A Lagrangian View on the $\gamma\text{-ray}$ and diffuse Radio Emission in Galaxy Clusters

Denis Wittor

Sternwarte Hamburg with F. Vazza, M. Brüggen

24.10.2017

Goal

Combine Eulerian magneto-hydrodynamical simulations with Lagrangian tracer particles to study the observational signatures of cosmic rays in galaxy clusters.

2 Where are the γ -rays?

Simulations

ENZO

- simulate galaxy cluster with ENZO
- *z* ∈ [30, 0]
- $M(z \approx 0) \approx 9.7 \cdot 10^{14} M_{\odot}$
- major merger at z pprox 0.27
- ⇒ two radio relics (using Hoeft & Brüggen 2007):

$$\sim 2.61 \cdot 10^{31} \text{ erg s}^{-1} \text{ Hz}^{-1}$$

$$2.27 \cdot 10^{30} \text{ erg s}^{-1} \text{ Hz}^{-1}$$

CRaTer: Cosmic-Ray-Tracers

- Lagrangian Tracers on top of the ENZO-code
- particles advected passively with the fluid from z = 1 to z = 0
- mass resolution: $m \approx 10^8 M_{\odot}$
 - $\Rightarrow~\sim 1.33\cdot 10^7$ tracers at z=0
- follow the cosmic-rays
 - detect shocks
 - compute Mach number
 - compute obliquity
 - compute cosmic-ray energy (using Kang & Ryu 2013 efficiencies)

Where are the γ -rays?

Cosmic Rays in Galaxy Clusters

PIC-Simulations

- protons accelerated by DSA need $\theta < 50^{\circ}$ (quasi-parallel)^a
- electrons accelerated by SDA need $\theta > 50^{\circ}$ (quasi-perpendicular)^b

^aCaprioli & Spitkovsky 2014 ^bGuo & Sironi & Narayan 2014

Obliquity in Galaxy Clusters

- follows the distribution of random angles in the three-dimensional space $\sim \sin(\theta)$
- shock compresses $P(heta_{
 m pre})$
- turbulence decompresses $P(heta_{
 m pre})$
- \Rightarrow by theory expect more perpendicular than parallel shocks
- \Rightarrow How does this affect the radio and γ -ray emission?

Effect on the Radio Emission

reduced by ~ 1.66 and $\sim 1.79 \Rightarrow$ no dramatic change

Effect on the $\gamma\text{-rays}$ Emission

reduced by \sim 3.4, but still above Fermi-Limits from Ackermann et al. 2014 and 2016

Denis Wittor (HS)

Additional Mechanisms?

for more information see Wittor et al. 2016, 2017

Denis Wittor (HS)

M_X vs $M_{\rm radio}$

In the Progress: Polarization

- Burn 1966: observed polarization of the integrated emission
- single injection of cosmic rays and no aging (yet)
- $\Rightarrow\,$ obtained additional information on: spectral indices, Mach number etc

Spectral Index: s = (r+2)/(r-1)

mean non-weighted s

 $\langle s \rangle \sim 2.3$

mean radio-weighted s

 $\langle s
angle_{
m radio} \sim 3.0$

Mach Number:
$$M = \sqrt{rac{4}{5} rac{T_{
m new}}{T_{
m old}} rac{
ho_{
m new}}{
ho_{
m old}}} + 1$$

mean non-weighted M

 $\langle M \rangle \sim 2.9$

mean radio-weighted M

 $\langle M \rangle_{\rm radio} \sim 3.9$

Distribution of Mach Numbers

 \Rightarrow radio seems to be sensitive only to the high Mach numbers ("overestimates" the true Mach number), while X-ray might trace the true mean Mach number

Summary

Where are the γ -rays?:

- ... θ follows the distribution of random vectors in a 3D space
- ... even more quasi-perpendicular shocks due to compression by shock waves
- $\ldots~\theta$ does not effect the observed radio emission
- ... θ might be an explanation for the missing $\gamma-{\rm ray}$ emission
- ... but additional requirement needed, e.g. B_{min}
- ... for more information see Wittor et al. 2016, 2017

M_X vs $M_{\rm radio}$:

- ... no uniform Mach number across the relic
- ... $\langle M \rangle_{\rm radio}$ higher than the average Mach number, both in 2D and 3D
- ... X-ray seems to trace mean Mach number
- ... radio observation might be biased to larger Mach numbers
- \ldots could be a reason for the discrepancy in some cases

Thank you for you attention! Any questions?