Open beauty production and modifications in PbPb collisions with CMS

Ta-Wei Wang (MIT) on behalf of the CMS collaboration

2nd International Workshop on QCD Challenges from pp to AA, Puebla (Mexico)
31 Oct - 3 Nov 2017
Flavor dependence parton energy loss

- Medium induced energy loss (E_{loss}):
 - Collisional
 - Radiative

- Kinematics: "Dead cone effect" [1]: gluon radiation is suppressed at angles smaller than the ratio of quark mass to energy
 - E_{loss} in light quarks > E_{loss} in heavy quarks

$$dP = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{k_\perp^2 dk_\perp^2}{(k_\perp^2 + \omega^2 \theta_0^2)^2}, \quad \theta_0 \equiv \frac{M}{E},$$

- Suppression of induced radiation at low p_T and the disappearance of this effect at high p_T

Nuclear modification factor: R_{AA}

- $R_{AA} = \text{nuclear modification factor}$

 - $M_b \sim 4.2 \text{ GeV/c}^2 > M_c \sim 1.3 \text{ GeV/c}^2 > M_{\text{light}} \sim O(\text{MeV/c}^2)$

- $R_{AA}^B > R_{AA}^D > R_{AA}^{\text{light}}$?

$$R_{AA} = \frac{N_{PbPb}^{(\text{cent.})}}{N_{Pp}^{Pp}} \times \frac{\mathcal{A}_{Pp} \times \epsilon_{Pp}}{\mathcal{A}_{PbPb} \times \epsilon_{PbPb}^{(\text{cent.})}} \times \frac{\mathcal{L}_{Pp}}{N_{MB} \times \langle T_{AA} \rangle \times (\text{cent. fraction})}$$

- In the following, two CMS 5.02 TeV results will be presented
 - Non-prompt J/ψ
 - Fully reconstructed B meson
Open b flavor in CMS

- $c \tau \approx O(500) \mu m \rightarrow$ secondary vertex

1. Non-prompt J/ψ, $B \rightarrow J/\psi \rightarrow \mu\mu$
 Pros:
 - High statistics (0.1% of b xsec)
 - High reconstruction efficiency
 Cons:
 - Convolution of b mesons and b baryons decay

2. Fully reconstructed B mesons decay: $B^+ \rightarrow J/\psi + K^+$
 Pros:
 - Access to the original B hadron kinematics
 - Distinguish B hadrons, e.g. B^+ v.s. B_s
 Cons:
 - Low Statistic (0.01%)
 - Combinatorial background

- Precise vertexing & tracking
 \rightarrow CMS is a great fit
Signal extraction: J/ψ

1. Di-muon triggered events
2. Muon pair fit to a common vertex
3. Fit on invariant mass and decay length spectra
4. Yield extraction in bins of N_{part}, rapidity and P_T
5. Extracted yields corrected using simulation and data-driven approach (tag & probe)

All J/ψ

prompt J/ψ:
- direct production
- feed down (ψ')

non-prompt J/ψ:
- from B decays ($ex\ B \rightarrow J/\psi X$)

Muon acceptance:

- $p_T^\mu > 3.5\,\text{GeV/c}$ for $|\eta^\mu| < 1.2$
- $p_T^\mu > (5.77 - 1.89 \times |\eta^\mu|)\,\text{GeV/c}$ for $1.2 \leq |\eta^\mu| < 2.1$
- $p_T^\mu > 1.8\,\text{GeV/c}$ for $2.1 \leq |\eta^\mu| < 2.4$
Non-prompt J/ψ ($B \rightarrow J/\psi \ X$)

- Three component fit for signal extraction
 - Prompt J/ψ
 - Non-prompt J/ψ from B hadron
 - Combinatorial background

![Graph showing the CMS-PAS-HIN-16-025 details of the fitting procedure in backup slides](image-url)

PbPb 368 μb$^{-1}$ (5.02 TeV)

- Data
- Total fit
- Prompt J/ψ
- Nonprompt J/ψ
- Background

CMS Preliminary

1.8 $\leq |y_{\mu\mu}| < 2.4$
4.5 $\leq p_T^{\mu\mu} < 5.5$ GeV/c
Cent. 0-100%

Events / 0.025 GeV/c2

CMS-PAS-HIN-16-025

- Three component fit for signal extraction
 - Prompt J/ψ
 - Non-prompt J/ψ from B hadron
 - Combinatorial background
Signal extraction: \(B^+ \)

- **Signal channel:** \(B^+ \rightarrow J/\psi K^+ \)

 - Similar approach as the non-prompt \(J/\psi \)
 - Charged tracks are assigned a kaon mass
 - Muon pair + track \(\rightarrow \) common vertex fitting

 - fitting for yield extraction \(\rightarrow \) efficiency correction \(\rightarrow R_{AA} \)

MVA cut optimization

Boosted Decision Tree (BDT):

- track kinematics
- fitting probability
- opening angle
- decay length
B^+ → J/ψ + K^+

Phys. Rev. Lett. 119, 152301

- **Signal:** Double Gaussian with same mean

- **Peaking BG:** error function + two sided Gaussian

- **Combinatorial BG:** 1st order polynomial

28.0 pb\(^{-1}\) (pp 5.02 TeV)

10 < p\(_T\) < 15 GeV/c

| y | < 2.4

CMS

B\(^+\)+B\(^-\)

- Data
- Fit
- Signal
- Combinatorial
- B → J/ψ X

Phys. Rev. Lett. 119, 152301
Example B^+ mass spectra in $p_T = 10-15$ GeV/c in pp and PbPb collision

First fully reconstructed B meson decay in PbPb collision

$B^+ \rightarrow J/\psi X$

Phys. Rev. Lett. 119, 152301
Non-prompt J/ψ
@ pp(PbPb) 5.02 TeV
Non-prompt fraction

- Proportion of measured J/ψ mesons coming from b-hadron decays
 - A. $\text{PbPb} > \text{pp} \rightarrow$ indication of R_{AA} non-prompt $>$ prompt ?
 - B. Strong p_T dependence, non-prompt fraction increases with p_T (20% to 60%)
 - C. No significant dependence on rapidity is observed

![Graph showing non-prompt J/ψ fraction vs p_T and rapidity](image)
• Strong suppression of non-prompt J/ψ production in PbPb v.s. pp

• Increased suppression with event activity is observed in both collision energy

CMS-PAS-HIN-16-025 (5.02 TeV)
EPJC 77 (2017) 252 (2.76 TeV)
\(R_{AA} \) v.s. \(N_{\text{part}} \) and rapidity

- No significant difference in \(R_{AA} \) between the two collision energy
- Interplay between: 1). initial momentum spectrum. 2). increase energy loss ??

\[
R_{AA} \sim \frac{N_{\text{AA}}}{N_{\text{NN}}} = \frac{\frac{\sigma_{\text{AA}}}{\sigma_{\text{NN}}}}{\frac{\sigma_{\text{NN}}}{\sigma_{\text{NN}}}}
\]

\(\sqrt{s_{NN}} = 2.76 \) TeV
\(\sqrt{s_{NN}} = 5.02 \) TeV

\(\frac{\sigma_{\text{AA}}}{\sigma_{\text{NN}}} \)

Preliminary

CMS-PAS-HIN-16-025 (5.02 TeV)
EPJC 77 (2017) 252 (2.76 TeV)

Ta-Wei Wang (MIT), 2nd International Workshop on QCD Challenges from pp to AA
While there was an indication of rapidity dependance of R_{AA} in 2.76 TeV data, no evidence is observed in the current 5.02 TeV result.
- Measurement down to p_T 3 GeV at forward rapidity
- Strong dependence for peripheral events as 2.76 analysis
• Further categorize the result into differentiate rapidity regions
• No evidence of rapidity dependence

@ 5.02 TeV

CMS-PAS-HIN-16-025 (5.02 TeV)
B-meson

@ pp(PbPb) 5.02 TeV
\[\frac{d\sigma}{dp_T} \bigg|_{|y|<2.4} = \frac{1}{2} \frac{1}{\Delta p_T} \frac{N(p_T)_{|y|<2.4}}{(\text{Acc } e)_{|y|<2.4} \text{BR } \mathcal{L}}. \]

- Result derived in 5 \(B^\pm p_T \) bins, from 7 to 50 GeV in \(|y| < 2.4\)

- Consistent with the upper bound of FONLL predictions [1]

Compatible with pp 13 and 7 TeV results: upper edge of FONLL @ low p_T

Ratios to FONLL

CMS

Data (13 TeV, $|y| < 1.45$)
Data (13 TeV, $|y| < 2.1$)
FONLL (13 TeV)
PYTHIA (13 TeV)
Data (7 TeV, scaled to $|y| < 1.45$)
Data (7 TeV, scaled to $|y| < 2.1$)
FONLL (7 TeV)
PYTHIA (7 TeV)

CMS

Data / FONLL

CMS

B±

Data
FONLL

Global uncert. 3.8%

Phys. Rev. Lett. 119, 152301
Fully reconstructed B meson R_{AA}

- Suppression of B meson production rate is observed in PbPb collisions
- B meson $R_{AA} \sim 0.3$ to 0.6 with no obvious trend could be identified within statistical and systematic uncertainty
- Compatible with theory prediction within statistical and systematic uncertainty for p_T 10-50 GeV/c
- Necessity for high p_T measurement: distinguishing pQCD vs AdS/CFT base models

M. He et al., Physics Letters B 735 (2014) 445 – 450
M. Djordjevic, Phys. Rev. C 94 (Oct, 2016) 044908
W. A. Horowitz, Phys. Rev. D 91 (2015) 085019

$28.0 \, \text{pb}^{-1} (pp \, 5.02 \, \text{TeV}) + 351 \, \mu \text{b}^{-1} (\text{PbPb} \, 5.02 \, \text{TeV})$

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{CMS R_{AA}}
\end{figure}
R_{AA} zoo: B v.s. D v.s. light

- Comparisons at 5.02 TeV PbPb:
 - B^+ meson
 - D^0 meson
 - charge hadron
 - non-prompt J/ψ

- R_{AA} of B, D, and charged hadrons are compatible with each other within uncertainty at mid p_T

- Non-prompt J/ψ R_{AA} higher than D and charged hadron at low p_T. Merging at high p_T

- Compatible results between B meson and non-prompt J/ψ (ex B meson $10\sim15 \approx$ non-prompt $J/\psi 8\sim10$ GeV)

- Note:
 - Probing different kinematic region
 - Rapidity range is different
Cold nuclear matter effect?

- Suppression observed in both non-prompt J/ψ and B meson in PbPb collisions
 - Consequence of CNM effect? e.g.
 Modification of nPDF and potential nuclear absorption

 - No evidence of suppression observed in pPb collisions
 - The suppression seen in PbPb is likely a final state effect.

Summary & Future
Summary

• Non-prompt J/ψ:
 • Great results with unprecedented accuracy!
 • Clear evidence of suppression of production rate ($R_{AA}<1$) in PbPb
 • Smaller suppression than charged particle and D meson at low p_T
 • R_{AA} decreasing (more suppression) with centrality and p_T
 • No evidence of rapidity dependance is observed in the current analysis

• B meson:
 • First measurement of fully reconstructed B meson in PbPb!
 • A suppression of production rate is observed for B mesons
 • R_{AA} between 0.3 to 0.6 for B meson with no obvious trend observed
 • Open the door for b recombination effect studies!
Future

• An active field of research!

 • Non-prompt D meson measurement from B decay:

 • Direct: fully reconstructed B^+ to $D\pi$ channel

 • Indirect: inclusive non-prompt D reconstruction

 • B_s measurement, great probe for strangeness regeneration in QGP

 • Comparison between B^+, B_s and B_0 at low p_T could unveil more information on flavor recombination
• Future prospect: HL-LHC

• More data available from the HL-LHC will provide more precise measurements and enable us to distinguish different theoretical models.

B meson R_{AA} in 5.02 TeV

Non-prompt v_2 in 2.76 TeV

Future prospect: HL-LHC

- 25 times more statistic expected (factor of 5 reduction in uncertainty)
- Comparison @ low $p_T \rightarrow$ more definite conclusion on flavor dependence energy loss

Stay tuned!!!
Gracias!
Back Up
Why bother?

- Open v.s. Close flavor measurement provides dynamics of parton interactions and hadron formation in the QGP
 - colour-charge and parton-mass differences for the in-medium interactions
 - relative contribution of radiative and collisional energy loss
 - effects of different hadron formation times
- To resolved complicated interplay between:
 - primordial production (J/ψ produced in the initial hard-scattering of the collisions)
 - colour screening and energy loss (J/ψ destroyed or modified by interactions with the surrounding medium)
 - recombination/regeneration mechanisms in a de-confined partonic medium
Quark gluon plasma:

- QCD matter at high temperature and density
- Deconfinement of quarks → color screened (asymptotic freedom)
- Medium effect (momentum stopping, suppression of production...etc)

Relativistic heavy-ion collision at CMS:

- $T = O(10^{12}) \text{ K}, \rho = O(10) \text{ GeV/fm}^3$
- → Creation of QGP
- Understand of the properties of QGP
HF production at pp

LO process: Flavour Creation (FCR)
→ gluon fusion or light qq annihilation
→ bb produced back-to-back in azimuthal plane and symmetric in p_T

NLO process: Flavour Excitation (FEX)
→ excitation of b/b sea quark by gluon or light quark/anti-quark
→ bb pairs produced asymmetric in p_T and with a broad opening angle

NLO process: Gluon splitting (GSP)
- gluon splits in a bb pair
→ produced with small opening angles and asymmetric in p_T
HF production at pp

EPJC 73 (2013) 2301

ATLAS Simulation
Truth jets, \(\sqrt{s} = 7\) TeV

Gluon splitting
Heavy flavour quark excitation
Quark pair creation

LO \(b\)-\(b\) production (FCR)
sub-dominant at the LHC
Non-prompt J/ψ @ pp(PbPb) 5.02 TeV
Non-prompt J/ψ (B → J/ψ X)

- Fitting procedure: sequential fit on invariant mass and decay length distribution to determine parameterization first. A 2D fitting with parameters either fixed or initialized by the first 1D fit is then performed.
 - **Prompt J/ψ**
 - mass: 2xCrystal Ball (common mean, tail parameter), to account FSR
 - decay length: delta ⊗ resolution function
 - **Non-prompt J/ψ from B meson**
 - mass: 2xCrystal Ball (common mean)
 - decay length: exponential ⊗ resolution function
 - **Combinatorial background**
 - mass: Cheb. Nth (N determined by log-likelihood test which exam when the increase of N to N+1 and N+2 will only result in a < 5% improvement)
 - decay length: 3 exponential function(two 1-sided and one two sided) ⊗ resolution
Non-prompt J/ψ ($B \rightarrow J/\psi X$)

\[F(\ell_{J/\psi}, m_{\mu\mu}) = N_{\text{Sig}} \cdot F_{\text{Sig}}(\ell_{J/\psi}) \cdot M_{\text{Sig}}(m_{\mu\mu}) + N_{\text{Bkg}} \cdot F_{\text{Bkg}}(\ell_{J/\psi}) \cdot M_{\text{Bkg}}(m_{\mu\mu}), \]

the total 2D fit PDF: invariant mass X decay length

\[g_{\text{CB}}(m) = \begin{cases} N \sqrt{2\pi} \sigma_{\text{CB}} \exp \left(-\frac{(m-m_0)^2}{2\sigma_{\text{CB}}^2}\right), & \text{for } \frac{m-m_0}{\sigma_{\text{CB}}} > -\alpha; \\ N \sqrt{2\pi} \sigma_{\text{CB}} \left(\frac{n}{|\alpha|}\right)^n \exp \left(-\frac{|\alpha|^2}{2}\right) \left(\frac{n}{|\alpha|} - |\alpha| - \frac{m-m_0}{\sigma_{\text{CB}}^2}\right)^{-n}, & \text{for } \frac{m-m_0}{\sigma_{\text{CB}}} \leq -\alpha. \end{cases} \]

The invariant mass PDF is modeled by Crystall-ball distributions where alpha parameter defines the transition point between Gauss and power law function

\[F_{\text{Sig,Bkg}}(\ell_{J/\psi},i) = F_{\text{Sig,Bkg}}^{\text{true}}(\ell'_{J/\psi},i) \otimes R(\ell_{J/\psi},i - \ell'_{J/\psi},i \mid \mu, s \cdot \sigma_{\ell,i}). \]

The decay length PDF is a convolution of ‘true’ decay length PDF and resolution

\[F_{\text{Sig}}^{\text{true}}(\ell'_{J/\psi}) = bF_{\text{NonPrompt}}^{\text{true}}(\ell'_{J/\psi}) + (1-b)F_{\text{Prompt}}^{\text{true}}(\ell'_{J/\psi}). \]

The ‘true’ decay length PDF consists of prompt and non-prompt component
Non-prompt J/ψ ($B \rightarrow J/\psi \ X$)

$$F_{\text{NonPrompt}}^{\text{true}}(\ell'_{J/\psi}) = e^{-|\lambda_{DSS}| \cdot \ell'_{J/\psi}} ,$$

The ‘true’ decay length PDF for non-prompt is model by a (1-sided) decay function

$$F_{\text{Bkg}}^{\text{true}}(\ell'_{J/\psi}) = b_{bkg} \cdot \left[f_{DLIV} \cdot \left(f_{DFSS} \cdot e^{-|\lambda_{DSS}| \cdot \ell'_{J/\psi}} + (1 - f_{DFSS}) \cdot e^{|\lambda_{DF}| \cdot \ell'_{J/\psi}} \right) + (1 - f_{DLIV}) \cdot e^{-|\lambda_{DSS}| \cdot \ell'_{J/\psi}} \right] + (1 - b_{bkg}) \cdot \delta(\ell'_{J/\psi}) ,$$

The ‘true’ decay length PDF for background is model by a combination of 1-sided decay fn., a flipped 1-sided decay fn. and a 2-sided decay fn.

$$R_i(\ell_{J/\psi}|\mu, s \cdot \sigma_\ell) = [f_{\text{res}} \cdot \text{Gauss}(\ell_{J/\psi}|\mu_1, s_1 \cdot \sigma_\ell) + \left(1 - f_{\text{res}}\right) \cdot [f_{2\text{res}} \cdot \text{Gauss}(\ell_{J/\psi}|\mu_2, s_2 \cdot \sigma_\ell) + \left(1 - f_{2\text{res}}\right) \cdot \text{Gauss}(\ell_{J/\psi}|\mu_3, s_3 \cdot \sigma_\ell)]]$$

Resolution function obtained by utilizing the negative value decay length tail observed in data which originated from prompt component. A Gaus fit on this tail is use to extract the parameter
\[R_{AA} = \frac{N_{\text{PbPb}}}{(T_{AA} \times \sigma_{pp})} \]

- \(N_{\text{PbPb}} \): number of non-prompt per PbPb collision
- \(T_{AA} \): nuclear overlap function
- \(\sigma_{pp} \): pp cross section, obtained from pp data following the same procedure
- Global systematic = Grey box = pp lumi. + PbPb \(N_{\text{MB}} \) +

- \(T_{AA} \) systematic for results v.s. rapidity and \(P_{T} \)
- all pp statistical and systematic uncertainty for result v.s. \(N_{\text{part}} \)
Global systematic shown as color box at $R_{AA} = 1$

Slow increase of suppression in more central collisions

CMS-PAS-HIN-16-025

ψ Nonprompt J/ψ

CMS Preliminary

R_{AA} vs N_{part}

@ 5.02 TeV
• Increase of suppression in the central collision (~35%)
Open vs hidden

- Open beauty vs hidden beauty
- An indication of sequential melting
- Upper bound set on $\Upsilon(3S)$ R_{AA}

Figure:

- CMS-PAS-HIN-16-023
- CMS Preliminary
- PbPb 368 μb$^{-1}$, pp 28.0 pb$^{-1}$ (5.02 TeV)

Graph:

Open beauty

- Nonprompt J/ψ
- $|y| < 2.4$, $6.5 < p_T < 50$ GeV/c

Hidden beauty

- $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$
- $|y| < 2.4$, $p_T < 30$ GeV/c, HIN-16-023

Cent. 0-100%

- Open beauty
 - Nonprompt J/ψ
 - $1.8 < |y| < 2.4$
 - $|y| < 2.4$, $p_T < 30$ GeV/c, HIN-16-023
The difference in p_T between parent B meson and J/ψ
Non-prompt J/ψ
@ $pp(PbPb)$ 2.76 TeV
R_{AA} and v_2

- R_{AA} = nuclear modification factor
 - $M_b \sim 4.2 \text{ GeV/c}^2 > M_c \sim 1.3 \text{ GeV/c}^2 > M_{\text{light}} \sim \mathcal{O}(\text{MeV/c}^2)$
 - $R_{AA}^B > R_{AA}^D > R_{AA}^{\text{light}}$?

$$R_{AA}(p_T) = \frac{1}{T_{AA}} \frac{dN_{PbPb}^{B^+}}{dp_T} / \frac{d\sigma_{pp}^{B^+}}{dp_T},$$

- V_n = azimuthal anisotropy with respect to the event plane.
 - How does heavy flavor “flow” inside the medium?
 - Collective expansion
 - Path length dependence or independence of energy loss

$$E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{p_T dp_T dy} \times \left(1 + \sum_{n=1}^{\infty} 2v_n(p_T, y) \cos \left[n \left(\varphi - \Psi_R \right) \right] \right)$$
Non-prompt J/ψ v_2

- Measurement of azimuthal anisotropy v_2
- Event plane method: fit on $|\Delta \Phi|$
 - $|\Delta \Phi| = |\phi - \Psi_2|$
 - Ψ_2 event plane = azimuthal angle of maximum particle density
- Measured v_2 compatible with both zero and positive value

$1 + 2v_2 \cos(|2\Delta \Phi|)$

yields in each $\Delta \Phi$ bin extracted from the 2D fit (mass, $l_{J/\psi}$).

EPJC 77 (2017) 252
Central value of non-prompt J/ψ v_2 slightly below D meson and charged hadron at low p_T, becoming similar at high p_T.

Note: comparison of different collision energy

Statistical uncertainty is still large

Non trivial to disentangle whether:
- Low p_T: b quark participates in collective expansion
- High p_T: flavor dependent or universal path-length energy loss

Need to take into account their different
- Unmodified vacuum spectra
- Fragmentation functions
• Comparison with pQCD model: MC@sHQ + EPOS
 • collisional only
 • collisional+radiative energy loss
• + recombination components

Experiment meet theory

\[\sqrt{s_{NN}} = 2.76 \text{ TeV} \]

Open beauty: nonprompt J/ψ
- 1.6 < |y| < 2.4
- |y| < 2.4

MC@sHQ + EPOS (Cent. 20-60%, |y| < 1)
- B (K=0.8)
- B (K=1.5)
- NP J/ψ (K=0.8)
- NP J/ψ (K=1.5)

CMS

EPJC 77 (2017) 252
Experiment meet theory

- Collisional E_{loss}: low p_T Radiative E_{loss}: high p_T
- Dissociation/Collisional type energy loss important at low p_T
- Radiative energy loss important at high p_T
- BAMPS under shoots p_T 5-15 GeV/c? single impact para. “b” used for all centralities
- Theories curves shown for B p_T(except Mc@sHQ+EPOS): $J/\psi \rightarrow B p_T$ kinematic shift ~ 2 GeV/c

CMS

$\sqrt{s_{NN}} = 2.76$ TeV

- Nonprompt J/ψ
- $6.5 < p_T < 30$ GeV/c, $|y| < 1.2$
- $MC@sHQ+EPOS$: standard (0-100%, $|y| < 1$)
- $MC@sHQ+EPOS+r$ad+LPM: standard (0-100%, $|y| < 1$)
- TAMU: standard
- Djordjevic et al: standard

CMS

$\sqrt{s_{NN}} = 2.76$ TeV

- Nonprompt J/ψ
- $|y| < 1.2$
- $T_{\text{kinematic shift}} \sim 2$ GeV/c

EPJC 77 (2017) 252
• R_{AA} comparison of CMS PbPb 2.76 TeV non-prompt J/ψ, D meson, and charged hadron R_{AA} v.s. N_{part}

• Comparison is chosen in a similar rapidity range and corresponding D p_T region

• Hint of flavor dependent suppression $\rightarrow R_{AA}^{b} > R_{AA}^{c} \sim R_{AA}^{light}$

• Note: pg
Global systematic at $R_{AA} = 1$

- line box = pp lumi. + PbPb N_{MB} T_{AA} systematic
- color box = all pp statistical and systematic uncertainty

Slow increase of suppression in more central collisions

Low p_T is less suppressed in the forward region

Differential R_{AA}

- **CMS**
 - $\sqrt{s_{NN}} = 2.76$ TeV
 - Nonprompt J/ψ
 - $3 < p_T < 6.5$ GeV/c
 - $6.5 < p_T < 30$ GeV/c
 - $1.6 < |y| < 2.4$

CMS

- $\sqrt{s_{NN}} = 2.76$ TeV
- Nonprompt J/ψ
 - $|y| < 1.2$
 - $1.2 < |y| < 1.6$
 - $1.6 < |y| < 2.4$
 - $6.5 < p_T < 30$ GeV/c
B-meson

\(@\) \text{pp}(\text{PbPb})5.02\ \text{TeV}
To reach high signal to background significance (low production rate of b)

→ Multivariate analysis (MVA) for cut value optimization

Five variables are employed

- **track kinematic**: track p_T and pseudorapidity
- **Probability of the vertex fit (χ^2)**: B^+ secondary vertex fitting probability
- **Normalized d_0**: normalized distance between primary vertex and B^+ secondary vertex
- **Cosine(θ)**: angle between B^+ meson displacement vector and B^+ meson momentum

Maximize Figure of merit: $S/\sqrt{(S+B)}$

- **S**: signals from simulation (normalized to FONLL prediction)
- **B**: background from real data (sidebands of the B^+ mass spectrum)

Optimization conducted independently for pp and PbPb

![Diagram](https://via.placeholder.com/150?text=Diagram)
Non-prompt contribution

Peaking structure from other types of B meson decay: *two main contributions*

$B^+ \rightarrow J/\psi + \pi$: Two sided Gaussian

the pion track is identified as a K^+

$B^+ \rightarrow J/\psi + K^+$ or $B^0 \rightarrow J/\psi + K^0, K^0$: Error function

tracks coming from the subsequent K^{*-0} decay incorrectly assumed to be from genuine $B^+ \rightarrow J/\psi + K^+$
Systematic: results

Luminosity & branching ratio
- BR obtained from PDG

Signal extraction systematics ~ 3.9%
- Estimated by varying the modeling PDF and the fitting procedure

Selection and correction ~ 12.6%
- Selection variation
- B life-time / p_T modeling
- Tracking efficiency systematic (evaluated by 2 and 4 prongs D^0 decays)

Muon efficiency ~ 16.4%
- Data-MC single muon efficiency
- Estimate via standard “tag & probe” method by reconstructing J/ψ candidates

Nuclear modification factor
- normalization ~ 9%
- total systematic ~ 25%

![Graph showing systematic uncertainty and performance metrics](chart.png)
\[
\left. \frac{d\sigma}{dp_T} \right|_{|y|<2.4} = \frac{1}{2} \frac{N(p_T)|y|<2.4}{\Delta p_T (\text{Acc } \epsilon)|y|<2.4 \text{ BR } \mathcal{L}}.
\]

- \(N \): raw yields of the mass fitting
- \(\text{Acc } \epsilon \): selection efficiency estimated from simulation
- \(\text{BR} \): branching ratio obtained from PDG
- \(\mathcal{L} \): Luminosity of the pp 5 TeV data

Phys. Rev. Lett. 119, 152301

28.0 pb\(^{-1}\) (pp 5.02 TeV)

Data

CMS

Data / FONLL

Global uncert. 3.8%
R_{AA}: B v.s. Non-prompt J/ψ

- Kinematic consideration: $B^+ p_T \ 10\text{~to~}15 \ \text{GeV} \rightarrow J/\psi \ p_T \ 8\text{~to~}10 \ \text{GeV}$
- Results compatible with each other
Cold nuclear matter effect

CMS

Open beauty

pPb 34.6 nb⁻¹, pp 28.0 pb⁻¹ (5.02 TeV)

|R_{pPb} vs p_T (GeV/c)

- Nonprompt J/ψ: $|y_{CM}| < 1.93$
- B^+: $-2.86 < y_{CM} < 1.93$

CMS

Open beauty

pPb 34.6 nb⁻¹, pp 28.0 pb⁻¹ (5.02 TeV)

|R_{pPb} vs y_{CM}

- Nonprompt J/ψ: $10 < p_T < 30$ GeV/c
- B^+: $10 < p_T < 60$ GeV/c