirac Algebra involved. Besides being
used for studying the e↵ects of gluon saturation dynamics on azimuthal angular correlations
of produced hadrons/jets in DIS, the resulting expressions can also be used, with trivial
modification, to study three-jet production in ultra-peripheral heavy ion collisions at RHIC
and the LHC using the CGC formalism. Furthermore, using the crossing symmetry of the

23
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These expressions were already used to study azimuthal angular correlations between the
three produced partons in DIS where it was shown that gluon saturation e↵ects lead to a
broadening and disappearance of the away side peaks. This is qualitatively similar to the
disappearance of di-hadron angular correlations DIS [12] and in the forward rapidity region
of high energy proton (deuteron)-nucleus collisions [9].
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gluon in DIS for both transversely and longitudinally polarized photons. The final expression
was already published in a short letter [1], here we show the full details of the calculation.
After a discussion of the contributing diagrams in coordinate and momentum spaces, we
give a brief overview of spinor helicity techniques and apply it to the process considered
which leads to an enormous simplification of the Dirac Algebra involved. Besides being
used for studying the e↵ects of gluon saturation dynamics on azimuthal angular correlations
of produced hadrons/jets in DIS, the resulting expressions can also be used, with trivial
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First attempts in phenomenology
• differential Xsec: given in terms of dipole and 

quadrupole operators 

• need to be evaluated for a given background field 
configuration = represents dynamics of target
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Table 1: Parameters of the boosted Gaussian vector meson wave functions for J/ ,  (2s) and ⇢

obtained for two di↵erent values of quark masses.

3 Coherent vs. incoherent di↵raction

3.1 The coherent case

In coherent di↵raction, there is complete factorization of amplitude and its complex conjugate.
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→ higher correlators not known; way out: “Gaussian 
approximation” (McLerran-Venugopalan model) for 
weight function with width 𝝁
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where ✓

p

, ✓

q

, ✓

k

denote the azimuthal angle of final state momenta and |p|, |q|, |k| their transverse momenta.
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Since our purpose in this first study is a demonstration
of the saturation e↵ects rather than a comprehensive nu-

merical study of it we use the large N

c

and Gaussian
approximation to write the quadrupole S

(4) in terms of
the dipole S

(2) [5]. Furthermore, we use a mode of the
dipole profile which is motivated by a fit to the solution
of rcBK equation [9],
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where Q

0

is proportional to the saturation scale. Since
we are working in the dilute limit we study the cross-

section at large photon virtuality Q

2 = 16GeV2 and
expand the dipole cross section up to the quadratic or-
der in N

(2) = 1 � S

(2). The free parameters are cho-
sen to be ↵ = 2.3 while Q

proton

0

= 0.69GeV which are
motivated by inclusive DIS fits of the dipole distribu-
tion at x = 0.2 ⇥ 10�3, while for the gold nucleus we
use Q

Au

0

= A

1/6 · Qproton

0

= 1.67GeV. At the linear or-
der in N

(2), the cross-section is directly proportional to
the Fourier transform of the dipole, �

�
(p+ k + q)2

�
and

therefore allows a direct test of the saturated gluon distri-
bution in the target. In analogy to the back-to-back con-
figuration in di-parton production we take |p| = |k| = |q|.
The ‘collinear’ limit p+k+q = 0 of vanishing transverse
momentum transfer between projectile and target corre-
sponds then to the angular configuration {�✓

qg

,�✓

q̄g

} =
{2⇡/3, 4⇡/3} and {�✓

qg

,�✓

q̄g

} = {4⇡/3, 2⇡/3}, i.e. a
so-called “Mercedes-Benz-star” configuration, which is
characterized by strong peaks of the angular distribution
at these points. We observe vanishing of the partonic
cross section at these ‘collinear’ configurations, Fig. 2,

• in general: weight function W[𝝆] not known … what 
can be extracted from inclusive DIS data is the 
dipole amplitude

i.e. we have elastic scattering of the proton. Note that this matches with the inclusive
(total cross-section) case, which – by the power of the optical theorem – is directly related
to the imaginary part of the forward amplitude. Eq. (9) may be therefore written also in the
following wa

hP |N̂(r, b)|P i
x

hP |N̂(r0, b0)|P i
x

(16)

3.2 Incoherent di↵raction and the MV model

In the incoherent case we still deal with the same set of dipole operators (as given in Eq. (9)),
but now with the average over color sources taken on the level of the cross-section. Eq. (17)
will be therefore replaced by the following expression

hP |N̂(r, b) · N̂(r0, b0)|P i
x

(17)

Within the McLerran-Venugopalan (MV) model [5], the funciontional W [⇢] of Eq. (13) is
taken within the Gaussian approximation,

W [⇢] =

Z
d

2
x

Z
d

2
y

Z
dz

+ ⇢

c

(z+,x)⇢
c

(z+,y)

2µ2(z+)
(18)

which is generally argued to be a good approximation in the region of low gluon densities.
Generalizations of this model cite include a non-local weight µ

2(z+) ! µ

2(z+,x) which
allows to take into account transverse momentum/transverse coordinate dependence. In [6]
this model has been used to evaluate Eq. (17). More precisely the following correlator has
been determined

hŜ(x,y)i = e

�
Cf
2 F (x,y) (19)

hŜ(x,y)Ŝ(u,v)i =

= hŜ(x,y)ihŜ(u,v)i ·
 

F (x,u;y,v) +
p
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�
 
F (x,u;y,v)�

p
�

2
p
�

� F (x,y;u,v)

N

2
c

p
�

!
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2
p
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�
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2
F (x,u;y,v)+ µ2

2Nc
F (x,y;u,v) (20)

One has

F (x,y;u,v) =
1

�2µ2
[F (x,u) + F (y,v)� F (x,v)� F (y,u)]

� = F

2(x,u;y,v) +
4

N

2
c

F (x,y;u,v) · F (x,v;u,y) (21)

To get rid of the µ

2 factors, we introduce in the following rescaled variables

G(x,y;u,v) = �2µ2
F (x,y;u,v) = [F (x,u) + F (y,v)� F (x,v)� F (y,u)]

D = (�2µ2)2� = G

2(x,u;y,v) +
4

N

2
c

G(x,y;u,v) ·G(x,v;u,y) (22)

4

can argue: good approximation in dilute limit



• numerical study: a good approximation to full expression 
[Dumitru, Jalilian-Marian, Lappi, Schenke, Venugoplana; 1108.4764]

• in general: known for finite NC; here: large NC limit→  argue 
that expectation values of combinations of S(2) and S(4) 
factorise

• allows to calculate dipole in terms of μ2 and 2 point correlator 
of fields → fix this combination from DIS inclusive fits of S(2) 

• calculate quadrupole correlator in terms of dipole correlator  
[Dominguez, Marquet, Xiao,Yuan; 1101.0715]
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where ✓

p

, ✓

q

, ✓

k

denote the azimuthal angle of final state momenta and |p|, |q|, |k| their transverse momenta.

Since our purpose in this first study is a demonstration
of the saturation e↵ects rather than a comprehensive nu-
merical study of it we use the large N

c

and Gaussian
approximation to write the quadrupole S

(4) in terms of

the dipole S

(2) [5]. Furthermore, we use a mode of the
dipole profile which is motivated by a fit to the solution
of rcBK equation [9],
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where Q

0

is proportional to the saturation scale. Since
we are working in the dilute limit we study the cross-
section at large photon virtuality Q

2 = 16GeV2 and

expand the dipole cross section up to the quadratic or-
der in N

(2) = 1 � S

(2). The free parameters are cho-
sen to be ↵ = 2.3 while Q

proton

0

= 0.69GeV which are
motivated by inclusive DIS fits of the dipole distribu-
tion at x = 0.2 ⇥ 10�3, while for the gold nucleus we
use Q

Au

0

= A

1/6 · Qproton

0

= 1.67GeV. At the linear or-
der in N

(2), the cross-section is directly proportional to
the Fourier transform of the dipole, �

�
(p+ k + q)2

�
and

therefore allows a direct test of the saturated gluon distri-
bution in the target. In analogy to the back-to-back con-
figuration in di-parton production we take |p| = |k| = |q|.
The ‘collinear’ limit p+k+q = 0 of vanishing transverse
momentum transfer between projectile and target corre-
sponds then to the angular configuration {�✓

qg

,�✓

q̄g

} =
{2⇡/3, 4⇡/3} and {�✓

qg

,�✓

q̄g

} = {4⇡/3, 2⇡/3}, i.e. a
so-called “Mercedes-Benz-star” configuration, which is
characterized by strong peaks of the angular distribution
at these points. We observe vanishing of the partonic
cross section at these ‘collinear’ configurations, Fig. 2,
accompanied by a strong double peak. This behavior is
also observed in studies of photon-quark and dilepton-
quark angular correlations [12]. This vanishing of the
partonic cross-section at these points is due to the van-
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where ✓

p

, ✓

q

, ✓

k

denote the azimuthal angle of final state momenta and |p|, |q|, |k| their transverse momenta.

Since our purpose in this first study is a demonstration
of the saturation e↵ects rather than a comprehensive nu-
merical study of it we use the large N

c

and Gaussian
approximation to write the quadrupole S

(4) in terms of

the dipole S

(2) [5]. Furthermore, we use a mode of the
dipole profile which is motivated by a fit to the solution
of rcBK equation [9],
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where Q

0

is proportional to the saturation scale. Since
we are working in the dilute limit we study the cross-
section at large photon virtuality Q

2 = 16GeV2 and

expand the dipole cross section up to the quadratic or-
der in N

(2) = 1 � S

(2). The free parameters are cho-
sen to be ↵ = 2.3 while Q

proton

0

= 0.69GeV which are
motivated by inclusive DIS fits of the dipole distribu-
tion at x = 0.2 ⇥ 10�3, while for the gold nucleus we
use Q

Au

0

= A

1/6 · Qproton

0

= 1.67GeV. At the linear or-
der in N

(2), the cross-section is directly proportional to
the Fourier transform of the dipole, �

�
(p+ k + q)2

�
and

therefore allows a direct test of the saturated gluon distri-
bution in the target. In analogy to the back-to-back con-
figuration in di-parton production we take |p| = |k| = |q|.
The ‘collinear’ limit p+k+q = 0 of vanishing transverse
momentum transfer between projectile and target corre-
sponds then to the angular configuration {�✓

qg

,�✓

q̄g

} =
{2⇡/3, 4⇡/3} and {�✓

qg

,�✓

q̄g

} = {4⇡/3, 2⇡/3}, i.e. a
so-called “Mercedes-Benz-star” configuration, which is
characterized by strong peaks of the angular distribution
at these points. We observe vanishing of the partonic
cross section at these ‘collinear’ configurations, Fig. 2,
accompanied by a strong double peak. This behavior is
also observed in studies of photon-quark and dilepton-
quark angular correlations [12]. This vanishing of the
partonic cross-section at these points is due to the van-



• parameters: 𝛂 = 2.3  
proton: Q0prot. = 0.69 GeV;   corresponds to  x = 0.2 ･ 10-3 
gold: Q0gold = A1/6 Q0prot. =  1.67 GeV

• our treatment: use S(2)=1 - N(2) and expand for small N(2)  

to linear and quadratic order → large quadratic 
corrections: sensitive to non-linear effects 

• For S(2) use model with parameters fitted to rcBK DIS fit  
[Quiroga-Arias,Albacete, Armesto, Milhano, Salgado, 1107.0625]
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The minimal set of helicity coe�cients is obtained as
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where ✓

p

, ✓

q

, ✓

k

denote the azimuthal angle of final state momenta and |p|, |q|, |k| their transverse momenta.

Since our purpose in this first study is a demonstration
of the saturation e↵ects rather than a comprehensive nu-
merical study of it we use the large N

c

and Gaussian
approximation to write the quadrupole S

(4) in terms of
the dipole S

(2) [5]. Furthermore, we use a mode of the
dipole profile which is motivated by a fit to the solution
of rcBK equation [9],
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where Q

0

is proportional to the saturation scale. Since
we are working in the dilute limit we study the cross-
section at large photon virtuality Q

2 = 16GeV2 and
expand the dipole cross section up to the quadratic or-
der in N

(2) = 1 � S

(2). The free parameters are cho-
sen to be ↵ = 2.3 while Q

proton

0

= 0.69GeV which are
motivated by inclusive DIS fits of the dipole distribu-
tion at x = 0.2 ⇥ 10�3, while for the gold nucleus we
use Q

Au

0

= A

1/6 · Qproton

0

= 1.67GeV. At the linear or-
der in N

(2), the cross-section is directly proportional to
the Fourier transform of the dipole, �

�
(p+ k + q)2

�
and

therefore allows a direct test of the saturated gluon distri-
bution in the target. In analogy to the back-to-back con-
figuration in di-parton production we take |p| = |k| = |q|.
The ‘collinear’ limit p+k+q = 0 of vanishing transverse
momentum transfer between projectile and target corre-
sponds then to the angular configuration {�✓

qg

,�✓

q̄g

} =
{2⇡/3, 4⇡/3} and {�✓

qg

,�✓

q̄g

} = {4⇡/3, 2⇡/3}, i.e. a
so-called “Mercedes-Benz-star” configuration, which is
characterized by strong peaks of the angular distribution
at these points. We observe vanishing of the partonic
cross section at these ‘collinear’ configurations, Fig. 2,
accompanied by a strong double peak. This behavior is

also observed in studies of photon-quark and dilepton-
quark angular correlations [12]. This vanishing of the
partonic cross-section at these points is due to the van-
ishing of the partonic matrix element at leading order
in N

(2) for zero momentum transfer between projectile
and target. Indeed such a behavior is expected due to
Ward identities applicable to the gluon exchange in the
t-channel. This double peak will mostly go away at
the hadronic level and/or when adding quadratic cor-
rections in N

(2), which already provides non-zero val-
ues at the points {�✓

qg

,�✓

q̄g

} = {2⇡/3, 4⇡/3} and
{�✓

qg

,�✓

q̄g

} = {4⇡/3, 2⇡/3}. The e↵ect of a larger
gluon saturation scale for a nucleus is clearly seen at the
linear level in the figure. To explore the potential of the
process to detect e↵ects beyond the linear approximation,
we further include sub-leading corrections in the dilute
expansion. We find that these corrections are small in the
case of the proton, while sizable for a highly saturated
gold nucleus, which emphasizes the potential of the 3
parton production process in providing experimental ev-
idence for saturation e↵ects. This is even more remark-
able due to the rather large value of photon virtuality
Q

2 = 16 GeV2. A comprehensive numerical study of
the three hadron/jet azimuthal angular correlations us-
ing the most up-to-date solutions of the rcBK equation
will clearly help establish/constrain saturation dynamics
against competing formalism such as collinear factoriza-
tion, applicable to the low density regime. This is work
in progress and will be reported elsewhere [10].
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First study at partonic level 
• explore deviations from Mercedes star 

configuration→back-to-back for three 
particles 

• parton pT fixed to 2 GeV, Q=3 GeV
� (����)
� (�����)
�� (����)
�� (�����)
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2.0

• fix one angle (quark-
gluon), vary 
antiquark-gluon 

• sizeable quadratic 
corrections for gold



Summary:
• NLO BFKL serves to evolve from HERA energies to 

LHC energies 

• to detect high gluon density effects, observables 
directly sensitive to such effects should help 
(“evolution only” might require too much phase 
space)  

• studied such an observables and showed that this 
could actually work (at partonic level so far) 

• more work left be done!



Gracias!



• a “cut” propagator crosses light-cone time x+=0
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Figure 4: Real corrections. The dashed line indicates the x

+ = 0 time-slice where the interaction

with the target can take place. In addition there are also non-interacting contributions

Figure 5: Diagrams with interaction not aligned along a vertical cut and which gives therefore a zero

contribution

vertical lines through the diagrams (‘s-channel’ cuts) which indicate transition from negative
to positive light-cone time.

The benefit of this result for the study of the interaction with the target field should be
apparent by now: since vertices, Eqs. (7) and (8), are limited to light-cone time x+

i

= 0, such
vertices can only be inserted in a “cut” line. Insertions in un-cut lines, are immediately zero,
see Fig. 5 for two configurations which cannot occur. Note that this result applies separately
for each individual Feynman diagram and holds regardless of whether the actual evaluation
takes place in configuration, momentum or mixed i.e. light-front space. While this leads
already to a significant reduction in the number of Feynman diagrams to be evaluated, the
remaining set of diagrams still contains a sizable fraction of redundant contributions. In
particular there are large cancellations between diagrams where we place a target interaction
vertex Eqs. (7), (8) at the z

+

i

= 0 cut and diagrams where such interaction is absent, see
Fig. 6 for an example.
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• start without special vertices 

• divide xi+ integral                                            + theta functions 
in plus momenta & coordinates → each of our diagrams cut 
by a line separating positive & negative light-cone time (left: 

negative; right: positive) 

• only plus coordinates & momenta → skeleton diagrams 
sufficient

p q
Configuration space: cuts at x+=0

p

k

�q

`

P

X

Figure 1:

a general four vector v given by
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we obtain for the momenta of initial particles
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2
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n . (3)

To include the possibility of arbitrary large gluon densities in the target, we represent the
latter by its gluonic field which can reach a maximum strength of A

µ

⇠ 1/g, with g the gauge
coupling. To calculate scattering amplitudes in the high energy limit it is then convenient
to treat the gluon field of the target as a background field (shock-wave); in light-cone gauge
A · n = 0, the only non-zero component is A

�(x+, x
t

) = �(x+)↵(x
t

), while A

t

= 0 in the
high energy limit. Amplitudes are written in terms of momentum space quark and gluon
propagators in the presence of the background field, see e.g. [23],
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which are directly obtained from Fourier transforming their corresponding counter parts in
configuration space. In the above we use the conventional free fermion and gluon propagator,
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denotes the polarization tensor in the light-cone gauge, and
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Which cuts are possible?

• for this topology, these are the only possible cuts
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Figure 4: Real corrections. The dashed line indicates the x

+ = 0 time-slice where the interaction

with the target can take place. In addition there are also non-interacting contributions

Figure 5: Diagrams with interaction not aligned along a vertical cut and which gives therefore a zero

contribution

vertical lines through the diagrams (‘s-channel’ cuts) which indicate transition from negative
to positive light-cone time.

The benefit of this result for the study of the interaction with the target field should be
apparent by now: since vertices, Eqs. (7) and (8), are limited to light-cone time x+

i

= 0, such
vertices can only be inserted in a “cut” line. Insertions in un-cut lines, are immediately zero,
see Fig. 5 for two configurations which cannot occur. Note that this result applies separately
for each individual Feynman diagram and holds regardless of whether the actual evaluation
takes place in configuration, momentum or mixed i.e. light-front space. While this leads
already to a significant reduction in the number of Feynman diagrams to be evaluated, the
remaining set of diagrams still contains a sizable fraction of redundant contributions. In
particular there are large cancellations between diagrams where we place a target interaction
vertex Eqs. (7), (8) at the z

+

i

= 0 cut and diagrams where such interaction is absent, see
Fig. 6 for an example.
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• in general: any line through the diagram 

• fix kinematics to s-channel kinematics [l+=p+ +q+ +k+, all 
plus momenta positive always] 
 → only s-channel type cuts possible (~vertical cuts)



• at a cut: “propagator ⊗ special vertex ⊗ propagator” or 
“propagator” only; no special vertex anywhere else
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Figure 4: Real corrections. The dashed line indicates the x

+ = 0 time-slice where the interaction

with the target can take place. In addition there are also non-interacting contributions

Figure 5: Diagrams with interaction not aligned along a vertical cut and which gives therefore a zero

contribution

vertical lines through the diagrams (‘s-channel’ cuts) which indicate transition from negative
to positive light-cone time.

The benefit of this result for the study of the interaction with the target field should be
apparent by now: since vertices, Eqs. (7) and (8), are limited to light-cone time x+

i

= 0, such
vertices can only be inserted in a “cut” line. Insertions in un-cut lines, are immediately zero,
see Fig. 5 for two configurations which cannot occur. Note that this result applies separately
for each individual Feynman diagram and holds regardless of whether the actual evaluation
takes place in configuration, momentum or mixed i.e. light-front space. While this leads
already to a significant reduction in the number of Feynman diagrams to be evaluated, the
remaining set of diagrams still contains a sizable fraction of redundant contributions. In
particular there are large cancellations between diagrams where we place a target interaction
vertex Eqs. (7), (8) at the z

+

i

= 0 cut and diagrams where such interaction is absent, see
Fig. 6 for an example.
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• NEXT: add special vertices 

• recall:                                       plus momentum flow not 
altered + placed at z+=0 ⇒ by default on the cut 

• go back to momentum space: special vertices still must be 
aligned along the cut

p q

p

�q

l

�k1

l � k1

p

�q

l

p� l

Figure 2: Left: Tree diagram with 2 insertions of the vertices Eqs. (7) and (8): the internal mo-

mentum k1 is integrated over like a loop momenta i.e. with

R

d

4
k1/(2⇡)4. Right: Tree diagram with

1 insertion the vertices Eqs. (7) and (8): all momenta are fixed by external momenta

denotes the polarization tensor in the light-cone gauge, and
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with Wilson lines in fundamental (V ) and adjoint (U) representation. They read

V (z) ⌘ V

ij

(z) ⌘ Pexp ig

1
Z

�1

dx

+

A

�,c(x+, z)tc

U(z) ⌘ U

ab(z) ⌘ Pexp ig

1
Z

�1

dx

+

A

�,c(x+, z)T c (9)

with �iT

c

ab

= f

acb. To construct amplitudes in the presence of a (strong) background field, it
is convenient to extend conventional QCD momentum space Feynman rules by two additional
rules: (a) adding the vertices Eqs. (7) and (8) and (b) the requirement that all internal
momenta p, i.e. momenta which cannot be expressed in terms of momenta of external

particles, are integrated over with the measure
R

d

4

p

(2⇡)

4

, in 1-1 correspondence to conventional

loop momenta. In tree diagrams such internal momenta arise if n � 2 vertices from Eqs. (7)
and (8), are inserted into a single Feynman diagram; see Fig. 2 for an illustrative example. If
the number n of produced colored particles in the final state is small, n  2, the above method
provides an e�cient alternative to the calculation of matrix elements in the presence of large
gluon densities, see [11, 24] for earlier examples. For final states with large multiplicities,
n � 3, the method becomes ine�cient due to the large number of Feynman diagrams which
need to be considered. While the process �⇤+ target ! q + q̄ requires 3 diagrams, one finds

5



How does it help?

• ….. but each cut contains still several diagrams

not possible for s-
channel kinematics

• evaluates 50% of possible momentum diagrams to 
zero

p+

k+

q+

x+
1

x+
2

l+



Configuration space knows more …  
(partial) Fourier transform for complete propagator 

obtain free propagation for 
• x+,y+<0 (“before interaction”) 
• x+,y+>0 (“after interaction”) 

propagator proportional to  
complete Wilson line V (fermion)  
or U (gluon) if we cross  
light-cone time z+=0 
→ must pass through the cuts 

Figure 6: Diagrams with and without interaction which belong to the same cut.

2.2 Further reduction of diagrams

To reduce the number of diagrams further, it is necessary to study the Fourier transform of
the complete propagators (containing both interacting and non-interacting) parts, Eq. (4).
Using these propagators for all lines in diagrams (for external lines this implies the use of the
LSZ-reduction procedure, see e.g. [11]) the full process can be represented in terms of two
diagrams only. On the level of scalar skeleton graphs these are precisely those of Fig. 3. It
is well known that such complete propagators can be written in configuration space in three
parts: one term is associated with crossing from negative to positive light-cone time x

+ and
is directly proportional to either a Wilson line (positive light-cone momentum fraction) or
a hermitian conjugate Wilson line (negative light-cone momentum fraction). The other two
terms describe free propagation between two points with either negative or positive light-cone
time. For the following discussion the following form is su�cient:
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where the condition p

+

> 0 (p+ < 0) selects automatically the configuration x
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> 0 > y

+

(x+ < 0 < y

+). Similarly one has in the case of gluons
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• reality: more complicated due to mixing of different cuts 
 
                                          vs. 

• crucial: positive plus momenta in all lines for tree diagrams 

• allows to formulate a new set of effective ”Feynman rules”
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• for a single cut:                             effectively adds up 
p+

k+

q+

x+
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x+
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Theory: Propagators in background field

the real gluon interacting with the quark at the same vertex) and therefore posesses, as
far as the pole structure is concerend, the same structure as the the first contribution.
Moreover, unlike the first contribution, the vertex which leads to emission of the real
gluon, can appear at any position. Note that, since we are dealing with a real final
state quark and gluon, the time ordering of the ‘quark Wilson line’ is not a↵ected by
the emission of the real gluon. Taking into account only the color generators due to the
interaction with the background field and the vertex Eq. (24) we have for the second
contribution, the following result,
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where we restricted ourselves to the case n = 3 with the generalization to arbitrary n

apparent. After contraction with q

⇢, the factor in front of the squared bracket turns
into gn�. For the first contribution one has instead (with the incoming quark momentum
p and the outgoing quark momentum r)
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After contraction with q

⇢ and using that the out-going quark is real we have

�igt

c

t

a

3

t

a

2

t

a

1

p� i

(p�+ q�)n�� gt

c

t

a

3

t

a

2

t

a

1

n�+ gt

a

3

t

a

2

t

a

1

t

c

n� (27)

The last two terms cancel now against the with q

⇢ contracted Eq. (25) while the first
term is only present due to the o↵-shellness of the initial gluon and is identical to the
case where a gluon is emitted from a quark without interaction with the background
field. Hence it is supposed to be canceled by some standard mechanism.

1.2 Momentum space

Generalizing [1] to d dimensions and masses we have for the propagators
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with Wilson lines in fundamental (V ) and adjoint (U) represenation which read

V (z) ⌘ V

ij

(z) ⌘ Pexp ig

Z 1

�1
dx

�
A

+,c(x�, z)tc

U(z) ⌘ U

ab(z) ⌘ Pexp ig

Z 1

�1
dx

�
A

+,c(x�, z)T c

A

+,a(z�, z) = ↵

a(z)�(z�) (32)

with �iT

c

ab

= f

acb and A

+,a(x�, z) = �g�(x�)⇢
a

(x)/@2. For a produced real particle
the following generalized spinors and polarization vectors can be used2
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For a straightforward formulation in momentum space, it is useful to include e↵ective
2-point (1 ! 1) vertices which correspond to the above introduced ⌧
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and ⌧

g

. In
combination with conventional QCD Feynman rules (where we follow the conventions
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I interpret the k
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of [1] as k2
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with k2

Euclidean.
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A complete derivation requires the LSZ-reduction formula
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interaction with the background field:

strong background field resummed into path ordered 
exponentials (Wilson lines)

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, McLerran, 
Venugopalan, PRD 52 (1995) 2935-2943], …

use light-cone gauge, with k-=n+･k, (n+)2=0, n+~ target momentum
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Figure 2: Left: Tree diagram with 2 insertions of the vertices Eqs. (7) and (8): the internal mo-

mentum k1 is integrated over like a loop momenta i.e. with

R

d

4
k1/(2⇡)4. Right: Tree diagram with

1 insertion the vertices Eqs. (7) and (8): all momenta are fixed by external momenta
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with Wilson lines in fundamental (V ) and adjoint (U) representation. They read
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acb. To construct amplitudes in the presence of a (strong) background field, it
is convenient to extend conventional QCD momentum space Feynman rules by two additional
rules: (a) adding the vertices Eqs. (7) and (8) and (b) the requirement that all internal
momenta p, i.e. momenta which cannot be expressed in terms of momenta of external

particles, are integrated over with the measure
R
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loop momenta. In tree diagrams such internal momenta arise if n � 2 vertices from Eqs. (7)
and (8), are inserted into a single Feynman diagram; see Fig. 2 for an illustrative example. If
the number n of produced colored particles in the final state is small, n  2, the above method
provides an e�cient alternative to the calculation of matrix elements in the presence of large
gluon densities, see [11, 24] for earlier examples. For final states with large multiplicities,
n � 3, the method becomes ine�cient due to the large number of Feynman diagrams which
need to be considered. While the process �⇤+ target ! q + q̄ requires 3 diagrams, one finds
already 16 diagrams for the process �

⇤+ target ! q + q̄ + g. Moreover, calculations based
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a general four vector v given by
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we obtain for the momenta of initial particles
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To include the possibility of arbitrary large gluon densities in the target, we represent the
latter by its gluonic field which can reach a maximum strength of A

µ

⇠ 1/g, with g the gauge
coupling. To calculate scattering amplitudes in the high energy limit it is then convenient
to treat the gluon field of the target as a background field (shock-wave); in light-cone gauge
A · n = 0, the only non-zero component is A

�(x+, x
t

) = �(x+)↵(x
t

), while A

t

= 0 in the
high energy limit. Amplitudes are written in terms of momentum space quark and gluon
propagators in the presence of the background field, see e.g. [23],
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which are directly obtained from Fourier transforming their corresponding counter parts in
configuration space. In the above we use the conventional free fermion and gluon propagator,
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conventional 
pQCD 

(use known techniques)

inclusion of finite 
masses  

(charm mass!)

intuition: 
interaction at t=0 

with Lorentz 
contracted target

momentum space well explored complication, but 
doable

lose intuitive 
picture at first -> 

large # of 
cancelations

configuration 
space poorly explored very difficult many diagrams 

automatically zero 

our approach:  
work in momentum space + exploit configuration space to 

set a large fraction of all diagrams to zero

momentum vs. configuration 
space 



How to do that? 

Essentially: re-install configuration space 
rules at the level of a single diagram 

essential results: can use configuration 
space simplification also for momentum 

space calculations



Result: New effective rules for momentum space

A. Determine zero light-cone time cuts of a given 
diagram 

B. Place new vertices at these cutswhere we defined
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Applying now these results to the (skeleton) diagrams, Fig. 4, we now find that each “cut” line
must necessarily come with a vertex, Eqs. (15) and (16). The “un-cut” lines can only come
with a free propagator. At first these propagators are limited to positive or negative light-cone
time only and therefore cannot be directly related to their momentum space counter-parts.
Due to the results of Sec. 2.1, adding a free propagator which crosses from negative to positive
light-cone time will however give only a zero contribution. Adding such a zero contribution it
is then straight forward to Fourier transform our result back to momentum space. Therefore
the complete amplitude can be calculated from the six diagrams of Fig. 4 with a vertex,
Eqs. (15) and (16) at each cut, minus the diagram with the background field A

+ set to zero;
if the initial particle is is not colored (as in our case) the total number of diagrams reduces
finally to four.

2.3 The minimal set of amplitudes

The final set of diagrams which we need to evaluate for the process described by Eq. (1) is
depicted in Fig. 7. The four matrix elements corresponding to Fig. 7 read
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ū(p)�µ ta S

F

(p+ k, k

1

)�⌫S
F

(k
1

� l,�q)

·
⇥

S

(0)

F

(�q)
⇤�1

v(q)✏
⌫

(l) ✏⇤
µ

(k) ,

iA
2

=(ie)(ig)

Z

d

4

k

1

(2⇡)4
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verified by explicit calculation for tree level diagrams; in general also extendable to 
loop diagrams … 



First result: minimal set of amplitudes 
(nothing new if you’re used to work in coordinate space, momentum space: reduction by factor of 4)
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Figure 7: 3-parton production diagrams. The arrows indicate the direction of fermion charge flow.

The photon momentum is incoming whereas all the final state momenta are outgoing.
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(k) denote polarization vectors of the incoming virtual photon and the outgoing
gluon respectively and
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the di↵erential 3-parton production cross-section reads
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denotes the average over background field configurations, F = 2l+ and

A
i

= 2⇡�(l+ � p

+ � k

+ � q

+)M
i

i = 1, . . . , 4 . (21)
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What do we win with new momentum space rules?

can use techniques explored in (conventional) 
Feynman diagram calculations 

loop integrals (d-dimensional, covariant) → won’t 
talk about this today …. in general: complication 
due to Fourier factors remain 

spinor helicity techniques (calculate amplitudes 
not Xsec. + exploit helicity conservation in mass-
less QCD) → compact expressions (→ for a different 
application to h.e.f. see [van Hameren, Kotko, Kutak, 1211.0961])



Spinor-helicity formalism  
see e.g. [Mangano, Parke; Phys. Rept. 200, 301 (1991)] ,[Dixon; hep-ph/9601359]

3 Spinor helicity methods

While spinor helicity methods are well established for calculations within conventional pertur-
bative QCD calculations, its application to calculations in the QCD high energy/Regge limit
are rather limited, see [25] for some examples. We therefore start this section by recalling
basic definitions which will further serve to fix our notation.

3.1 Basic definitions

The presentation in this paragraph follows closely those of the reviews [17]. For massless
fermions, helicity is a good, i.e. conserved, quantum number. One defines (on-shell) helicity
eigenstates (spinors) as

u±(k) =
1± �

5

2
u(p) v⌥(k) =

1± �

5

2
v(p)

ū±(k) = ū(k)
1⌥ �

5

2
v̄±(k) = v̄(k)

1± �

5

2
. (22)

It is further convenient to introduce the following short-hands

|i±i ⌘ |k±
i

i ⌘ u±(ki) = v⌥(ki) hi±| ⌘ hk±
i

| ⌘ ū±(ki) = v̄⌥(ki) (23)

Which allows to define the basic spinor products by

hk
i

k

j

i ⌘ hk�
i

|k+
j

i = ū�(ki)u+(kj), [k
i

k

j

] ⌘ hk+
i

|k�
j

i = ū

+

(k
i

)u�(kj). (24)

Further note that

hk±
i

|k±
j

i = 0 hk⌥
i

|k±
i

i = 0. (25)

To evaluate such spinor products it is necessary to pick a certain representation of the Dirac
� matrices. In the Dirac representation

�

0 =

✓

1 0
0 �1

◆

, �

i =

✓

0 �

i

��

i 0

◆

, �

5 =

✓

0 1
1 0

◆

. (26)

with �

i, i = 1, . . . , 3 the Pauli-matrices. Using the convention of Eq. (2) to define light-cone
momenta, the massless spinors can be written as follows,

u

+

(k) = v�(k) =
1

21/4

0

B

B

B

@

p
k

+

p
k

�
e

i�kp
k

+

p
k

�
e

i�k

1

C

C

C

A

u�(k) = v

+

(k) =
1

21/4

0

B

B

B

@

p
k

�
e

�i�k

�
p
k

+

�
p
k

�
e

�i�kp
k

+

1

C

C

C

A

(27)

with

e

i�k ⌘ k

1 + ik

2

p
k

2

=
p
2
k · ✏p
k

2

, e

�i�k =
p
2
k · ✏⇤p

k

2

, ✏ =
1p
2
(1, i) (28)
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central idea: express both external spinors & 
polarisation vectors in terms of spinors of massless 
momenta of definite helicity

Using these expressions it is possible to obtain explicit formulae for the spinor brackets

hk
i

k

j

i =
q

2k�
i

k

+

j

e

i�ki �
q

2k�
j

k

+

i

e

i�kj =
q

2k+
i

k

+

j

 

k

i

· ✏
k

+

i

� k

j

· ✏
k

+

j

!

= (k+
i

k

+

j

)�
1

2

⇣

k

+

j

|k
i

|ei�ki � k

+

i

|k
j

|ei�kj

⌘

[k
i

k

j

] = �
q

2k�
i

k

+

j

e

�i�ki +
q

2k�
j

k

+

i

e

�i�kj

= �
q

2k+
i

k

+

j

 

k

i

· ✏⇤

k

+

i

� k

j

· ✏⇤

k

+

j

!

= �(k+
i

k

+

j

)�
1

2

⇣

k

+

j

|k
i

|e�i�ki � k

+

i

|k
j

|e�i�kj

⌘

(29)

All of the above versions are equivalent to each other, but prove useful in specific circum-
stances. We further note that

2p · k = hpki[kp] , [k
i

k

i

] = 0 = hk
i

k

i

i , hk
i

k

j

i⇤ = �[k
i

k

j

] , (30)

where the last relation is particularly useful to invert helicities in an amplitude. While the
above relations are valid in general, they are particularly useful for the description of high
energy factorized amplitudes where light-cone momenta k

+

i

are conserved. In particular this
enables us to deal with explicit expressions of brackets in the evaluation and leads to a
further simplification of diagrams. For instance, for brackets involving light-cone vectors n, n̄
the following relations hold

hnn̄i =
p
2, hnpi =

p

2p+,

[nn̄] = �
p
2, [np] = �

p

2p+,

hn̄pi = �
p
2
p · ✏
p

p

+

, [n̄p] =
p
2
p · ✏⇤
p

p

+

. (31)

Since the (physical) Hilbert space of a massless vector is isomorphic to the Hilbert space of
a massless spinor, it is further possible to express gluon and photon polarization vectors in
terms of the above spinors. One has

✏

(�=+)

µ

(k, n) ⌘ +
hk+|�

µ

|n+ip
2hn�|k+i

=
⇣

✏

(�=�)

µ

(k, n)
⌘⇤

,

✏

(�=�)

µ

(k, n) ⌘ �hk�|�
µ

|n�ip
2hn+|k�i

=
⇣

✏

(�=+)

µ

(k, n)
⌘⇤

, (32)

where k denotes the on-shell four-momentum of the boson and n the gauge vector. Obviously
one has ✏ · k = 0 = ✏ · n. These polarization vectors obey the following polarization sum

X

�=±
✏

(�)

µ

(k, n)
⇣

✏

(�)

µ

(k, n)
⌘⇤

= �g

µ⌫

+
k

µ

n

⌫

+ n

µ

k

⌫

k · n . (33)

Using the Fierz identity,

hi±|�µ|j±ihk±|�
µ

|l±i = 2hi±|k⌥ihl⌥|j±i, (34)
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… and make heavy use of various IDs  
→many cancelations already at amplitude level



 Dirac traces from Computer Algebra Codes
• possible to express elements of Dirac trace in terms of scalar, 

vector and rank 2 tensor integrals 

• Evaluation requires use of computer algebra codes; 
use 2 implementations:  
FORM [Vermaseren, math-ph/0010025]  &  
Mathematica packages FeynCalc and FormLink  

• result (3 partons) as coefficients of “basis”-functions f(a) and h(a,b); 
result lengthy (~100kB), but manageable 

• currently working on further simplification through integration by 
parts relation between basis function (work in progress)

A reminder from before we realised that … 


