High Energy Pulses in the Lambda-cubed Regime

Jonathan WHEELER (IZEST, Ecole Polytechnique; IFIN-HH, ELI-NP) Gérard MOUROU (IZEST, Ecole Polytechnique) Toshi TAJIMA (IZEST, UCI) Sergey MIRONOV (IAP-RAS) Rémy GONIN (IZEST, Ecole Polytechnique; U.Paris-sud, Orsay)

ZEST ternational Zeta-Exawatt cience Technology

Pulse Compression: A Boost to Intensity Enhancement

Zeta-Exawatt Science Technology

Two Compression Regimes dependent on Initial Pulse

Pulse Compression Benefitting Several Directions

Pulse Compression Through Arbitrary Process (*i.e.* Thin Film Compression (SPM), 2nd Harm. Generation, Cascaded Self-Compression)

S.Yu. Mironov, J. Wheeler, R. Gonin, G. Cojocaru, R. Ungureanu, R. Banici, M. Serbanescu, R. Dabu, G. Mourou, and E.A. Khazanov. Quantum Electronics 47 (3) 2017

Large aperture Beams => excellent phase matching !

 TW/cm^2

&

PW-TFC

X-ray Production:

- Exawatt, Attosec. γ-Pulses
- TW/cm LWF Acceleration
- QED Vacuum Physics
- Table Top Cosmos

Proton Acceleration:

Energy Enhancement (GeV
 Radio-isotope Production

Direct Use:

- Peak Power Enhancement
- Beam Transport Studies
 Pulse Diagnostics
 - Nuclear Physics

Compressing toward Single-Cycle Requires Bandwidth

Broaden Spectra through Self-Phase Modulation (SPM)

PW-TFC

science Technology

e

Nuclear Physic

OLYTECHNIQUE

Thin Film Compression Scheme

Thin Film Material Requirements

- Appropriate Nonlinear Response:
 - $>(5-8)x10^{-4} \text{ cm}^2/\text{TW}$
- Ideal Thickness (<1 mm)
- Large Aperture (>15 cm)
- High Damage Threshold (5 TW/cm²)
- Low Absorption Losses
- Low Birefringence
- Vacuum Compatibility
- Example Candidates :
 - Cellulose Acetate
 - Polyethylene Terephthalate (PET)
 - Poly(methyl methacrylate) (PMMA)
 - Cyclic Olefin Copolymer (COC)

G. Mourou, G. Cheriaux, C. Radier Patent 2009 A.A. Voronin, A.M. Zheltikov, T. Ditmire, B. Rus and G. Korn Optics. Com. 2013

I ZEST International Zeta-Exawatt Science Technology

Thin Film Characterization at LULI

R. Gonin, S. Savalle

Material	Thickness (mm)	Peak to Valley (633nm)
Cyclo Olefin Copolymer (APEL)	0.10	$0.56 \pm 0.03 \lambda$
Cyclo Olefin Copolymer (Zeonor - ZF16)	0.10	TBD
-	-	-
Thin Glass (Schott D263)	0.90	0.39 λ
Thin Glass (Schott D263)	0.21	0.32 +/- 0.07 λ
Thin Glass (Schott AF32)	0.50	$1.12 \pm 0.08 \lambda$
Thin Glass (Schott AF32)	0.10	0.05 λ
-	-	-
Multilayer film (Phone Protector)		0.44 λ
PMMA (acrylic glass)	0.50	0.99 λ
Di-acetate (low quality)	0.50	$2.3 \pm 0.3 \lambda$
PET (low quality)	0.125	1.78 λ

I ZEST International Zeta-Exawatt Science Technology

Thin Film Compression Modeling

ECOLE POLYTECHNIQUE

et

Nuclear Physics

Thin Film Compression at CETAL 1PW

PW output specification

- Peak power $\geq 1 \text{ PW}$
- Pulse duration < 25 fs
- Repetition rate 0,1Hz
- ps pre-pulse contrast 10¹¹ @ 100ps

TW output specification

- Peak power $\geq 45 \text{ TW}$
- Pulse duration < 25 fs
- Repetition rate 10Hz
- Ps pre-pulse contrast 10¹¹ @ 100ps

by Thales Optronique S.A

I ZEST International Zeta-Exawatt Science Technology G. Cojocaru, R. Ungureanu, R. Banici, M. Serbanescu

200mJ; 50fs; beam area: 1 cm² Intensities at interaction: 1.0 – 3.0 TW/cm²

The Measured Spectral Broadening

200mJ; 50fs Intensities at interaction: 1.0 – 3.0 TW/cm²

Shaded regions represents spectrum at 5% of maximum

The Measured Spectral Broadening

Zeta-Exawatt

Recompression Achieved with a pair of chirped mirrors

Zeta-Exawatt

Thin Film Compression at Laserix

Output specifications :

- Peak power $\geq 50 \text{ TW}$
- Pulse energy = 2.5 J
- Pulse duration < 40 fs
- Repetition rate 10 Hz
- Temporal contrast 10⁸

Thin Film Compression at Laserix

e

Nuclear

OLYTECHNIQUE

LZESI International Zeta-Exawatt Science Technology

Thin Film Compression at Laserix

PMMA film (500 µm) damage after 7 minutes at 10 Hz (~4000 shots)

Average Intensity: 1.6 TW/cm²

upper end of desired range

BUT Intensity near damage is nearly 2x at over 3.5 TW/cm^2

Stable Proton Acceleration

M. L. Zhou et al. Phys. Plasmas, **23** (4), p. 43112 (2016)

"Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,"

I ZEST International Zeta-Exawatt Science Technology

Extreme Compression to X-rays

I ZEST International Zeta-Exawatt Science Technology

Shorter makes Exawatt achievable

owatt

Laser Wakefield Acceleration: Gas/Optical vs Solid/ X-Ray UCIRVINE

Wakefield comparison: nanotube vs. uniform density

UCIRVINE

Collaborators & Acknowledgements

This work is supported by Extreme Light Infrastructure - Nuclear Physics (ELI-NP), a project co-financed by the Romanian Government and European Union through the European Regional Development Fund.

Irvine, California University of California at Irvine (UCI) • Toshiki Tajima, Deano Farinella, Tam Nguyen, Franklin Dollar	Nizhny Novgorod, Russia Institue of Applied Physics – Russian Academy of Science (IAP-RAS)
Those involved in the experiments presented. Bucharest-Magurele, Romania National Institute for Laser, Plasma, and Radiation Physics	 Efim Khazanov Sergey Mironov Ekaterina Gacheva Vladislav Ginzburg Ivan Yakovlev Orsay, France Laboratoire de physique des Gaz et Plasmas (LPGP)
 Razvan Ungureanu Romeo Banici Constantin Diplasu Mihai Serbanescu 	 David Ros Julien Demailly Rémy Gonin LASERIX - Centre Laser de l'Université Paris-Sud (CLUPS)
 National Institute for Nuclear Physics- Horia Hulubei, Extreme Light Infrastructure - Nuclear Physics Razvan Dabu Ioan Dancus 	Université Paris-Sud – Fédération Lumière Matière (LUMAT) CNRS • Moana Pittman • Elsa Baynard
Shanxi, ChinaCollaborative Innovation Center of Extreme Optics,Shanxi UniversityX.Q. Yan	Garching, Germany Fakultat fur Physik, Ludwig-Maximilians-Universitat • J.H. Bin • I. Schreiber

• M.L. Zhou

