Particle Acceleration on Cluster Scales: Getting Inside Extended Radio Emissions

Tom Jones (University of Minnesota)

Outline

I. Context – Cluster Formation

II. Roles of Shocks

III. (Some) Contributions from AGN

IV. Roles of Turbulence

Underlying Physics Drivers:

- -Cluster-scale Diffuse Radio Emissions Strongly Associate with Merging[†] Clusters—
- ✓ Shocks
- ✓ Turbulence
- -Visible CRe (> GeV) have short lifetimes (< 10⁸ yr), But are "trapped" by turbulent magnetic fields
- ✓ Locally "sourced"
- ICMs are weakly collisional (collective effects dominate)

[†]Are Obvious Exceptions: e.g., "mini halos" in cool core clusters

Connecting Insight Regarding Mergers: Cluster Formation Leads to Mpc-scale Shocks & Turbulence – Huge Energy Reservoirs (Galaxies – AGNs– Also Likely Players)

Volume Renderings Zoomed to ~2-3 R_{virial}

Vazza + (TWJ) '17

Both Formation-Driven Shock and Turbulent Energy Dissipation Max During Mergers:

Both Formation-Driven Shock and Turbulent Energy Dissipation Max During Mergers:

Shocks

Fermi I Acceleration of "Energetic" Particles at Collisionless Shocks

-- Enough rigidity that they can "pass through" the shock--

Alfven waves in a converging flow act as converging mirrors

- → particles crossing the shock are scattered by waves and isotropized in local fluid frame
- → cross the shock many times $\frac{\Delta p}{p} \sim \frac{u_1 u_2}{c}$ at each shock crossing for particle speed ~ c

Fermi I Acceleration of "<u>Energetic</u>" Particles at Collisionless Shocks

-- Enough rigidity that they can "pass through" the shock--

"Injection" of cold particles at shocks likely depends on "reflection" back into upstream region, accompanied by multiple energy boosts; SDA (more on this below). <u>Distinct Issue from DSA itself</u>

Alfven waves in a converging flow act as converging mirrors

→ particles crossing the shock are scattered by waves and isotropized in local fluid frame

→ cross the shock many times $\frac{\Delta p}{p} \sim \frac{u_1 - u_2}{c}$ at each shock crossing for particle speed ~ c

DSA CR spectrum and electron synchrotron cooling (cartoon version)

volume integrated spectrum of downstream (radiatively cooling) electrons

 $F_e(p) = \int f_e(p, x) dx \propto p^{-(q_{DSA}+1)}$ (due to cooling at uniform rate)

integrated photon spectrum (unresolved observation) (uniform cooling and emission)

$$J_v \propto v^{-\alpha}, \ \alpha_{\rm integ} = \alpha_{\rm DSA} + 0.5$$

10/23/2017

Leiden: Diffuse Synchrotron Emission in Clusters

or $B^2/8\pi$ for Synch.

Injection of Cold Particles into DSA One of the Big Questions About the Role of Shocks

Big Recent Progress from PIC/Hybrid Simulations --Details in Coming Talks--

- Different physics for Electrons and Ions
- Both depend on reflection of a fraction of particles from upstream at shock & multiple episodes of small boosts by "Shock Drift Acceleration" (SDA)
- Ions reflected by Electrostatic Potential in Shock Foot (quasi-parallel B & at least moderately strong shock). Cross-B drift leads to energy gain (SDA)
- Electrons reflected by Magnetic Mirror (quasi-perpendicular B, possibly local by-product of CRp). Gradient drift leads to energy gain (SDA)
- If upstream scatterings return particles sufficient times they may enter DSA

Illustration of CRp Injection (2D Hybrid Parallel $M_A = 100 \sim M_s$ Shock Simulation)

Figure 3. Relevant physical quantities for a parallel shock with $M = 100 \text{ at } t = 200\omega_c^{-1}$, as a function of x (Run C in Table 1). From top to bottom: parallel component of the ion momentum, ion density, total magnetic field, parallel and out of plane components of the magnetic field, and Alfvén velocity. A color figure is available in the online journal.

Caprioli & Spitkovsky 14 2050 1800 10 1550 10 1300 $p^4 f(p)$ 1050 10 800 550 10 300 time 50 10^{-1} 10⁰ 10¹ $t[\omega_c^{-1}]$ $p[mv_{sh}]$

Figure 2. Time evolution of the downstream ion momentum spectrum for M = 20 parallel shock (Run B, see Table 1), showing both the thermal component $(p \leq 2mv_{sh})$, and accelerated particles. The non-thermal power-law tail $\propto p^{-4}$ agrees with DSA prediction at strong shocks (see Paper I). The maximum momentum increases until $t \approx 2000\omega_c^{-1}$, when the diffusion length of the most energetic ions becomes comparable with the box size.

Illustration of CRe Injection (2D PIC M_s = 3, M_A ~ 12 Quasi Perp (θ = 63°) Shock Simulation)

FIG. 1.— Shock structure of the **reference** run at time $\omega_{pe}t = 14625$ ($\Omega_{ci}t = 26.9$). The shock is at $x \simeq 1115 \ c/\omega_{pe}$, as indicated by the vertical dot-dashed lines, and moves to the right. Downstream is to the left of the shock, and upstream to the right. Panel (a) shows the ratios n_e/n_0 (red line), B_y/B_{y0} (blue line) and B/B_0 (black line). Panels (b)-(d) show the electron momentum phase spaces $p_x - x$, $p_y - x$, $p_z - x$, as a function of the longitudinal coordinate x. Panel (e) shows the electron temperatures parallel ($T_{e\parallel}$) and perpendicular ($T_{e\perp}$) to the magnetic field. Panels (f)-(h) show 2D plots of the magnetic field components in units of B_0 , after subtracting the background field \vec{B}_0 (i.e., we show $(B_x - B_{x,0})/B_0$, $(B_y - B_{y,0})/B_0$ and B_z/B_0 , respectively). The white arrows indicate the orientation of the upstream background magnetic field \vec{B}_0 . Note that there are upstream waves in all three components of the magnetic field.

Looks at a Couple of "Poster Children" Clusters

CIZA J2242.8 + 5301 ("Sausage")

(Low Res Look)

Relics Seen to Associate with X-ray Merger Shocks The Expectation/ Hope: Relics Represent DSA of CRe

Relics Seen to Associate with X-ray Merger Shocks The Expectation/ Hope: Relics Represent DSA of CRe

But, there are significant "issues":

- Only ~ 10% of merging clusters Show relics (so far?)
- --Shocks should be common--
- Merger Shocks have low M_s (< 4)
 => Injection efficiency probably low

Sometimes:

- M_s (DSA) > M_s (X-ray)
- Radio spectra inconsistent with "simple" DSA & "ageing"

Likely More Complicated!

Relics Seen to Associate with X-ray Merger Shocks The Expectation/ Hope: Relics Represent DSA of CRe

But, there are significant "issues":

- Only ~ 10% of merging clusters Show relics (so far?)
- --Shocks should be common--
- Merger Shocks have low M_s (< 4)
 => Injection efficiency probably low

Sometimes:

- M_s (DSA) > M_s (X-ray)
- Radio spectra inconsistent with "simple" DSA & "ageing"

Likely More Complicated!

A2256: Massive Merging Cluster (GRH & Relic) (Again with Obviously Deformed AGNs)

A2256: <u>Some Distorted Radio AGNs Encircled in White</u>: Interactions with Merger Shock? (Not Detected -- Not Edge On)

AGN/Merger Shock Interactions (Possible Environmental Probes) Two Illustrative Examples

Highly Idealized MHD Simulations Including CRe

--UMN Grads: Chris Nolting & Brian O'Neill--

Case I: $M_s = 4$ shock runs head on into active jets

Case 2: $M_s = 4$ shock crosses NAT

For Context: Familiar Case of Shock Crossing Low Density Bubble: Bubble Crushed \Rightarrow Strong Vorticity \Rightarrow "Smoke Ring" (Shock is faster inside bubble; Also much weaker)

Shock is faster inside bubble; But Also weaker

Basis for the "Radio Phoenix" Concept; Ensslin & Co: Fast, but weak shock in cavity => Adiabatic Compression of CRe (AC only?)

Basis for the "Radio Phoenix" Concept; Ensslin & Co: Fast, but weak shock in cavity => Adiabatic Compression of CRe (AC only?)

Case 1 Illustration: M_s = 4 Shock Impacts AGN Jet Pair (M_i = 3.5) Head-on

Case 1 Synchrotron Images

Just Before Shock Impact

600 MHz, t = 46 Myr View angle = 50 degrees

250 Myr After Shock Impact

600 MHz, t = 304 Myr View angle = 50 degrees

Case 1 Synchrotron Images

t = 304 Myr (250 Myr after impact) (Jet in the plane of the sky)

Case 1 Synchrotron Images

t = 304 Myr (250 Myr after impact) (Jet in the plane of the sky)

Case 2: M_s = 4 Shock Crosses Pre-formed Narrow Angle Tail (<u>NAT</u>)

Case 2: 150 MHz Synchrotron Evolution

Total time for shock to cross both tails ~ 80 Myr

Case 2: Synchrotron Emission Just Before Impact t = 587 Myr

Case 2: Synchrotron Emission After Impact

Jets turn off before impact Synchrotron Distribution at t = 627 Myr (Shock Between Tails)

Turbulence

ICM Turbulence in Coma Cluster

Projected Pressure Fluctuations from Thermal X-rays

$$\mathsf{P}_{\mathsf{turb}}$$
 ~ 10% P_{th}
 $\delta \mathsf{v}_{\mathsf{turb}}$ ~ (1/2) c_{s}

Scheucker + '04

Note: Shocks Also Generate, Modify and are Modified by Turbulence

Details depend on M_s, M_A, field geometry & turbulent strength (another talk)

Simulations illustrating B-field modifications by Mach 4 shocks in turbulence

Ji + 16

(3D)

Turbulence in a Compressible, High β, Weakly-collision Plasma (ICM):

Even subsonic ($V_T = \delta v_{max} < c_s$) turbulence <u>must include both</u> circulation (<u>solenoidal motions</u>, $\omega = \nabla \times \delta v \neq 0$) and <u>compressional motions</u> ($\delta P \sim (\delta v)^2 \rho \sim \delta \rho c_s^2$) (Balance depends on forcing processes; likely to be mixed in ICM)

> ICMs are "High- β " $\beta = P_g/P_B = (2/\gamma)(c_s^2/v_A^2) >> 1$ $\frac{c_s \sim 1000 \text{ km/sec } T_{5kev}}{= 1 \text{ kpc/Myr } T_{5kev}} = 0.003 \text{ c } T_{5kev}}^{\frac{1}{2}}$ $\frac{v_A \sim 130 \text{ km/sec } B_{2\mu G}/\sqrt{n_{e-3}}}{\beta \sim 70 \text{ T}_{5kev} \text{ n}_{e-3}/B_{2\mu G}}^2$

If $V_T > v_A$ on driving scale, L_0 , large scale motions are hydrodynamic: Cascade as $\delta v \sim V_T (l/L_0)^{1/3}$ down to "Alfven scale", l_A , ($\delta v = v_A$), then MHD below Compressible MHD Fluid Turbulence Properties Depend on Time and Forcing: Component (Solenoidal & Compressive)Proportions & Spectral Slopes

Compressible MHD Fluid Turbulence Properties Depend on Time and Forcing: Component Proportions & Spectral Slopes

Compressible MHD Fluid Turbulence Properties Depend on Time and Forcing: Component Proportions & Spectral Slopes

Compressible MHD Domain Turbulence:

Velocity Power Spectra By Mode-For $l < l_A (\delta v < v_A)$ in the MHD Domain Solenoidal => Alfven Mode (energetically dominant overall) Compressive => Fast & Slow Modes (Slow modes dominate energy)

Kowal & Lazarian 2010

Compressible MHD Domain Turbulence:

Fast mode = magnetosonic => $\delta \rho$ correlates with δB (pressure fluctuations enhanced); $v_{ph} \approx c_s$ in high β Slow mode => $\delta \rho$ anti-correlates with δB (little or no total pressure fluctuation); $v_{ph} < v_A$ in high- β Kowal & Lazarian 2010

Quick Turbulent Acceleration Overview: Turbulent <u>Re</u>-Acceleration Comes from Stochastic (Fermi II) Gains

The CRe particle distribution f(p,x,t) evolves according to Fokker-Planck Equation:

$$\frac{\partial f}{\partial t} = \cdots \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial f}{\partial p} \right) \cdots \qquad \text{where} \qquad D_{pp} = \frac{\left\langle \left(\Delta p \right)^2 \right\rangle}{\Delta t} \bigg|_{acc}$$

 Δp is characteristic energy change per event of duration/separation, Δt

The momentum diffusion coefficient, D_{pp} , can result from several stochastic processes provided by fluctuations, waves in the turbulence.

Note: Energy changes require an <u>E</u> field

The time to accelerate a particle: $\tau_{acc} = \frac{p}{dp/dt} \sim \frac{p^2}{D_{pp}}$ where D_{pp} will depend on process

Quick Turbulent Acceleration Overview: Turbulent <u>Re</u>-Acceleration Comes from Stochastic (Fermi II) Gains

The CRe particle distribution f(p,x,t) evolves according to Fokker-Planck Equation:

$$\frac{\partial f}{\partial t} = \cdots \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial f}{\partial p} \right) \cdots \qquad \text{where} \qquad D_{pp} = \frac{\left\langle \left(\Delta p \right)^2 \right\rangle}{\Delta t} \bigg|_{acc}$$

 Δp is characteristic energy change per event of duration/separation, Δt

The momentum diffusion coefficient, D_{pp} , can result from several stochastic processes provided by fluctuations, waves in the turbulence.

Note: Energy changes require an <u>E</u> field

The time to accelerate a particle: $au_{acc} = rac{p}{dp/dt} \sim rac{p^2}{D_{pp}}$ where D_{pp} will depend on process

Being 2nd order, turbulent re-acceleration Typically much slower than DSA

Quick Turbulent Acceleration Overview: Turbulent <u>Re</u>-Acceleration Comes from Stochastic (Fermi II) Gains

The CRe particle distribution f(p,x,t) evolves according to Fokker-Planck Equation:

$$\frac{\partial f}{\partial t} = \cdots \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial f}{\partial p} \right) \cdots \qquad \text{where} \qquad D_{pp} = \frac{\left\langle \left(\Delta p \right)^2 \right\rangle}{\Delta t} \bigg|_{acc}$$

 Δp is characteristic energy change per event of duration/separation, Δt

The momentum diffusion coefficient, D_{pp} , can result from several stochastic processes provided by fluctuations, waves in the turbulence.

Note: Energy changes require an <u>E</u> field

The time to accelerate a particle: $\tau_{acc} = \frac{p}{dp/dt} \sim \frac{p^2}{D_{pp}}$ where D_{pp} will depend on process

Beil But, many possibilities E-acceleration Typically much slower than DSA

Some Potential Contributors to Turbulent Re-Acceleration:

<u>Nonresonant scattering off compressive wave mode waves</u> (e.g., Ptuskin '88) (similar to 'classic' -1949- Fermi II; depends on λ_{mfp})

 $D_{pp} \sim p^{2} \left(\frac{V_{o}}{c_{s}}\right)^{2} \kappa \left(\frac{1}{L_{o} l_{\min}^{2}}\right)^{2/3} \sim \frac{p^{2}}{\tau_{acc}}$ for 'slow' spatial diffusion ($\lambda_{mfp} < l_{min}$) (Brunetti & Lazarian '07) min scale of turbulent cascade

 L_0 is the outer turbulence scale; l_{\min} is the minimum eddy scale $V_0 = V_T$ is turbulent velocity, δv , on outer scale

$$\tau_{acc} \sim \frac{p^2}{D_{pp}} \sim \tau_{Leddy} \left(\frac{c_s}{c}\right) \left(\frac{c_s}{V_T}\right) \left(\frac{l_{min}}{\lambda}\right) \left(\frac{l_{min}}{L_0}\right)^{1/3} \sim \text{ constant}$$

$$au_{Leddy} \sim \left(\frac{L_0}{V_T}\right) \sim 300 Myr \left(\frac{L_0}{100 kpc}\right) \left(\frac{300 km/sec}{V_T}\right)$$

 $\tau_{acc} > \tau_{Leddy}$; Probably too slow for GRH or relic needs

MHD <u>Resonant Wave Scattering</u> ($n = 0, \pm 1$)

$$k_{\parallel}v_{\parallel}-\omega=n\Omega_g, n=0,\pm 1,\cdots$$

Traditional model: Gyro-resonance, n = ±1 with low frequency Alfven waves (circularly polarized) $\omega << \Omega_g$, so $r_g k_{||} \sim 1$, $l \sim r_{g,CR}$. ($r_{g,CR} \sim 10^8$ km (\sim AU) for GeV CRe in ICM)

*However, in strong, balanced MHD turbulence (so, $\delta v < v_A$) Alfvenic 'eddies' elongate along B on smaller scales. => Highly anisotropic on smallest scales (critical balance $\rightarrow k_{\perp} \sim [k_{\parallel}]^{3/2} l_A^{1/2}$) (Goldreich & Sridhar '95). Coherent, resonant interaction with gyrating CR is lost, so, gyro-resonance scattering efficiency greatly reduced (e.g., Chandran, Lazarian, etc)

<u>`Transit Time Damping' (TTD)</u> ~ `Landau resonance' (n = 0) $k_{||}v_{||} = \omega = v_{ph} k$ (wave surfing)

Force from magnetic moment (orbiting charge) in `magnetic bottle' Oblique Fast (& Slow?)* waves in the MHD regime (δB in k-B plane)

$$\dot{p}_{\parallel} = -\mu
abla_{\parallel} |B| = p_{\perp} v_{\perp} k_{\parallel} rac{\delta B(k_{\parallel})}{2B_0} \qquad \Delta p \sim \dot{p} \delta t$$

*Turbulent fast modes isotropic;
slow modes anisotropic
& `slow' so n = 0 resonance
not important <u>in QLT</u>

$$D_{pp} \sim (\Delta p)^2 / \delta t \xrightarrow{\text{Fast modes}} D_{pp,f} \sim \text{few } p^2 \frac{c_s^2}{c \ell} \frac{(\delta B_f)^2}{B_0^2} \tau_{acc} \sim \frac{p^2}{D_{pp}} \sim \text{ constant}$$

Depends critically on the magnetic energy in cascade to FM dissipation scale, *l*

Note: In High- β ICM, magnetic fluctuations are small fraction of FM wave energy. Reduces effectiveness for a given wave energy

$$\delta B_f^2 \sim \frac{\rho}{\beta} \ \delta v_f^2 \propto \ \frac{1}{\beta} \ \delta \mathcal{E}_f$$

Smallerℓ works faster

Resonant Scattering Acceleration Rates Depend on Smallest-scale Scattering: -Need to get substantial turbulent <u>EM</u> power to small scales

Several important ICM turbulence length scales: "MHD" or "Alfven" scale (l_A ; $\delta v = v_A$)

$$l_A \sim 10 \ kpc \ \left(\frac{B}{2\mu G}\right)^3 \left(\frac{L_o}{300 kpc}\right) \left(\frac{V_T}{500 km/sec}\right)^{-3} \left(\frac{n_e}{10^{-3}}\right)^{-3/2}$$

Coulomb Collision Length (dissipation?):

$$\lambda_{Coul} \sim 1 \ kpc \ \left(\frac{T}{2keV}\right)^2 \left(\frac{n_e}{10^{-3}}\right)^{-1}$$

Plasma coupling lengths (micro-instabilities, e.g., firehose):

Ion inertial length (p-e coupling scale)

Ion gyro radius

$$\lambda_i = \frac{c}{\omega_{pi}} \sim 6000 \ km \left(\frac{n_i}{10^{-3}}\right)^{-1/2} \qquad \text{Very small!} \qquad r_{gp} \sim 5.6 \times 10^4 \ \text{km} \frac{T_{keV}^{1/2}}{B_{\mu G}}$$

Nonlinear, `Resonance Broadening'* in <u>Slow Modes</u> => Effective TTD Acceleration (?) Lynn+ 2014

Magnetic Reconnection: Short Comment

- In turbulent, high β plasma magnetic reconnection should be fast and ubiquitous.
- Direct magnetic field energy dissipation is small, but CR trapped on shortening field lines & in amplifying fields may, in association, gain and lose energy stochastically (e.g., Kowal + '11, Brunetti & Lazarian '16).
- Energy would be extracted from solenoidal (dominant) kinetic energy
- Details need further work

Summary

> Diffuse, cluster-scale radio emissions require distributed, "local" sources of CRe

- Shocks may play a significant role in CRe acceleration, but other sources of seed CRe likely (note: CRe with ~ 100 MeV can be stored a long time)
- > AGN may be major players in multiple ways
- > Turbulent re-acceleration very likely to be important (also maybe in association with shocks)
- Effectiveness of turbulent re-acceleration depends critically on physics determining the dissipation scale (get EM energy flux to small scales!)
- Next progress requires full understanding of ICM micro-physics (dissipation physics) and higher resolution information from both observations and simulations

Bedankt!