Statistical study of radio halos in a mass-selected sample of galaxy clusters

Virginia Cuciti

PhD student at IRA-INAF Bologna, Italy

In collaboration with: G. Brunetti, D. Dallacasa, R. Cassano, A. Bonafede, R. van Weeren...

Outline

- Previous statistical results on radio halos
- Sample selection and goals
- Early results on the fraction of clusters with radio halos
- Radio data analysis
- Preliminary statistical analysis of the total sample

Radio halos: observational results

A 'mass' selected sample

General goal: study the statistical properties of radio halos in the first mass-selected sample of clusters with deep radio observations

From the Planck SZ cluster catalogue

(Planck Collaboration 2014):

- M_{500} \gtrsim 6×10¹⁴ M_{\odot}

Total of 75 clusters ~80% complete in mass(with GMRT 330/610 MHz and/or JVLA 1.4 GHz observations)

(Planck Collaboration 2014)

Occurrence of radio halos

Early results based on a subsample of 57 clusters with available radio information in the literature (+NVSS reprocessing)

Fraction of RHs drops in low mass clusters

In agreement with expectations from turbulent re-acceleration models

Red line: expected probability of forming 1Mpc scale RHs as a function of cluster mass

Radio data analysis to complete the sample

Early results based on 57 clusters

Total sample = 75 clusters

18 clusters of which we analysed GMRT (330 MHz and/or 610 MHz) and/or JVLA 1.4 GHz observations

3 new radio halos and 1 relic
3 candidate radio halos
11 clusters without diffuse emission many new upper limits

Discovery of diffuse emission in two merging clusters

Cuciti et al. (2017)

For both clusters we analysed GMRT 330 MHz and JVLA D and B array 1.5 GHz observations

Discovery of diffuse emission in two merging clusters

*Cuciti et al. (2*017)

rms \approx 0.3 mJy/b beam \approx 40" \times 28" S_{330MHz} = 32.6 \pm 3.8 mJy $S_{1.5GHz}$ = 5.0 \pm 0.5 mJy α \approx -1.2

Injections $\Longrightarrow \alpha \approx -1$

rms $\approx 45 \,\mu\text{Jy/b}$ beam $\approx 36'' \times 30''$ $S_{330\text{MHz}} = 20.3 \pm 2.7 \,\text{mJy}$ $S_{1.5\text{GHz}} = 3.3 \pm 0.2 \,\text{mJy}$ $\alpha \approx -1.1$

Candidate radio relic in A1451

Radio power $P_{1.4GHz}$ =1.1±0.6x10²⁴W/Hz

Spectral index α =1.1±0.1

Blue: XMM-Newton. Red: GMRT 330 MHz

Optical DSS image

Cuciti et al. (2017)

Origin: reaccelerated plasma (AGN) by accretion/distant shock????

Puzzling head tail radio galaxy in Z0634

Puzzling head tail radio galaxy in Z0634

From the Planck SZ cluster catalogue (Planck Collaboration 2014):

-
$$M_{500}$$
 \gtrsim 6×10¹⁴ M_{\odot}
- 0.08

Total of 75 clusters ~80% complete in mass(with GMRT 330/610 MHz and/or JVLA 1.4 GHz observations)

In the Cuciti et al. sample:

 27 RHs among 50 merging clusters (~55% of merging clusters host a RH)

9 USSRHs or candidate USSRHs

2 RHs among 23 relaxed clusters
 (~10% of relaxed clusters host a RH)

From the Planck SZ cluster catalogue (Planck Collaboration 2014):

-
$$M_{500}$$
 \gtrsim 6×10¹⁴ M_{\odot}
- 0.08

Total of 75 clusters ~80% complete in mass(with GMRT 330/610 MHz and/or JVLA 1.4 GHz observations)

In the Cuciti et al. Sample:

27 RHs among 50 merging clusters
 (~55% of merging clusters host a RH)

9 USSRHs or candidate USSRHs

2 RHs among 23 relaxed clusters
 (~10% of relaxed clusters host a RH)

Take home messages

- We have built the largest mass-selected sample of galaxy clusters with deep radio observations available to date
- We are analysing the statistical properties of radio halos in this sample (radio power-mass diagram, fraction of RHs, RH- merger connection...)
- The picture is becoming more complex than it used to be
- Deeper investigation is needed, including more sofisticated statistical tools and theoretical models

Take home messages

- We have built the largest mass-selected sample of galaxy clusters with deep radio observations available to date
- We are analysing the statistical properties of radio halos in this sample (radio power-mass diagram, fraction of RHs, RH- merger connection...)
- The picture is becoming more complex than it used to be
- Deeper investigation is needed, including more sofisticated statistical tools and theoretical models

Thank you!

Morphology diagram

Radio halo emissivity

emissivity $\approx \frac{P_{1.4GHz}}{\dot{R}_H^{3}}$ $R_H = \sqrt{R_{min} \times R_{max}}$ from 3 σ contours, $R_H = 500$ kpc for UL

