Diffusive Shock Acceleration Model with iffusive Shock Acceleration Model with
Postshock Turbulence for Radio Relics
Examp Kang (Pusan National Univ., Korea) Kang, Ryu, Jones,

Diffusive Shock Acceleration Model with
Postshock Turbulence for Radio Relics
Hyesung Kang (Pusan National Univ., Korea)
Dongsu Ryu (UNIST, Korea)
T. W. Jones (Univ. of Minnesota, USA) ive Shock Acceleration Model with
Shock Turbulence for Radio Relics
Kang (Pusan National Univ., Korea)
Dongsu Ryu (UNIST, Korea)
Jones (Univ. of Minnesota, USA)
ZA J2242.8+5301 Toothbrush Relic in 1RXS J06 Kang, Ryu, Jones, 2017, ApJ

T. W. Jones (Univ. of Minnesota, USA)

synchrotron radiation emitted by ~GeV electrons accelerated at structure formation shocks via DSA (Fermi I) process.

Sausage Relic France

 \rightarrow halo + radio galaxies + radio relics (RN + RS)

Shocks run into radio tails ? \rightarrow re-acceleration of fossil CRe

Toothbrush Relic: halo + radio galaxies + radio relics

Some puzzles in DSA model with in situ injection only

(1) For some radio relics, $M_{radio} > M_{\text{X}}$

(2) Only ~10 % of merging clusters host radio relics, while numerous shocks are expected to form in ICM.

- (3) Some X-ray shocks do not have associated radio relics
- (4) Injection of thermal electrons to DSA may be inefficient.

Possible solution for (2), (3), (4) is Re-acceleration model: a radio relic forms when a weak shock encounters the ICM plasma with pre-existing live or fossil electrons.

But can re-acceleration model solve (1) puzzle of $M_{\text{radio}} > M_{\text{X}}$?

-Fitting S_{ν} , α_{ν} , $\&$ \vee J_v simultaneously is necessary.

Problem with re-acceleration model with fossil CRe

Spectral steepening due to aging electrons with fossil CRe
Spectral steepening due to
aging electrons
 \rightarrow gradient of spectral index, α
along the relic edge ? along the relic edge ?

Problem with re-acceleration model with fossil CRe

Q: uniform spectral index along the relic length ?

1. strong shock model: $M_{_S} \approx 3$ Problem with re-acceleration model with fossil C
 $\overbrace{\text{mod } n}^{\infty}$ and kpc $\overbrace{\text{mod } n}^{\infty}$
 $\overbrace{\text{mod } n}^{\infty}$ and $\overbrace{\text{mod } n}^{\infty}$
 $\overbrace{\text{mod } n}^{\infty}$ and $\overbrace{\text{mod } n}^{\infty}$
 $\overbrace{\text{mod } n}^{\infty}$ and $\overbrace{\text{mod } n}^{\infty}$ and $\frac{1}{2}$
 $\frac{1}{2}$
 2. weak shock model: $M_{s} \approx 1.5$ 2. weak shock model: $M_s \approx 1.5$
additional re-energization processes (e.g. TA), **Solution Spectral index along the relic len**
 Q: uniform spectral index along the relic len

1. strong shock model: $M_s \approx 3$

-fossil CRe provide low E seed electrons ($\gamma_{e,c} \sim 300$)

- $M_{\text{radio}} > M_X$: projection, multi over ~400kpc. $s \approx 4.5, \gamma_{e,c} \sim 10^5$ $M_{\rm radio} > M_{\rm x}$: projection, multiple shocks?

$$
f_{\text{pre}}(p) = f_o \cdot p^{-s} \exp \left[- \left(\frac{p}{p_{e,c}} \right)^2 \right]
$$

Kang, Ryu, Jones 2017

Shocks in Clusters of Galaxies in the Structure Formation Simulations

Weak shocks with M<4 (red)

Spherical bubbles blowing out from the cluster center during major episodes of adjacent filaments.

 \rightarrow spherically expanding shocks

DSA simulations in test-particle limit

in a co-expanding frame which expands with 1D spherical shock.

 $(\widetilde{\rho} \widetilde{e}_s v + \widetilde{P}_s v) - 2 \frac{\dot{a}}{\rho} \widetilde{\rho} \widetilde{e}_s - \widetilde{a} x \widetilde{\rho} v - \widetilde{L}(x,t)$ $(\widetilde{\rho} \widetilde{e}_g)$ $1 \partial(\widetilde{\rho} \widetilde{e}_g v + \widetilde{P}_g v)$ $\left(\widetilde{\rho}\nu\right)_{+}1 \frac{\partial(\widetilde{\rho}\nu^{2}+\widetilde{P}_{g})}{\partial(\widetilde{\rho}\nu^{2}+\widetilde{P}_{g})}=-\frac{2}{\widetilde{\rho}}\widetilde{\rho}\nu^{2}-\frac{\dot{a}}{\widetilde{\rho}}\widetilde{\rho}\nu-\ddot{a}\nu\widetilde{\rho}$ $\frac{\widetilde{\rho}}{\rho} + \frac{1}{\sqrt{\widetilde{\rho}}} \frac{\partial (v \widetilde{\rho})}{\partial t} = -\frac{2}{\widetilde{\rho}}$ \widetilde{e}_{σ} – $\ddot{a}x\widetilde{\rho}v$ – $L(x,t)$ a \dot{a} $\widetilde{e}_p U + P_\sigma$ $x \quad ax$ $\widetilde{\overline{e}}_{\scriptscriptstyle\mathcal{G}}\nu+P_{\scriptscriptstyle\mathcal{G}}$ t a $\widetilde{e}_{\scriptscriptstyle \rm g}$ \ddot{a} x a \dot{a} x ax \overline{P}_{σ} $t \qquad a$ t a ∂x ax $g^{\mathcal{O}+I}g^{\mathcal{O}}$ \rightarrow $\mu\epsilon_g$ $\frac{g}{g} + \frac{1}{g} \frac{\partial (\rho \epsilon_g \partial + \epsilon_g \partial)}{\partial} = -\frac{2}{g} (\tilde{\rho} \tilde{e}_g \partial + \tilde{P}_g \partial) - 2 \frac{a}{g} \tilde{\rho} \tilde{e}_g - \tilde{a} \tilde{x} \tilde{\rho} \partial \frac{g}{g} = -\frac{2}{\tilde{\rho}}\tilde{v}^2 - \frac{u}{\tilde{\rho}}\tilde{v} \partial$ $\partial(\widetilde{\rho e}_\sigma v +$ $+$ ∂l ∂ ∂z $\partial (\widetilde{\rho} v^2 +$ $+$ ∂l ∂ $= \partial$ ∂ $+$ ∂l $\widehat{\partial}_{\bm{\prime}}^{\mathcal{C}}$ $\rho e_{\varrho} v + P_{\varrho} v$) – $2 - \rho e_{\varrho} - a x \rho v$ ρe_{ϱ}) \int $C(\rho e_{\varrho}v + P_{\varrho}v)$ $\rho v = -\rho v - a x \rho$ (ρv) | $\sigma(\rho v)$ ρv $\widetilde{\rho}$ 1 $\partial(v\widetilde{\rho})$ 2 \ddot{a} \dot{a} \ddot{a} $1 \frac{\partial (\tilde{\rho} v^2 + P_g)}{=} 2 \frac{\partial}{\partial v^2} \dot{a}$ 2 $1 \partial(\widetilde{\rho} \widetilde{e}_g v + P_g v)$ 2 2 $x = r / a$: co - moving coordinate, $a =$ expansion factor article limit
nds with 1D spherical shock.
ordinary gasdynamic Eqs (high beta)
 $\frac{d}{d}\widetilde{\partial}\nu-\ddot{a}x\widetilde{\partial}$

CR transport Equation for electron distribution function

Table 1. Parameters for Model Spherical Shocks

Model	$M_{\rm X}$	$M_{\rm radio}$	$M_{\rm s,i}$	kT	B_1	$t_{\rm obs}$	$M_{\rm s,obs}$	$kT_{2,obs}$	$u_{s,obs}$	\overline{N}	
				(keV)	μG	(Myr)		(keV)	(km s) $\overline{}$	Λ -4	
Sausage	\overline{a} .	4.6	4.0	\overline{a} .		211	\bigcap 1 $J \cdot L$	8.6	10 ³ $2.4 \times$	$\overline{}$	
Toothbrush	$\overline{1}$	$\mathbf Q$ $\angle 0$	3.6	3.0		44	3.03 J.UJ		10 ³ <u>.</u> .	5.0	

 M_X : Mach number inferred from X-ray observations

 M_{radio} : Mach number estimated from observed radio spectral index at the relic edge

 $M_{s,i}$: initial shock Mach number at the onset of the simulations ($t_{\text{age}} = 0$)

 kT_1 : gas temperature in the preshock ICM

 B_1 : magnetic field strength in the preshock ICM

 $t_{\rm obs}$: shock age when the simulated results match the observations

 $M_{\rm s.obs}$: shock Mach number at $t_{\rm obs}$

 $kT_{2,obs}$: postshock temperature at t_{obs}

 $u_{s,obs}$: shock speed at t_{obs}

, $\tau_{\rm acc} \approx 10^8 \text{ yr}$ $4₁$ 8 acc acc 2 $\approx \frac{P}{4}$, $\tau_{\rm acc} \approx$ $\cdot \mathcal{T}$ $D_{pp} \approx \frac{p^2}{4\pi}$

 $N = P_{\text{CRe}}/P_{\text{g}}$: the ratio of seed CR electron pressure to gas pressure in the preshock region

The spherical shock slows down and its Mach number decreases in time.

pre-existing fossil electrons: utilizing analytic solutions at the shock

5 (2) weak shocks with $M_s \approx 1.5$: $\gamma_{e,c} \sim 10^5$,

to explain uniform surface brightness (projection along line of sight)

Simple picture:

Relic width at a given frequency ~ cooling length of electrons $-1/2$ $2^{-\ell}$ _{cool}($D, 2$) ~ TOOKPC W_h $u_{2,3}$ $Q(D, 2)$ L_{0.630} $\left[1\right]$ $100 \text{kpc} \cdot W_h \cdot u_{2,3} \cdot Q(B, z) \cdot \left[\frac{V_{obs}(1+z)}{Q_{0}C2C11-z} \right]^{-1/2}$.63GHz $(1+z)$ $\approx u_2 \cdot t_{cool}(B, z) \approx 100 \text{kpc} \cdot W_h \cdot u_{2,3} \cdot Q(B, z) \cdot \left[\frac{V_{obs}(1+z)}{2.625 \text{ N}} \right]^{-1}$ $l_{cool} \approx u_2 \cdot t_{cool}(B, z) \approx 100 \text{kpc} \cdot W_h \cdot u_{2,3} \cdot Q(B, z) \cdot \left[\frac{v_{obs}}{2\pi\epsilon}\right]$ cool cool h $\mathcal V$

depends on u_2 and B_2 for given v_{obs} , z

Projection of a partial shell: extension depth and viewing angle

Observed profiles of radio flux S_v & spectral index α , depend on extension angles ψ_1 & ψ_2 and $\frac{15}{36}$ in addition to shock parameters (M_s) V_{s} , B_{0}))

Fitting of Radio Flux & Spectral index Profiles

Spectral curvature due to Radiative Cooling

- test particle power law : $f_e(r_s, p) \propto p^{-q}$ at the shock $f_e(r_s,p) \propto p^{\frac{1}{2}}$
- e / $e,$ br - volume - integrated spectrum : $F_e(p) = \int f_e(p) dV \propto p^{-(q+1)}$ for $\gamma_e > \gamma$ $F_e(p) = \int f_e(p) dV \propto p^2$

Steepening of volume-integrated spectrum at high energies due to cooling

$$
\gamma_{\text{e,br}} \approx 10^4 \left(\frac{t_{\text{age}}}{100 \text{Myr}} \right)^{-1} \left(\frac{B_{\text{e,2}}}{5 \ \mu\text{G}} \right)^{-2}
$$

reak Lorentz factor

$$
j_{\nu}(r_s) \propto \nu^{-\alpha_{\rm sh}} \quad \text{at the shock}
$$

\n
$$
J_{\nu} \propto \nu^{-(\alpha_{\rm sh}+0.5)} \quad \text{for } \nu_e > \nu_{\rm br}
$$

\n
$$
\nu_{\rm br} \approx 0.63 \text{GHz} \left(\frac{t_{\rm age}}{100 \text{Myr}}\right)^{-2} \left(\frac{5^2}{B_2^2 + B_{\rm rad}^2}\right)^2 \left(\frac{B_2}{5}\right)
$$

19

Observed integrated spectra: curvature at high frequency

Integrated Spectrum of Sausage Relic: curvature due to cooling

Fitting of Radio Integrated Spectra

Weak shock models require $\gamma_{\rm ec} \sim 10^5$, which is unrealisticaly high.

fossil $\text{CRe} f(p)$ shock $s \sim 4.6, \gamma_{e,c} \approx 300$ shock properties $B_1 \sim 1 \mu G$ shock $M_{s} \sim 3, M_{A} \sim 20,$ $u_s \sim 2.5 - 3 \times 10^3$ km/s postshock turbulence with $\tau_{acc} \sim 10^8$ yr \overline{R} background plasma $u(r,t), B(r, t)$ $n_{H,1} \sim 10^{-4} \text{ cm}^{-1}$ $\frac{4}{\text{cm}^3}$ geometry $kT_1 \sim 2 - 3 \text{ keV}$

DSA model parameters for Sausage & Toothbrush

-Fitting S_{ν} , α_{ν} , $\&$ \vee J_v simultaneously is necessary.

Summary: DSA model for Sausage & Toothbrush relics

possible turbulence generated behind weak ICM shocks. .
-Weak shock model cannot be used to resolve $\left. M_{\text{radio}} \right. > \! M_{\text{X}}$ **under the state of total M**_{so} \approx 3.0 with $\gamma_{\rm ec} \sim 300$ multiple shocks
 weak shock model TA: re-energizing
 $M_{\rm so} \approx 1.6$ with $\gamma_{\rm ec} \sim 10^5$ fossil CRe
 $\tau_{\rm acc} \sim 10^8$ yr , but need to understand better th -Radio relics may consist of multiple shocks with different Ms. $\gamma_{e,c} \sim 10^5$ $\tau_{\scriptscriptstyle{acc}} \sim 10^8 ~\rm{yr}$