

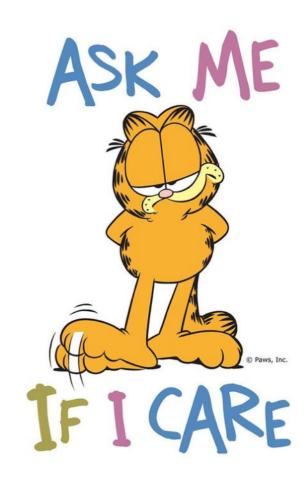
Cosmic Ray Transport in Galaxy Clusters

S. Peng Oh UCSB

Why should you care about CR transport?

CRe lifetime << transport time

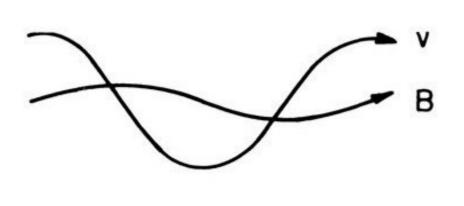
Hadronic model is mostly dead



Hard to accelerate from thermal pool — need seeds! (CRp, or AGN products)

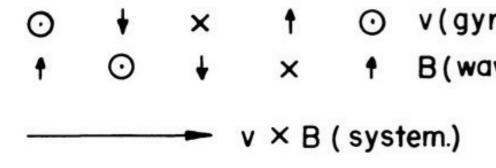
Transport affects abundance, spatial profiles

CR scattering



Self-confinement

Streaming CRs amplify Alfven waves, which scatter them



Scattering by extrinsic turbulence

Alfven modes have wrong shape Scattered by compressible fast modes Particle surfing (transit time damping)

Sign of energy transfer is opposite

How can we move CRs around?

Advect, stream or diffuse?

Can mean:

- 1) motion relative to certain frame
- 2) Hyperbolic (advect, stream) or parabolic (diffuse) equation

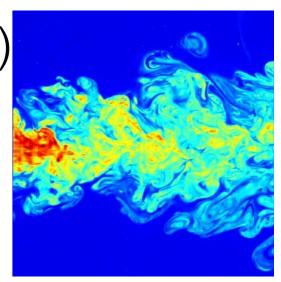
Traditionally, in self-confinement picture

- CRs scattered by Alfven waves
- advect/stream at (v_A + u)
- scattering rate finite: diffuse relative to wave frame

In practice, not so clear cut

Advect with fluid:—turbulent diffusion (parabolic!)

— buoyant rise — AGN bubbles

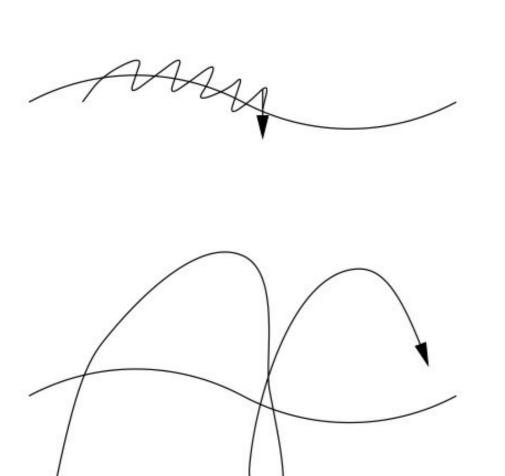


Stream with Alfven waves

- depends on B-field geometry
- can look effectively diffusive! (field line wandering)

Diffuse wrt wave frame

- wave amplitude depends on balance between growth/ damping
- can look mathematically like streaming!



Self-Confinement

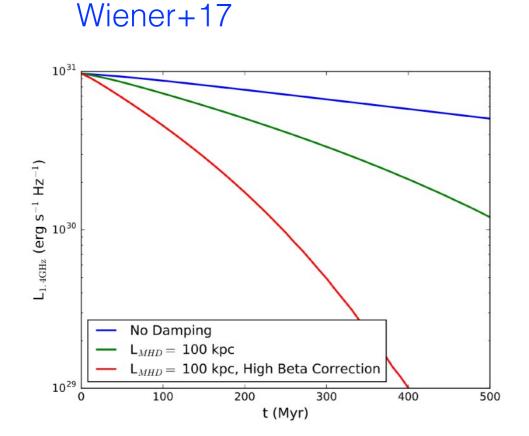
Wiener, Oh, Guo, 2013, MNRAS, 434,2209 Wiener, Oh, Zweibel, 2017, MNRAS, 467, 464 Wiener, Zweibel, Oh, 2017, MNRAS, in press

Highly super-Alfvenic transport possible in clusters

Balance wave growth and damping

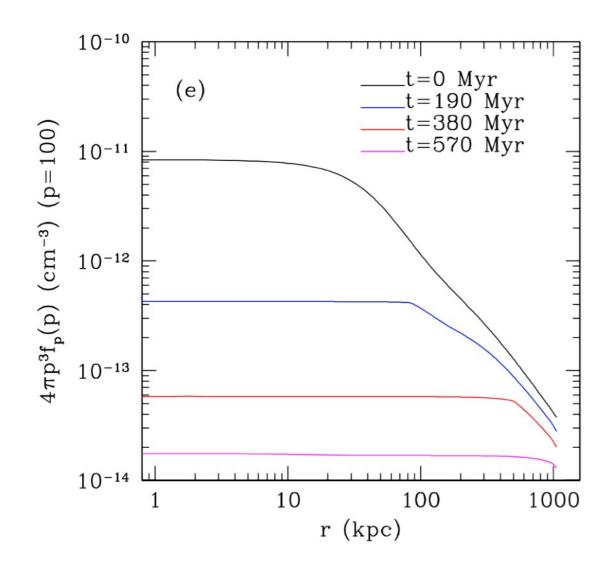
CRs have low abundance: wave growth relatively weak Damping: for clusters,

Linear Landau > turbulent damping > non-linear Landau



Quickly turns off hadronic radio emission

Wiener+13



CR seeds should have a flat spatial distribution

Slippage wrt wave frame can look like streaming

If you work it out in loving detail (Skilling 1971): must stream down gradient

$$D(r) = \frac{1}{p^3} \nabla \cdot \left(\frac{\Gamma_{\rm D} B^2 \mathbf{n}}{4\pi^3 m_{\rm p} \Omega_0 v_{\rm A}} \frac{\mathbf{n} \cdot \nabla f_{\rm p}}{|\mathbf{n} \cdot \nabla f_{\rm p}|} \right)$$

If damping does not depend on f (turbulent, ion-neutral damping) then diffusion term is independent of f, ∇f !

This behaves essentially like streaming!

$$t_{\rm stream} \propto f_{\rm p}/\dot{f}_{\rm p} \propto f_{\rm p}$$

For non-linear damping, this doesn't happen, e.g. NLLD, $D \propto \Gamma \propto (\nabla f)^{1/2}$

For a constant diffusion coefficient, all this interesting behaviour is lost

Streaming is energy dependent

E.g., for turbulent damping

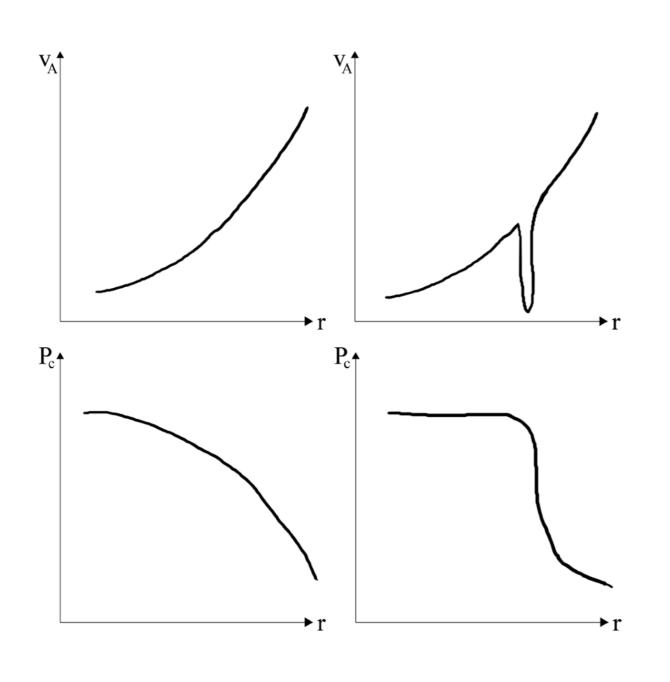
$$v_{\rm D} = v_{\rm A} \left(1 + 1.2 \frac{B_{\mu \rm G}^{1/2} n_{i,-3}^{1/2}}{L_{\rm MHD,100}^{1/2} n_{\rm CR,-10}} \gamma_{100}^{n-3.5} 10^{2(n-4.6)} \right), \qquad \propto \gamma^{1.1}$$

Distribution function will steepen

Be careful about inferences comparing CRs of different energy without taking this into account

(e.g., CR heating of radio mini-halos vs radio emission)

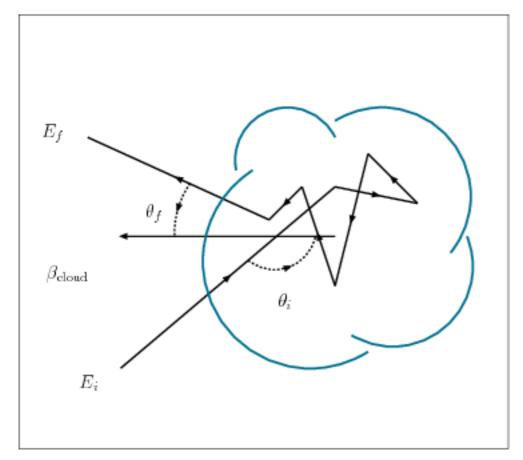
Weird things can happen in multi-phase media



Minimum in Alfven speed creates a 'bottleneck'

CRs are NOT coupled to upstream gas!.. because they are streaming sub-Alfvenically

changes distribution of CRs

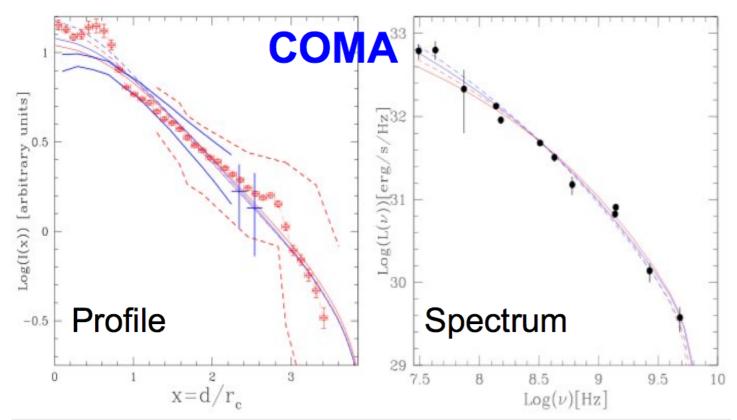


Scattering by Extrinsic Turbulence

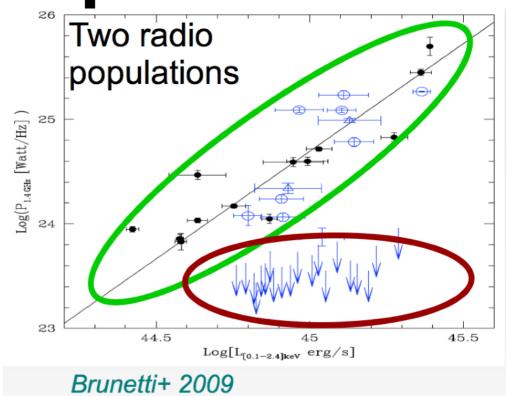
Iurbulent reacceleration is now widely accepted...

Explains bimodality naturally

Provides a good fit to Coma data



Brunetti and Lazarian 07,11, Brunetti+ 2012



But these are existence proofs— let's explore parameter space

How sensitive to assumptions?

Ingredients of a Radio Halo

Model

CR seeds profile

- normalization, shape
- can use cosmo sims (CRp)
- sensitive to transport assumptions

Turbulence profile

- normalization, shape
 - use cosmo sims

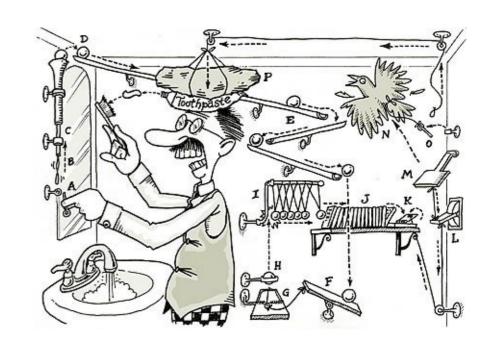
Turbulent spectrum

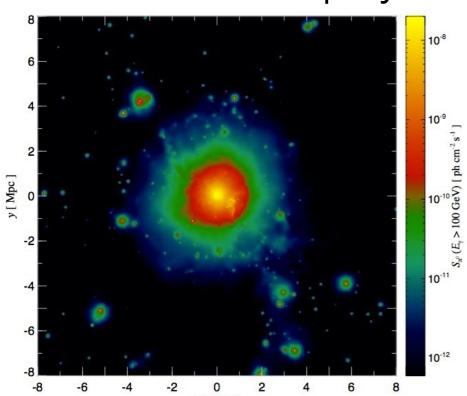
- —MHD turbulence outer scale, inner scale, lifetime
- slope of power spectrum

(depends on driving, B-field, damping)

Method

Couple cosmological simulations with adiabatic CR proton + electron physics...





Pinzke & Pfrommer 2010 Pinzke, Oh, Pfrommer 2013

...to Fokker-Planck code to follow momentum diffusion

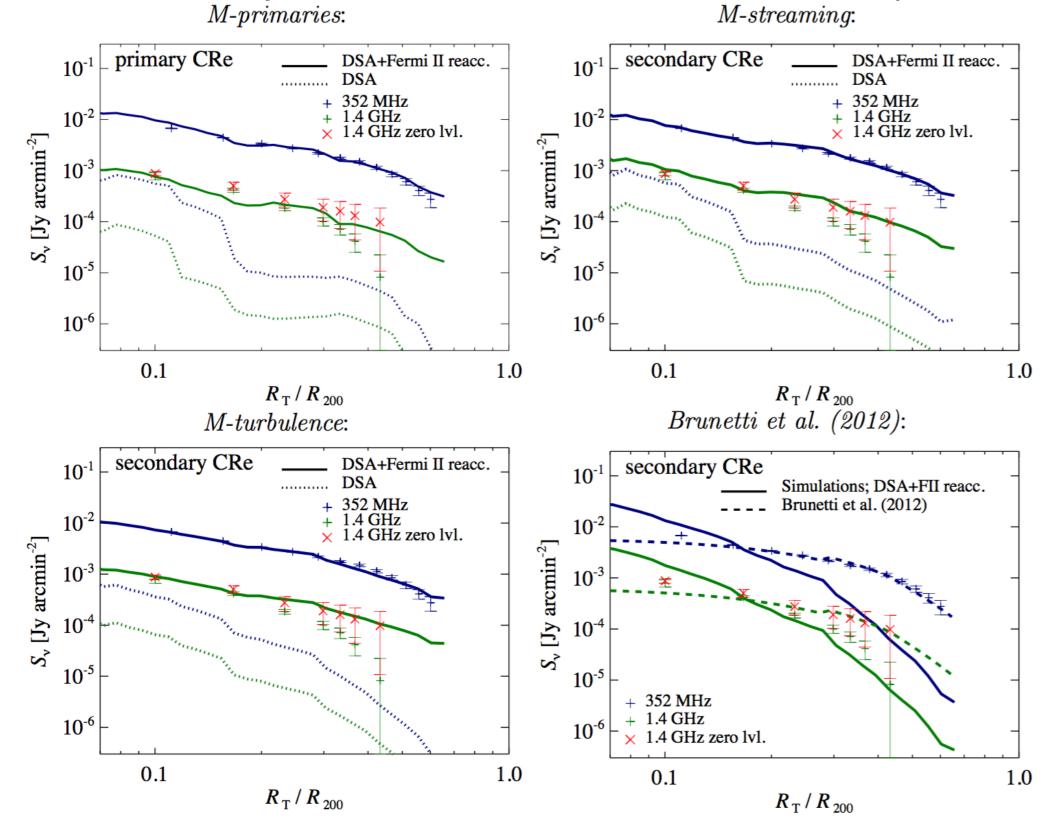
$$\frac{df_{e}(p,t)}{dt} = \frac{\partial}{\partial p} \left\{ f_{e}(p,t) \left[\left| \frac{dp}{dt} \right|_{C} + \frac{p}{3} \left(\vec{\nabla} \cdot \vec{v} \right) \right. \right. \\
+ \left. \left| \frac{dp}{dt} \right|_{r} - \frac{1}{p^{2}} \frac{\partial}{\partial p} \left(p^{2} D_{pp} \right) \right] \right\} - \left(\vec{\nabla} \cdot \vec{v} \right) f_{e}(p,t) \\
+ \left. \frac{\partial^{2}}{\partial p^{2}} \left[D_{pp} f_{e}(p,t) \right] + Q_{e} \left[p,t; f_{p}(p,t) \right] . \tag{1}$$

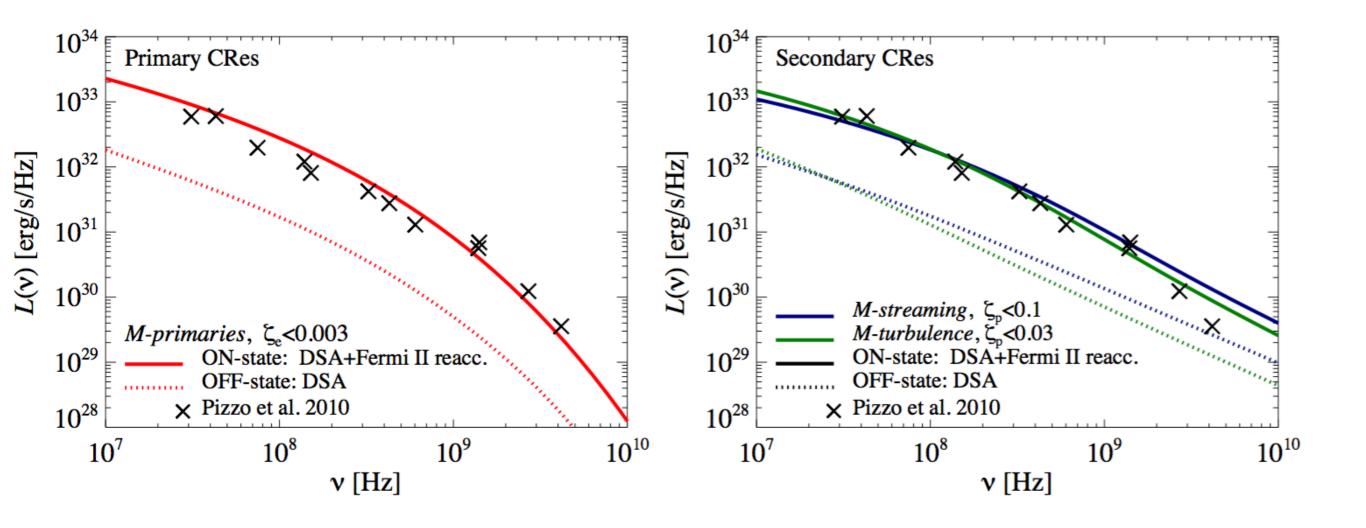
$$D_{pp}(p,t) = \frac{\pi}{16} \frac{p^2}{c \rho} \left\langle \frac{\beta |B_k|^2}{16\pi W} \right\rangle I_{\theta} \int_{k_{\text{cut}}} \mathcal{W}(k) k \, dk \,, \quad \mathcal{W}(k) \approx \sqrt{I_0 \, \rho \, \langle V_{\text{ph}} \rangle} \, k^{-3/2} \,,$$

Try to reproduce Coma's surface brightness + spectral profile

Vanilla model needs tuning

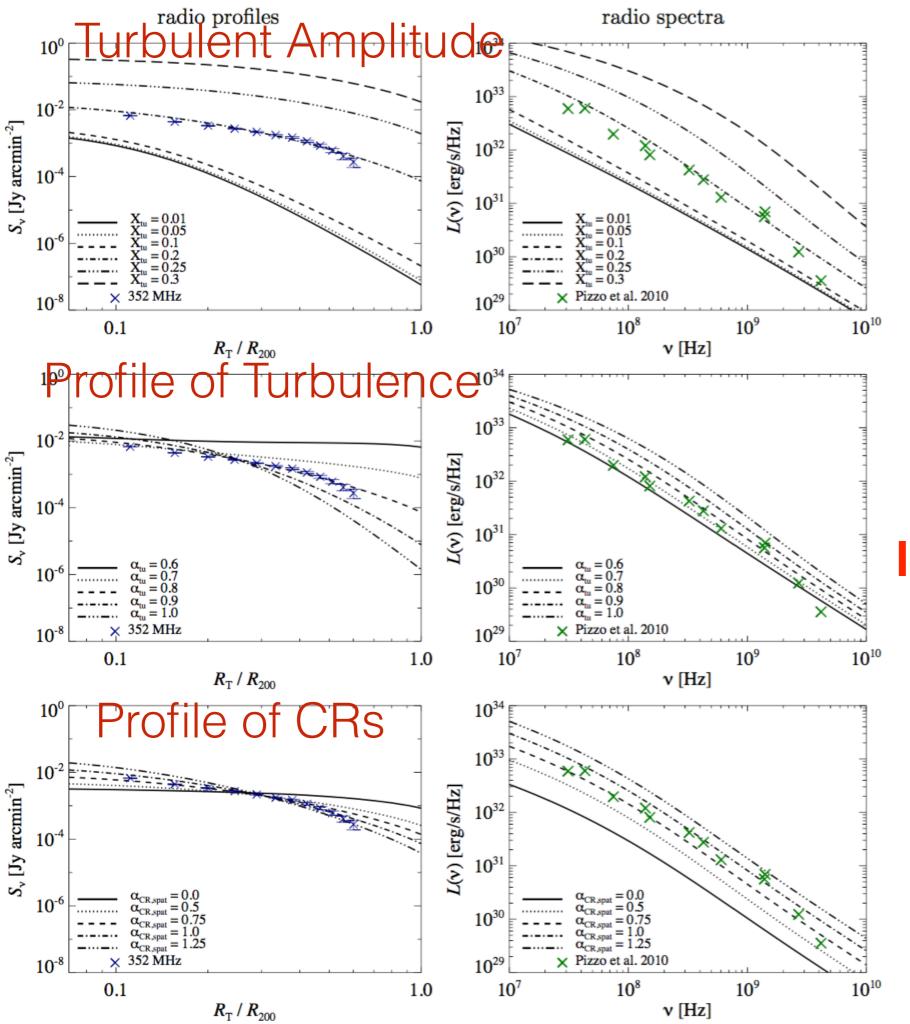
Have to adjust turbulence and CR seed profiles





... but this isn't so satisfying. Fine tuning?

Do a parameter study



Exponentially sensitive to level of turbulence!

Not surprising... that's what Fermi acceleration does

$$\dot{p} = p/\tau_{\rm D}, \qquad p \to p \exp(\tau_{\rm cl}/\tau_{\rm D})$$

What is $\tau_{\rm Cl}$?

Longest of: — driving time (merger timescale?)

- Eddy turnover time at outer scale
 - Cascade time at Alfven scale

$$au_{
m decay} = rac{v_{
m ph}}{v_k^2 k} = rac{c_{
m s}}{f_{
m c} v_{
m A}^2 k_{
m A}} \,.$$
 (due to wave-wave collisions)

Compare with acceleration time

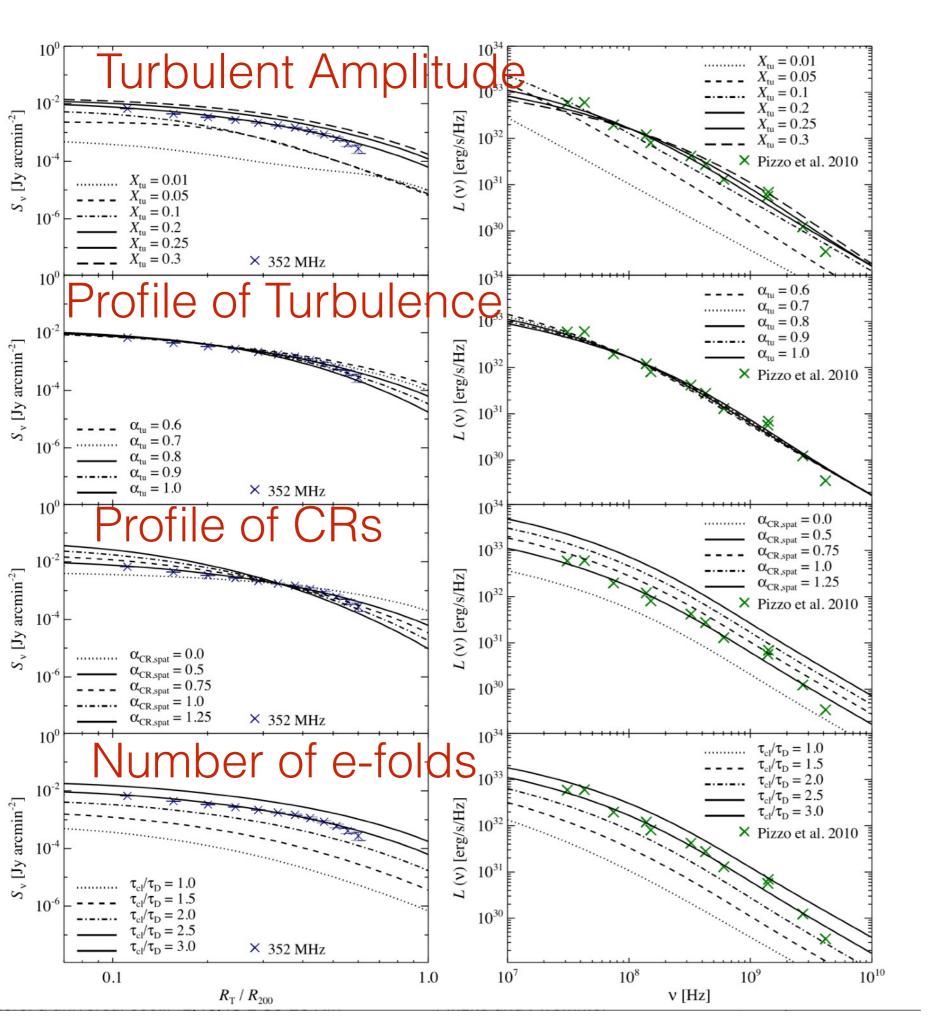
$$au_{
m D} = rac{p^2}{4D_{pp}} = rac{C_{
m D}}{A^{1/2}} \, rac{c}{k_{
m A}} \, rac{eta}{f_{
m c} v_{
m A}^2}$$

Then ratio is independent of properties of turbulence!!

$$\frac{\tau_{\rm cl}}{\tau_{\rm D}} \approx 1.6 \left(\frac{\zeta}{0.2}\right)$$
. Cosmic ray

Ultimately because both cascade and acceleration involve momentum space diffusion

Above threshold, get fixed amount of Fermi II acceleration



Above threshold, stable to amount of and profile of turbulence!

Now sensitive to CR profile...

What you need

Relationship between cascade time and acceleration time reduces scatter

?

Kraichnan spectrum for fast modes $W(k) \propto k^{-3/2}$

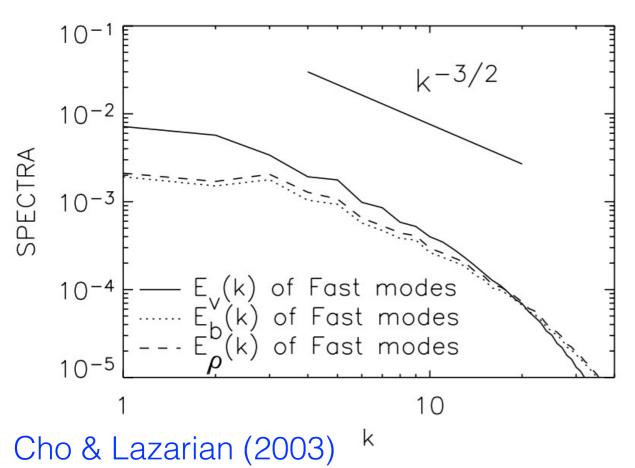
Burgers spectrum $W(k) \propto k^{-2}$ gives inefficient acceleration Miniati 2014

Small inner scale — suppress TTD on thermal particles — reduce thermal particle mfp by firehose, mirror instabilities

Brunetti & Lazarian 2011

Things I don't understand

Are we really sure about the Kraichnan spectrum?

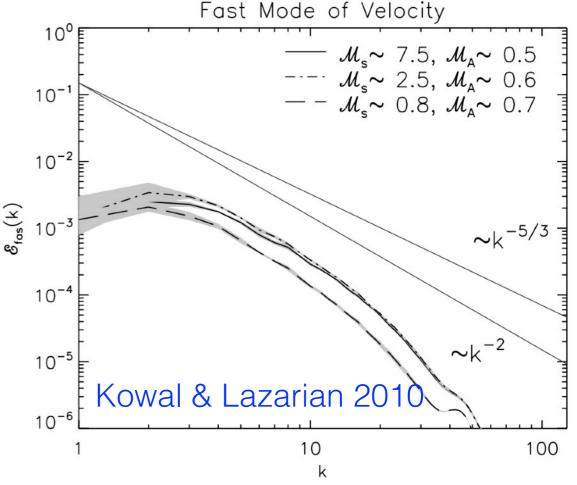


There is only **one** simulation which shows this

Not a lot of dynamic range!

Contradicted by other work...

We need more work on this!



Things I don't understand

Do micro-instabilities really reduce thermal mfp?

Marginal stability to firehose/mirror instabilities:

$$u_i \sim \frac{1.45\beta_i}{\xi} \frac{U}{L}$$
 :

Evaluate shear at dissipation scale:

$$\frac{U_d}{L_d} = \frac{U_0}{L_0} \left(\frac{L_0}{L_d}\right)^{2/3} \sim \frac{v_i^2}{\nu_i L_d^2}$$

Get large mfp! (comparable to Coulomb)

$$\lambda_i \sim L_0 \beta_i^{-2} \mathcal{M}_0^{-3} \sim L_d \beta_i^{-1/2} \sim 14 \text{ kpc} \left(\frac{L_{\text{MHD}}}{100 \text{ kpc}}\right) \left(\frac{\beta_i}{50}\right)^{-1/2}$$

Small Reynolds number:no parallel cascade? Wiener, Zweibel, Oh 2017

(35) further imply an effective Reynolds number associated with the parallel viscosity

$$Re = \frac{U_{rms}L}{\kappa_{visc}} = \frac{U_{rms}L}{0.96(v_{th}^2/v_{ii})} = \frac{3}{\xi^2}$$
 (37)

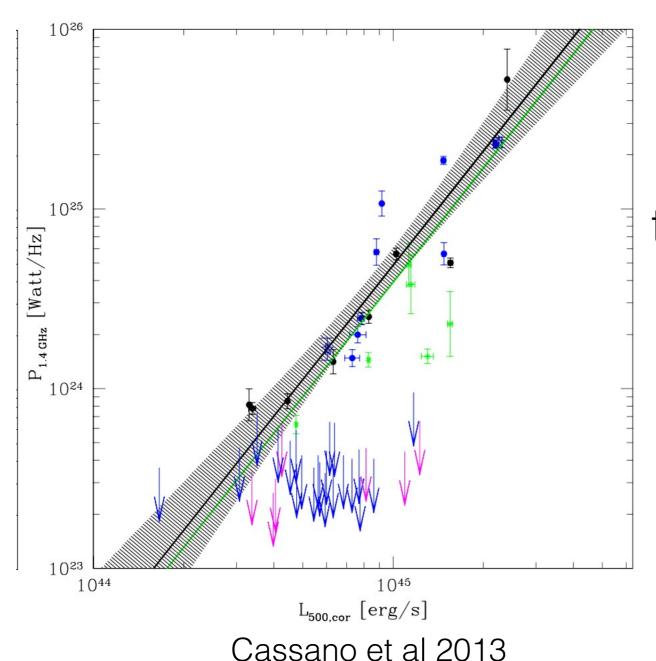
($\kappa_{\rm visc}$ is the viscosity coefficient; see Braginskii 1965). Thus, Re \sim 1–10 and is independent of radius. In other words, the outer and viscous scales are close to one another, so that the motions are dissipated near the outer scale and there is no inertial range (cf.

Kunz et al 2011

Would like to understand this better

Things I don't understand

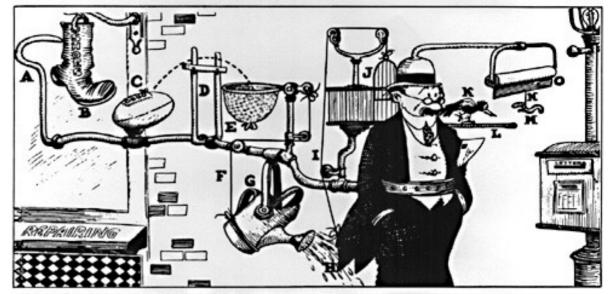
The scatter in radio halo luminosities is worth studying



Most work focuses on getting the mean relation

Remarkable that there isn't more scatter.

There's information there!



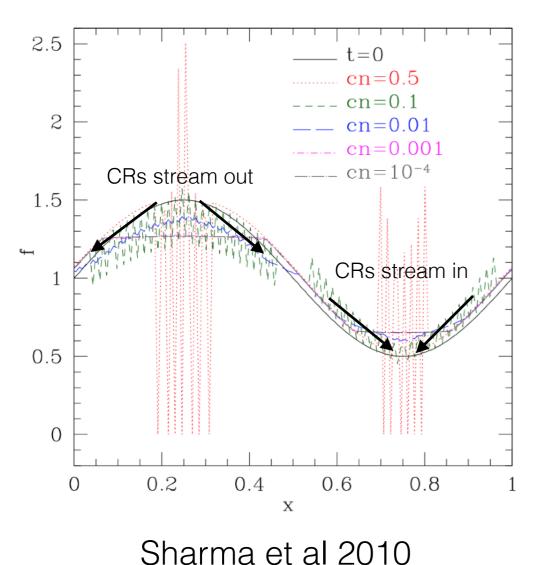
Geep You From Forgetting To Mail Your Wife's Letter RUBE GOLDBERG (tm) RGI 049

A New Numerical Scheme for Cosmic Ray Transport



Jiang & Oh, 2017, in prep

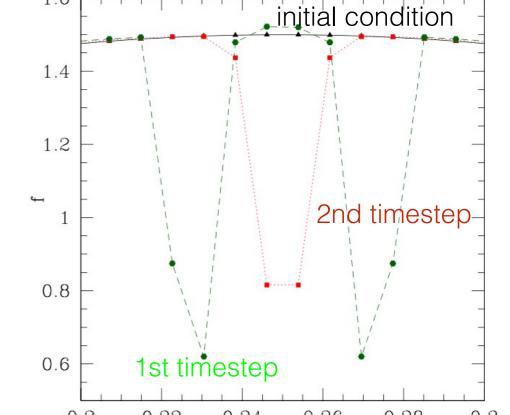
CR streaming is a non-trivial numerical problem



CRs can only stream down their gradient

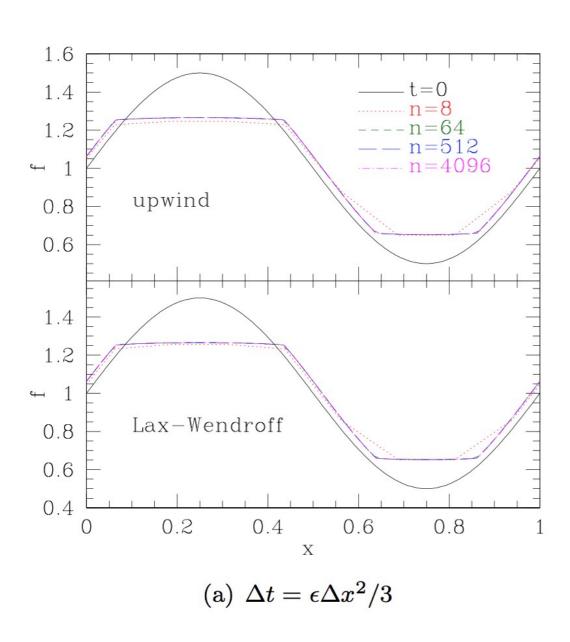
At local extrema, overshoot and develop unphysical grid-scale

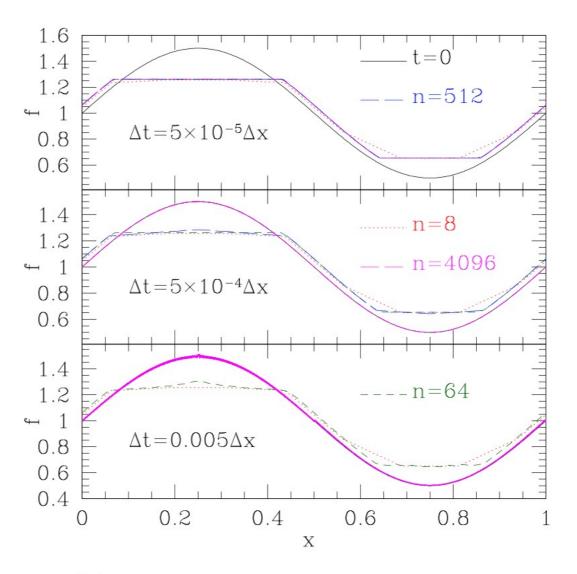
oscillations



Need extremely small CFL timestep for stable solutions!

Standard Solution: add numerical diffusion





(b) linearized implicit method, $\epsilon = 0.01$

Explicit solver

Implicit solver

But this is dodgy

Numerical diffusion masks true physical diffusion

DOCTOR QUACK'S PATENTED

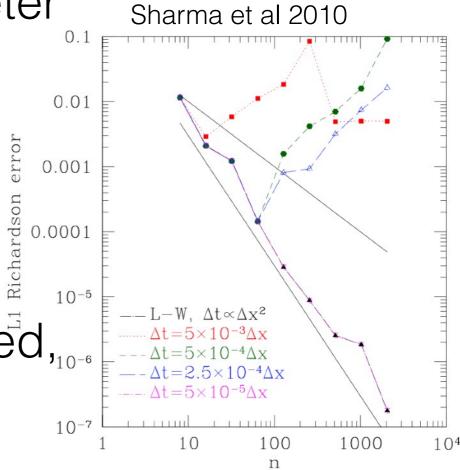
CIVAKE OF COMMENT O

Ad-hoc, unmotivated smoothing parameter

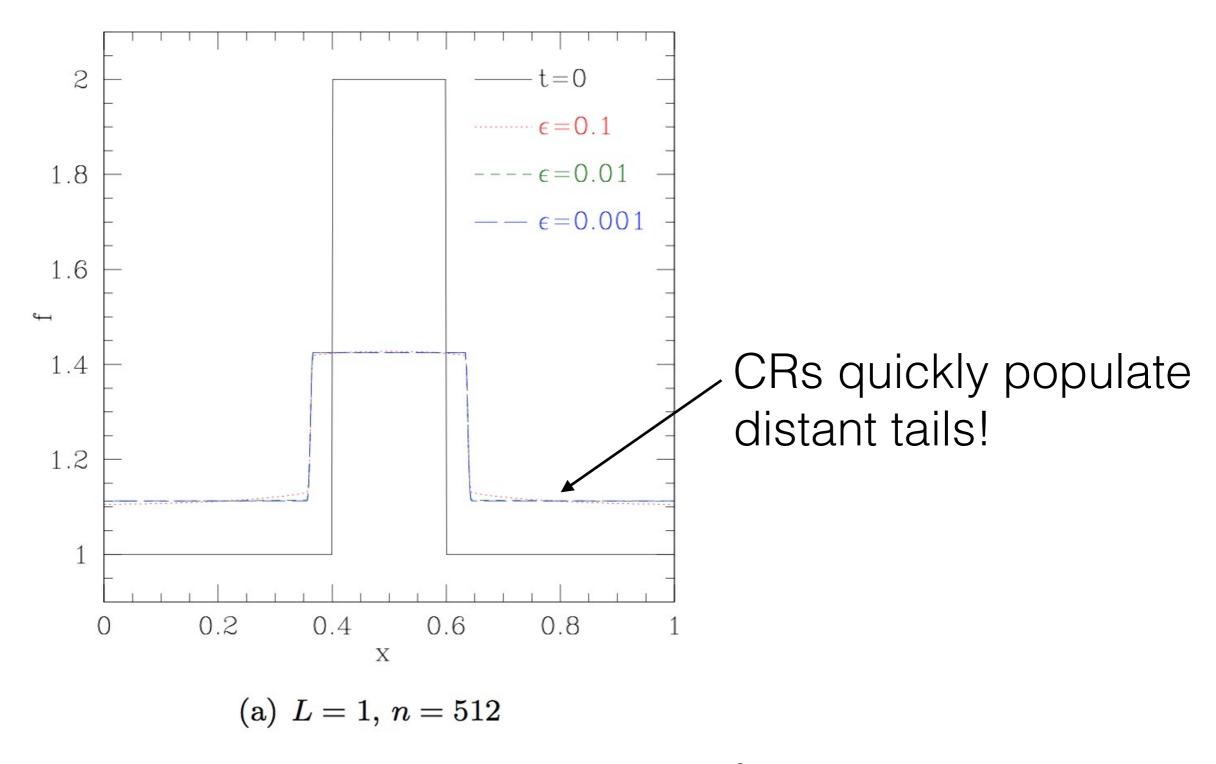
Expensive: explicit method $\Delta t \propto (\Delta x)^2$

Implicit method: in principle $\Delta t \propto \Delta x$

but not really. Needs very small timestep! [2] 10-5 Also large matrix inversions — complicated, 10-6 needs memory.



(b) linearized implicit method with $\epsilon = 0.01$



Hard to interpret: highly super-Alfvenic streaming

Almost all calculations either only have streaming or diffusion.

No fully general calcs of CR transport!

What's really the problem?

Standard approach solves the wrong set of equations

$$\frac{\partial E_c}{\partial t} = (\boldsymbol{v} + \boldsymbol{v}_s) \cdot \nabla P_c - \boldsymbol{\nabla} \cdot \boldsymbol{F}_c + Q.$$

where
$$oldsymbol{v}_s = -oldsymbol{v}_A rac{oldsymbol{B} \cdot oldsymbol{
abla} P_c}{|oldsymbol{B} \cdot oldsymbol{
abla} P_c|}.$$

But streaming velocity is undefined at extrema

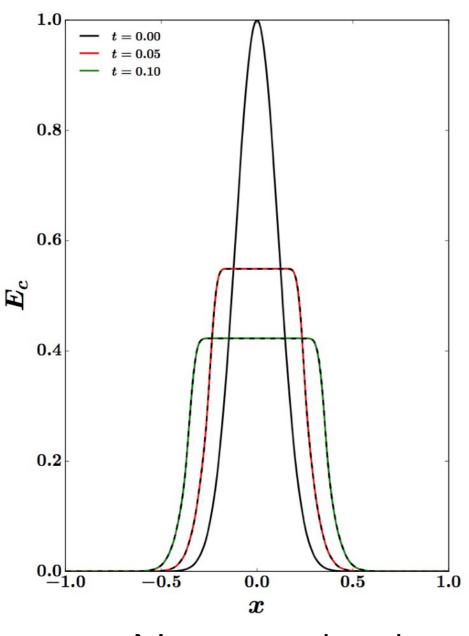
 $\nabla P_c = 0 \Rightarrow \text{ isotropic CRs } \Rightarrow \text{ no streaming instability}$

No CR scattering, fluid approximation fails

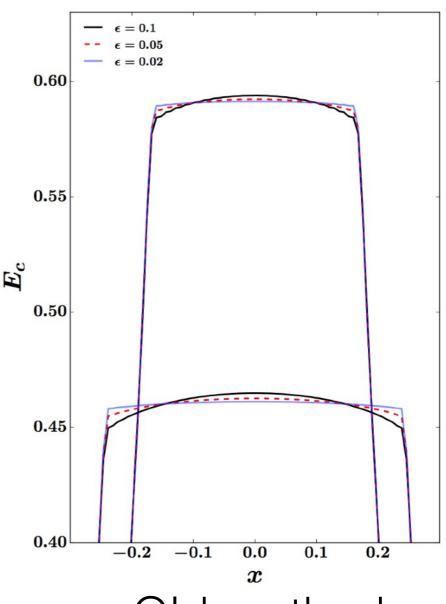
Instead, CRs are uncoupled and free stream at the speed of light at extrema

A New Numerical Scheme

We formulate a new set of equations to take this into account



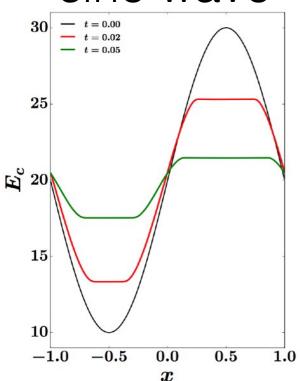
New method



Old method

10 times faster than fastest [least smoothing] old method!

It passes all tests we've thrown at it



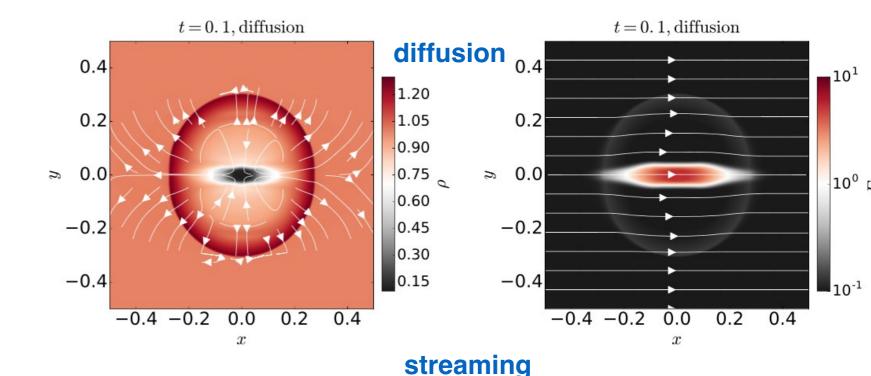
Blast wave with B-fields

10¹

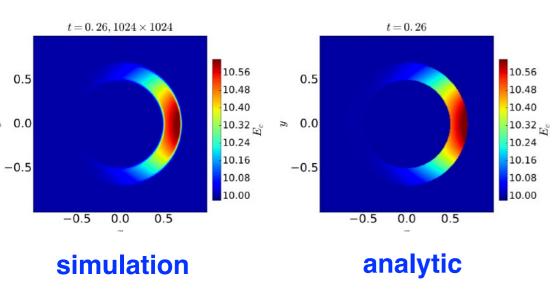
10°

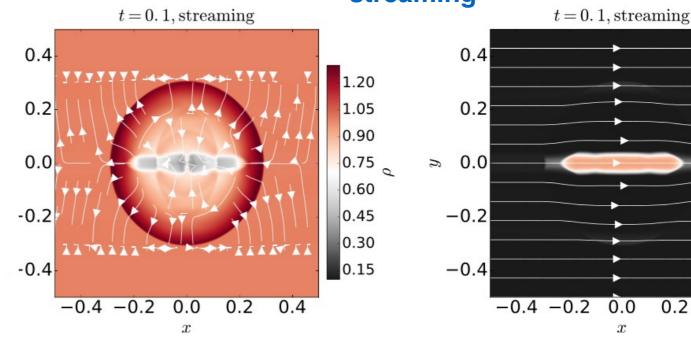
0.2

0.4



anisotropic diffusion





Advantages

No ad-hoc smoothing parameter

Cheap, robust. Take standard CFL time step. Equations stay hyperbolic.

Can understand origin of fast transport.

Can calculate streaming and diffusion simultaneously with any diffusion coefficient.

Can easily do calculations where standard method chokes or is very expensive.

Conclusions

We have a better gizmo for CR transport!

D E G H

Paper out in a few weeks