Diffusive Shock Acceleration Model with Postshock Turbulence for Radio Relics

Hyesung Kang (Pusan National Univ., Korea)Kang, Ryu, Jones,
2017, ApJDongsu Ryu (UNIST, Korea)2017, ApJT. W. Jones (Univ. of Minnesota, USA)

Toothbrush Relic in 1RXS J0603.3+4214

Sausage Relic in CIZA J2242.8+5301

van Weeren et al. 2010 kpc van Weeren et al. 2012

synchrotron radiation emitted by ~GeV electrons accelerated at structure formation shocks via DSA (Fermi I) process.

Sausage Relic

→ halo + radio galaxies + radio relics (RN + RS)

Shocks run into radio tails ? → re-acceleration of fossil CRe

Toothbrush Relic: halo + radio galaxies + radio relics

Some puzzles in DSA model with *in situ* injection only

Observations :	M _X	M _{radio}	new M _{radio}
Sausage	2.7	4.6	2.7 (Hoang + 2017)
Toothbrush	1.5	2.8	3.3–3.8 (Rajpurohit + 2017)

(1) For some radio relics, $M_{\rm radio}~>M_{\rm X}$

(2) Only ~10 % of merging clusters host radio relics, while numerous shocks are expected to form in ICM.
(3) Some X-ray shocks do not have associated radio relics

(4) Injection of thermal electrons to DSA may be inefficient.

Possible solution for (2), (3), (4) is Re-acceleration model: a radio relic forms when a weak shock encounters the ICM plasma with pre-existing live or fossil electrons.

But can re-acceleration model solve (1) puzzle of $M_{radio} > M_X$?

Observational Test Sausage Relic $M_s=3.2$, $u_s=2.4\times10^3$ km/s 6'08' MHz 0.8 $\psi = 10^{\circ}$ observables 0.6 0.6 2⁰⁰⁸⁰¹¹² 2008012 0.2 $S_{\nu}(R)$ 0 0.1 ב cloud = 624 0.5 with TA $\alpha_{V}(R)$ without TA 1 CX 608 CX 153 $v \cdot J_{\nu}$ 1.5 t_{age}=197, 204, 211, 218, 225 Myr =211 Myr2 100 1000 104 100 200 0 $\nu(MHz)$ R(kpc)

-Fitting S_v, α_v , & v J_v simultaneously is necessary.

Problem with re-acceleration model with fossil CRe

Spectral steepening due to aging electrons
→ gradient of spectral index, α along the relic edge ?

van Weeren + 2016

Problem with re-acceleration model with fossil CRe

Q: uniform spectral index along the relic length ?

1. strong shock model: $M_s \approx 3$ -fossil CRe provide low E seed electrons ($\gamma_{e,c}$ ~300) - $M_{radio} > M_X$: projection, multiple shocks ? 2. weak shock model: $M_s \approx 1.5$ additional re-energization processes (e.g. TA), so fossil CRe spectrum maintains $s \approx 4.5$, $\gamma_{e,c} \sim 10^5$ over ~400kpc.

$$f_{\rm pre}(p) = f_o \cdot p^{-s} \exp\left[-\left(\frac{p}{p_{e,c}}\right)^2\right]$$

Kang, Ryu, Jones 2017

van Weeren et al. 2016

Shocks in Clusters of Galaxies in the Structure Formation Simulations

Weak shocks with M<4 (red)

Spherical bubbles blowing out from the cluster center during major episodes of mergers or infalls from adjacent filaments.

spherically expanding shocks

DSA simulations in test-particle limit

in a co-expanding frame which expands with 1D spherical shock.

 $\frac{\partial \tilde{\rho}}{\partial t} + \frac{1}{a} \frac{\partial(\upsilon \tilde{\rho})}{\partial x} = -\frac{2}{ax} \tilde{\rho} \upsilon \qquad \text{ordinary gasdynamic Eqs (high beta)}$ $\frac{\partial(\tilde{\rho}\upsilon)}{\partial t} + \frac{1}{a} \frac{\partial(\tilde{\rho}\upsilon^2 + \tilde{P}_g)}{\partial x} = -\frac{2}{ax} \tilde{\rho}\upsilon^2 - \frac{\dot{a}}{a} \tilde{\rho}\upsilon - \ddot{a}x\tilde{\rho}$ $\frac{\partial(\tilde{\rho}\tilde{e}_g)}{\partial t} + \frac{1}{a} \frac{\partial(\tilde{\rho}\tilde{e}_g\upsilon + \tilde{P}_g\upsilon)}{\partial x} = -\frac{2}{ax} (\tilde{\rho}\tilde{e}_g\upsilon + \tilde{P}_g\upsilon) - 2\frac{\dot{a}}{a}\tilde{\rho}\tilde{e}_g - \ddot{a}x\tilde{\rho}\upsilon - \tilde{L}(x,t)$ $x = r/a: \text{co-moving coordinate,} \quad a = \text{expansion factor}$

CR transport Equation for electron distribution function

 Table 1. Parameters for Model Spherical Shocks

Model	MX	<i>M</i> _{radio}	$M_{\rm s,i}$	kT_1	B_1	t _{obs}	$M_{\rm s,obs}$	$kT_{2,obs}$	$u_{\rm s,obs}$	N	
				(keV)	(μG)	(Myr)		(keV)	$({\rm km}~{\rm s}^{-1})$	(10^{-4})	
Sausage	2.7	4.6	4.0	2.1	1	211	3.21	8.6	2.4×10^{3}	1.2	
Toothbrush	1.5	2.8	3.6	3.0	1	144	3.03	11.2	2.7×10^{3}	5.0	

M_X: Mach number inferred from X-ray observations

 $M_{\rm radio}$: Mach number estimated from observed radio spectral index at the relic edge

 $M_{s,i}$: initial shock Mach number at the onset of the simulations ($t_{age} = 0$)

 kT_1 : gas temperature in the preshock ICM

 B_1 : magnetic field strength in the preshock ICM

 $t_{\rm obs}$: shock age when the simulated results match the observations

 $M_{s,obs}$: shock Mach number at t_{obs}

 $kT_{2,obs}$: postshock temperature at t_{obs}

 $u_{s,obs}$: shock speed at t_{obs}

 $D_{pp} \approx \frac{p^2}{4\tau_{acc}}, \ \tau_{acc} \approx 10^8 \text{ yr}$

 $N = P_{CRe}/P_g$: the ratio of seed CR electron pressure to gas pressure in the preshock region

The spherical shock slows down and its Mach number decreases in time.

pre-existing fossil electrons: utilizing analytic solutions at the shock

(2) weak shocks with $M_s \simeq 1.5$: $\gamma_{e.c} \sim 10^{\circ}$

.2

Additional simplification: spherical shock & postshock TA

to explain uniform surface brightness (projection along line of sight)

Simple picture:

Relic width at a given frequency ~ cooling length of electrons $l_{cool} \approx u_2 \cdot t_{cool}(B, z) \approx 100 \text{kpc} \cdot W_h \cdot u_{2,3} \cdot Q(B, z) \cdot [\frac{V_{obs}(1+z)}{0.63 \text{GHz}}]^{-1/2}$

depends on u_2 and B_2 for given v_{obs} , z

Projection of a partial shell: extension depth and viewing angle

Observed profiles of radio flux S_v & spectral index α_v depend on extension angles $\psi_1 \& \psi_2$ in addition to shock parameters (M_s, V_s, B₀)

Fitting of Radio Flux & Spectral index Profiles

Spectral curvature due to Radiative Cooling

- test particle power law : $f_e(r_s, p) \propto p^{-q}$ at the shock
- volume integrated spectrum : $F_e(p) = \int f_e(p) dV \propto p^{-(q+1)}$ for $\gamma_e > \gamma_{e,br}$

Steepening of volume-integrated spectrum at high energies due to cooling

$$\gamma_{\rm e,br} \approx 10^4 \left(\frac{t_{\rm age}}{100 {\rm Myr}}\right)^{-1} \left(\frac{B_{\rm e,2}}{5 \ \mu {\rm G}}\right)^{-2}$$

break Lorentz factor

$$j_{v}(r_{s}) \propto v^{-\alpha_{sh}} \text{ at the shock}$$
$$J_{v} \propto v^{-(\alpha_{sh}+0.5)} \text{ for } v_{e} > v_{br}$$
$$\nu_{br} \approx 0.63 \text{GHz} \left(\frac{t_{age}}{100 \text{Myr}}\right)^{-2} \left(\frac{5^{2}}{B_{2}^{2}+B_{rad}^{2}}\right)^{2} \left(\frac{B_{2}}{5}\right)$$

Observed integrated spectra: curvature at high frequency

Integrated Spectrum of Sausage Relic: curvature due to cooling

Fitting of Radio Integrated Spectra

Weak shock models require $\gamma_{ec} \sim 10^5$, which is unrealistically high.

DSA model parameters for Sausage & Toothbrush

-Fitting S_v, α_v , & v J_v simultaneously is necessary.

Summary: DSA model for Sausage & Toothbrush relics

	M _{radio}	M _x	DSA model parameters	
Sausage	2.7	2.7	$M_{\rm s,o} \approx 3.2$ with $\gamma_{\rm e.c} \sim 300$	shock is outside of fossil CRe cloud
Toothbrush	2.8	1.5	strong shock model $M_{\rm s,o} \approx 3.0 \text{ with } \gamma_{\rm e.c} \sim 300$	$M_{\rm s,o} \neq M_X.$ multiple shocks
			weak shock model $M_{\rm s,o} \approx 1.6 \text{ with } \gamma_{\rm e.c} \sim 10^5$	TA: re-energizing fossil CRe

- $\tau_{acc} \sim 10^8$ yr , but need to understand better the properties of possible turbulence generated behind weak ICM shocks. -Weak shock model cannot be used to resolve $M_{radio} > M_X$ unless re-energization of fossil CRe to $\gamma_{e,c} \sim 10^5$ is invoked. -Radio relics may consist of multiple shocks with different Ms.