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Outline

I. Context – Cluster Formation

II. Roles of Shocks

III. (Some) Contributions from AGN

IV. Roles of Turbulence
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Underlying Physics Drivers:

-Cluster-scale Diffuse Radio Emissions 
Strongly Associate with Merging† Clusters—

 Shocks
 Turbulence

-Visible CRe (> GeV) have short lifetimes (< 108 yr),
But are “trapped” by turbulent magnetic fields

 Locally “sourced”

- ICMs are weakly collisional (collective effects dominate)

†Are Obvious Exceptions: e.g., “mini halos” in cool core clusters
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Connecting Insight Regarding Mergers:
Cluster Formation Leads to Mpc-scale Shocks

& Turbulence – Huge Energy Reservoirs
(Galaxies – AGNs– Also Likely Players)

Snapshot of a Merging Cluster from Cosmological Simulation

~ 1 Mpc
ICM Distribution Shock Distribution Turbulence (Enstrophy) Distribution

Vazza + (TWJ) ’17Volume Renderings Zoomed to ~2-3 Rvirial
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Both Formation-Driven Shock and Turbulent Energy Dissipation Max During Mergers:

Turbulence Dissipation Rate

Turbulent Energy Dissipation
(central ~1 Mpc3 volume)

Here We See Turbulence Dissipation Relation to Mergers

Vazza + (TWJ) ’17

Same cluster & time (mid merger) 
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Both Formation-Driven Shock and Turbulent Energy Dissipation Max During Mergers:

Turbulence Dissipation Rate

Turbulent Energy Dissipation
(central ~1 Mpc3 volume)

Here We See Turbulence Dissipation Relation to Mergers

Interactions Between Shocks and Turbulence Also Likely to Be Important

Vazza + (TWJ) ’17

Same cluster & time (mid merger) 
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Shocks
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“Classic” Diffusive Shock Acceleration (DSA) 

Alfven waves in a converging flow act as converging mirrors 
 particles crossing the shock are scattered by waves and isotropized in local fluid frame
 cross the shock many times

pgshock r ,~∆

c ~ speed particlefor  crossingshock each at  
c
u-u ~ 

p
p 21∆

if VV >

iV

fV
VVmirror  +=

Approaching 
mirror
 gain energy

10/23/2017 Leiden: Diffuse Synchrotron Emission in Clusters

Fermi I cartoon
Fermi I Acceleration of “Energetic” Particles at Collisionless Shocks

-- Enough rigidity that they can “pass through” the shock--
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“Injection” of cold particles  at
shocks likely depends on “reflection” 
back into upstream region, accompanied 
by multiple energy boosts;  SDA
(more on this below).
Distinct Issue from DSA itself

Fermi I cartoon
Fermi I Acceleration of “Energetic” Particles at Collisionless Shocks

-- Enough rigidity that they can “pass through” the shock--
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𝜏𝜏
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∝ 𝑈𝑈𝑝𝑝

With U either
Urad for iC (CMB)
or B2/8π for Synch.

for p > pi, with pi
the  momentum at injection to this shock

(uniform cooling and emission)

Fast!
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Injection of Cold Particles into DSA
One of the Big Questions About the Role of Shocks

Big Recent Progress from PIC/Hybrid Simulations
--Details in Coming Talks--

• Different physics for Electrons and Ions

• Both depend on reflection of a fraction of particles from upstream at shock
& multiple episodes of small boosts by “Shock Drift Acceleration” (SDA)

• Ions reflected by Electrostatic Potential in Shock Foot
(quasi-parallel B & at least moderately strong shock).  Cross-B drift leads to energy gain (SDA)

• Electrons reflected by Magnetic Mirror 
(quasi-perpendicular B, possibly local by-product of CRp). Gradient drift leads to energy gain (SDA)

• If upstream scatterings return particles sufficient times they may enter DSA
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Beta = 0.3

Illustration of CRp Injection (2D Hybrid Parallel MA = 100 ~ Ms Shock Simulation)

Ion Momentum

Ion Density

Btotal

Bpar

Bperp

VA

t = 200 /ωc

time

Caprioli & Spitkovsky 14
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Guo + 14

mp/me = 100
βp = 20

Illustration of CRe Injection (2D PIC Ms = 3, MA ~ 12 Quasi Perp (θ = 63o) Shock Simulation)

electron momentum

𝑀𝑀𝐴𝐴= 5
6
𝛽𝛽𝑀𝑀𝑠𝑠
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Hoang + 17

35” res

CIZA J2242.8 + 5301 (“Sausage”)

Looks at a Couple of “Poster Children” Clusters

Giant Radio Halo (GRH)

Radio Relics
Chandra X-ray

Ogrean + 14

GRH Scale ~ Thermal X-rays

LOFAR 150 MHz

(Low Res Look)
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Hoang + ‘17

7”X 5” res

Ms ~ 2.5 
Merger Shock
(Edge On) 

Relics Seen to Associate with X-ray Merger Shocks
The Expectation/ Hope: Relics Represent DSA of CRe

CIZA J2242.8 + 5301

RelicLOFAR 150 MHz



10/23/2017 Leiden: Diffuse Synchrotron Emission in Clusters 16

Hoang + ‘17

7”X 5” res

Ms ~ 2.5 
Merger Shock
(Edge On) 

Relics Seen to Associate with X-ray Merger Shocks
The Expectation/ Hope: Relics Represent DSA of CRe

But, there are significant “issues”:

• Only ~ 10% of merging clusters
Show relics (so far?)
--Shocks should be common--

• Merger Shocks have low Ms (< 4)
=> Injection efficiency probably low

Sometimes:

• Ms (DSA) > Ms (X-ray)

• Radio spectra inconsistent with
“simple” DSA & “ageing”
…

Likely More Complicated!

CIZA J2242.8 + 5301

RelicLOFAR 150 MHz
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Hoang + ‘17

7”X 5” res

Ms ~ 2.5 
Merger Shock
(Edge On) 

Relics Seen to Associate with X-ray Merger Shocks
The Expectation/ Hope: Relics Represent DSA of CRe

But, there are significant “issues”:

• Only ~ 10% of merging clusters
Show relics (so far?)
--Shocks should be common--

• Merger Shocks have low Ms (< 4)
=> Injection efficiency probably low

Sometimes:

• Ms (DSA) > Ms (X-ray)

• Radio spectra inconsistent with
“simple” DSA & “ageing”
…

Likely More Complicated!

Deformed Radio AGNs
Often Present (NATs & more)

CIZA J2242.8 + 5301

RelicLOFAR 150 MHz
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Clarke & Ensslin ’06

A2256: Massive Merging Cluster (GRH & Relic)
(Again with Obviously Deformed AGNs)

80” res

GRH

Relic
(perhaps almost face on)VLA 1.4 GHz

(Low Res Look)

~500 kpc



Radio

X-ray

Color = radio spectral index

Owen + 14Optical

Radio
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~500 kpc

A2256: Some Distorted Radio AGNs Encircled in White:
Interactions with Merger Shock? (Not Detected -- Not Edge On)

VLA
1-8 GHz
6” res

19

Relic

NAT
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AGN/Merger Shock Interactions 
(Possible Environmental Probes)

Two Illustrative Examples

Case I: Ms = 4 shock runs head on into active jets

Case 2: Ms = 4 shock crosses NAT

Highly Idealized MHD Simulations Including CRe

--UMN Grads: Chris Nolting & Brian O’Neill--
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For Context: Familiar Case of Shock Crossing Low Density Bubble:
Bubble Crushed ⇒ Strong Vorticity ⇒ “Smoke Ring”

(Shock is faster inside bubble; Also much weaker)

Pfrommer & Jones 2011

21

Vectors are velocity in the external
Shock frame

shock

shock

shock

shock
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Shock is faster inside bubble; But Also weaker

Vshock(bubble) = Vshock(ambient)

Vshock(bubble)/Vshock(ambient)

abubble/ Vshock(ambient)

χ=ρambient/ρbubble

22
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Ensslin & Bruggen 2002

Basis for the “Radio Phoenix” Concept; Ensslin & Co:
Fast, but weak shock in cavity => Adiabatic Compression of CRe (AC only?)

Initial spec.

Pre-shock

Post-shock
\w ageing

Ms = 3.8

23
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Ensslin & Bruggen 2002

Basis for the “Radio Phoenix” Concept; Ensslin & Co:
Fast, but weak shock in cavity => Adiabatic Compression of CRe (AC only?)

Important detail we need to add:
Radio Galaxy cavities are not static bubbles;

They form dynamically – This can make a difference!

Initial spec.

Pre-shock

Post-shock
\w ageing

Ms = 3.8

24
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Case 1 Illustration: Ms = 4 Shock  Impacts AGN Jet Pair (Mj = 3.5) Head-on

vs ⇒

Evolution of Jet “mass 
fraction”
White = 100% jet
Red ~ 80% jet
Green ~ 50% jet

(Note strong mixing)

Viewed  in plane (vj, vs)
Simulation Spans ~ 300 Myr

Ms = 4

“upwind” jet is reversed by post-shock flow
(analogous to deflection in NAT formation)

~120 kpc

25

Nolting + (TWJ) (in prep)

Shock



Just Before Shock Impact
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600 MHz,  t = 46 Myr
View angle = 50 degrees

600 MHz,  t = 304 Myr
View angle = 50 degrees

Case 1 Synchrotron Images
250 Myr After Shock Impact

26
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Purple, α~ 0.75
Yellow, α~ 2

600 MHz Spectral Index (600MHz - 1.4 GHz)

Case 1 Synchrotron Images
t = 304 Myr (250 Myr after impact)

(Jet in the plane of the sky)

27
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Purple, α~ 0.75
Yellow, α~ 2

600 MHz Spectral Index (600MHz - 1.4 GHz)

Case 1 Synchrotron Images
t = 304 Myr (250 Myr after impact)

(Jet in the plane of the sky)

28

A2256 (?)
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Evolution of Jet “mass 
fraction”
Yellow = 100% jet
Lavender ~ 80% jet
Red ~ 50% jet

(Note strong mixing--
especially after impact)

Viewed in (vj, vw, vs) plane

Case 2: Ms = 4 Shock Crosses Pre-formed Narrow Angle Tail (NAT)

v s
⇒

vw ⇒

Simulation spans ~ 650 Myr

Note: In this run jets turn off just 
before shock impact on the tail

Mw = 0.9

M
s =

 4
Total time for shock 
to cross both tails
~ 80 Myr (Comparable to
visible CRe cooling time

~300 kpc

~900 kpc

29

O’Neill + (TWJ) (in prep)

Shock

W
ind
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Evolution of 150 MHz 
Brightness distribution

Viewed in (vj, vw, vs) plane

v s
⇒

vw ⇒

Case 2:  150 MHz Synchrotron Evolution

Jets turn off just 
before shock impact

Total time for shock 
to cross both tails
~ 80 Myr

~300 kpc

30

Shock

W
ind
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150 MHz Spectral Index (300 MHz – 600 MHz)

Case 2: Synchrotron Emission Just Before Impact
t = 587 Myr

~300 kpc

31

Surface Brightness
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150 MHz Spectral Index (300 MHz – 600 MHz)

Case 2: Synchrotron Emission After Impact

Synchrotron Distribution at t = 627 Myr
(Shock Between Tails)

Rough shock location

Total time for shock 
to cross both tails
~ 80 Myr

Jets turn off before impact

32

DSA Hardens Post-shock Spectrum
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150 MHz Spectral Index (300 MHz – 600 MHz)

Case 2: Synchrotron Emission After Impact

Synchrotron Distribution at t = 627 Myr
(Shock Between Tails)

Rough shock location

Total time for shock 
to cross both tails
~ 80 Myr

Jets turn off before impact

33

DSA Hardens Post-shock Spectrum

Shock Hardens Spectrum!
Some Regions show DSA:

Shock can be moderately strong

Shock Impact
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Turbulence
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Projected Pressure
Fluctuations from Thermal
X-rays

Pturb ~ 10% Pth
δvturb ~ (1/2) cs

Scheucker + ‘04

ICM Turbulence in Coma Cluster
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Perp Bo
(2D)

Isotropic Bo
(3D)

Note: Shocks Also Generate, Modify and are Modified by Turbulence

Ji + 16

Details depend on Ms, MA, field geometry & turbulent strength (another talk)

Simulations illustrating B-field modifications by Mach 4 shocks in turbulence

Mostly compressed Magnetic dynamo
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Turbulence in a Compressible, High β, Weakly-collision Plasma (ICM):

Even subsonic (VT = δvmax < cs) turbulence must include both
circulation (solenoidal motions, ω=∇×δv≠0) and 
compressional motions (δP ~ (δv)2ρ ~ δρ cs

2)
(Balance depends on forcing processes; likely to be mixed in ICM)

ICMs are “High-β”
β = Pg/PB = (2/γ)(cs

2/vA
2)>>1

cs ~ 1000 km/sec T5kev
½ 

= 1 kpc/Myr T5kev
½ = 0.003 c T5kev

½

vA ~ 130 km/sec B2µG/√ne-3
β ~ 70 T5kev ne-3/ B2µG

2

If VT > vA on driving scale, L0, large scale motions are hydrodynamic:
Cascade  as δv ~ VT (l/L0)1/3 down to “Alfven scale”, lA ,(δv =vA), then MHD below 
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Porter + (TWJ) 15

Compressible MHD Fluid Turbulence Properties Depend on Time and Forcing:
Component (Solenoidal & Compressive)Proportions & Spectral Slopes

Solenoidal Forcing
∇⋅δv = 0, ∇×δv≠0

(Compressive Modes
< 10%)

Solenoidal Modes

k-1~lA

Evolution

~Dissipation scales
Ms ~ ½
B0 uniform
β0 = 106 After ~ 20 - 25 tLeddy

B saturates to rough
equipartition with
solenoidal modes
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Compressive Forcing
∇×δv=0, ∇⋅δv ≠ 0, 

Compressive Modes

Solenoidal Modes
(< 10%)

Porter + (TWJ) 15

Compressible MHD Fluid Turbulence Properties Depend on Time and Forcing:
Component Proportions & Spectral Slopes

Evolution

k-1~lA ~Dissipation scales
Ms ~ ½
β0 = 106
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Compressive Forcing
∇×δv=0, ∇⋅δv ≠ 0, 

Compressive Modes

Solenoidal Modes
(< 10%)

Porter + (TWJ) 15

Compressible MHD Fluid Turbulence Properties Depend on Time and Forcing:
Component Proportions & Spectral Slopes

Evolution

k-1~lA ~Dissipation scales
Ms ~ ½
β0 = 106

ICM Turbulence Forcing
includes both Solenoidal
and Compressive Forcing:

⇒ Variable Compressive Component
⇒ Variable Steepness
⇒ Intermittent Distribution
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Kowal & Lazarian 2010

Compressible MHD Domain Turbulence:
Velocity Power Spectra By Mode-

For l < lA (δv < vA) in the MHD Domain
Solenoidal => Alfven Mode (energetically dominant overall)

Compressive => Fast & Slow Modes (Slow modes dominate energy)

β ≈ 10 β ≈ 10β ≈ 10
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Kowal & Lazarian 2010

Compressible MHD Domain Turbulence:
Velocity Power Spectra By Mode-

For l < lA (δv < vA) in the MHD Domain
Solenoidal => Alfven Mode (energetically dominant overall)

Compressive => Fast & Slow Modes (Slow modes dominate energy)

β ≈ 10 β ≈ 10β ≈ 10

Fast mode = magnetosonic => δρ correlates with δB (pressure fluctuations enhanced); vph ≈ cs in high β
Slow mode => δρ anti-correlates with δB (little or no total pressure fluctuation); vph <vA in high-β



10/23/2017 Leiden: Diffuse Synchrotron Emission in Clusters 43

Quick Turbulent Acceleration Overview:
Turbulent Re-Acceleration Comes from Stochastic (Fermi II) Gains

acc

pp t
p

D
∆

∆
=

2)(

The CRe particle distribution f(p,x,t) evolves according to Fokker-Planck Equation:

where

The momentum diffusion coefficient, Dpp, can result from several stochastic processes
provided by fluctuations, waves in the turbulence. 

Note: Energy changes require an E field

The time to accelerate a particle:

∆p is characteristic energy change per event of duration/separation, ∆t

where Dpp will depend on process
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Quick Turbulent Acceleration Overview:
Turbulent Re-Acceleration Comes from Stochastic (Fermi II) Gains

acc

pp t
p

D
∆

∆
=

2)(

The CRe particle distribution f(p,x,t) evolves according to Fokker-Planck Equation:

where

The momentum diffusion coefficient, Dpp, can result from several stochastic processes
provided by fluctuations, waves in the turbulence. 

Note: Energy changes require an E field

The time to accelerate a particle:

∆p is characteristic energy change per event of duration/separation, ∆t

where Dpp will depend on process

Being 2nd order, turbulent re-acceleration
Typically much slower than DSA
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Quick Turbulent Acceleration Overview:
Turbulent Re-Acceleration Comes from Stochastic (Fermi II) Gains

acc

pp t
p

D
∆

∆
=

2)(

The CRe particle distribution f(p,x,t) evolves according to Fokker-Planck Equation:

where

The momentum diffusion coefficient, Dpp, can result from several stochastic processes
provided by fluctuations, waves in the turbulence. 

Note: Energy changes require an E field

The time to accelerate a particle:

∆p is characteristic energy change per event of duration/separation, ∆t

where Dpp will depend on process

Being 2nd order, turbulent re-acceleration
Typically much slower than DSA

But, many possibilities
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Some Potential Contributors to Turbulent Re-Acceleration:
Nonresonant scattering off compressive wave mode waves (e.g., Ptuskin ‘88)

(similar to ‘classic’ -1949- Fermi II; depends on λmfp ) 

accos

o
pp

p
lLc

VpD
τ

κ
23/2

2
min

2
2 ~1~ 















 for ‘slow’ spatial diffusion (λmfp<lmin) (Brunetti & Lazarian ‘07)

L0 is the outer turbulence scale; lmin is the minimum eddy scale
V0 = VT is turbulent velocity, δv, on outer scale

τacc > τLeddy;   Probably too slow for GRH or relic needs

min scale of turbulent cascade
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,1,0,|||| ±=Ω=− nnvk gω

MHD Resonant Wave Scattering (n = 0, ±1)

Traditional model: Gyro-resonance, n = ±1
with low frequency Alfven waves (circularly polarized)
ω<<Ωg, so rgk ~ 1, l ~rg,CR . (rg,CR ~ 108 km (~AU) for GeV CRe in ICM)

*However, in strong, balanced MHD turbulence (so, δv < vA) Alfvenic ‘eddies’
elongate along B on smaller scales. => Highly anisotropic on smallest scales
(critical balance → k⊥ ~ [k||]3/2 lA

1/2) (Goldreich & Sridhar ‘95). Coherent, 
resonant interaction with gyrating CR is lost, so, gyro-resonance 
scattering efficiency greatly reduced (e.g., Chandran, Lazarian, etc) 
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`Transit Time Damping’ (TTD) ~ `Landau resonance’ (n = 0)
k||v|| =ω = vph k (wave surfing)

Force from magnetic moment (orbiting charge) in `magnetic bottle’
Oblique Fast (& Slow?)* waves in the MHD regime (δB in k-B plane)

Fast modes
=>

Note: In High-β ICM, magnetic fluctuations are small fraction of FM wave energy.
Reduces effectiveness for a given wave energy

Depends critically on the magnetic energy in cascade to FM dissipation scale, l

*Turbulent fast modes isotropic;
slow modes  anisotropic
& `slow’ so n = 0 resonance
not important in QLT

Smaller l
works faster  
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Resonant Scattering Acceleration Rates Depend on Smallest-scale Scattering:
-Need to get substantial turbulent EM power to small scales

Several important ICM turbulence length scales: “MHD” or “Alfven” scale (lA; δv =vA)

Coulomb Collision Length (dissipation?):

Plasma coupling lengths (micro-instabilities, e.g., firehose):

Ion inertial length (p-e coupling scale) Ion gyro radius

Very small!
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Slow modes
=>

Nonlinear,`Resonance Broadening’* in Slow Modes
=> Effective TTD Acceleration (?) Lynn+ 2014

*Waves near dissipation scale decorrelate
on ~ a wave period, allowing resonance

Test particle CR in MHD Turbulence

Magnetic fluctuations are ~ ½ wave energy 
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Magnetic Reconnection:
Short Comment

• In turbulent, high β plasma magnetic reconnection should be fast and ubiquitous.

• Direct magnetic field energy dissipation is small, but CR trapped on shortening field lines
& in amplifying fields may, in association, gain and lose energy stochastically
(e.g., Kowal + ’11, Brunetti & Lazarian ’16). 

• Energy would be extracted from solenoidal (dominant) kinetic energy

• Details need further work
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Summary
 Diffuse, cluster-scale radio emissions require distributed, ”local” sources of CRe

 Shocks may play a significant role in CRe acceleration, but other
sources of seed CRe likely (note: CRe with ~ 100 MeV can be stored a long time)

 AGN may be major players in multiple ways

 Turbulent re-acceleration very likely to be important (also maybe in association with shocks)

 Effectiveness of turbulent re-acceleration depends critically
on physics determining the dissipation scale (get EM energy flux to small scales!)

 Next progress requires full understanding of ICM micro-physics (dissipation physics)
and higher resolution information from both observations and simulations
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Bedankt!
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