Special Grand Unification

Naoki Yamatsu Maskawa Institute for Science and Culture Kyoto Sangyo University PASCOS 2017 @ IFT, Madrid, Spain June 19-23, 2017 This talk is based on arXiv:1704.08827 [1].

Purpose of this talk

I will propose a new-type grand unified theory (GUT) based on an SU(16) GUT gauge group broken to its SO(10) special subgroup.

- 4D gauge anomaly cancellation restricts the minimal number of generations of the 4D SM Weyl fermions.
- In an SU(16) GUT on 6D orbifold space, three generations are allowed by the 6D and 4D gauge anomaly cancellation on the bulk and fixed points without exotic 4D chiral fermions.

Purpose of this talk

I will propose a new-type grand unified theory (GUT) based on an SU(16) GUT gauge group broken to its SO(10) special subgroup.

Content of this talk:

① What is a **special subgroup** ?

(2) 4D anomaly cancellation

(3) 6D SU(16) special GUT

. . .

Motivation for Grand Unification [2, 3, R.Slansky'81;...]

The idea of grand unification has attractive features; e.g.,

- Unification of the SM gauge bosons
- Unification of the SM Weyl fermions
- 4D SM gauge anomaly cancellation
- Charge quantization for quarks and leptons

GUT gauge groups (broken to regular subgroups) 4D GUTs based on GUT gauge groups e.g.,

SU(5) [4, H.Georgi, S.L.Glashow'74], SU(6) [5, K.Inoue, A.Kakuto, Y.Nakano'77], SO(10) [6, H.Fritzsch, P.Minkowski'75], E_6 [7, F.Gursey, P.Ramond, P.Sikivie'76].

5D GUTs based on GUT gauge groups e.g.,

SU(5) [8,9, K.Kojima et al.'11], SU(6) [10,11, G.Burdman,Y.Nomura'03], SO(10) [12,13, H.D.Kim,S.Raby'03;...], E_6 [14,15, Y.Kawamura,T.Miura'13], SO(11) [16–20, Y.Hosotani,N.Yamatsu'15;...].

Usually, GUT gauge groups are broken to regular subgroups; e.g. $E_6 \supset SO(10) \supset SU(5) \supset G_{\rm SM}$.

However, there are other subgroups: **special subgroup**.

Regular and special subgroups [2, 3, 21–23, E.Dynkin'57;...]

Motivation for Special GUTs [1, N.Yamatsu'17]

There are several features of special GUTs. E.g.,

- Special embeddings reduce rank. E.g, $SU(16) \supset SO(10)$, $SU(27) \supset E_6$, $USp(56) \supset E_7$, $SO(248) \supset E_8$,
- Almost all unnecessary U(1)s are eliminated. E.g., $SO(32) \supset$ $SU(16) \times U(1) \supset SO(10) \times U(1) \supset G_{\rm SM} \times U(1) \times U(1).$
- For $SO(32) \supset SU(16) \times U(1) \supset SO(10) \times U(1)$, SO(32)vector representation **32** is decomposed into SO(10) spinor representations **16** and $\overline{\mathbf{16}}$.

Branching rules of $SU(16) \supset SO(10)$ [3, N.Yamatsu'15]

 $16 = (16), \quad \overline{16} = (\overline{16})$ $120 = (120), \quad \overline{120} = (120)$ $255 = (210) \oplus (45)$ $5440 = (4125) \oplus (\overline{1050}) \oplus (54) \oplus (210) \oplus (1)$

- 16 of SU(16) can be identified with the SM Weyl fermions.
- 120 and $\overline{120}$ of SU(16) is real under SO(10) subgroup.
- 5440 of SU(16) can break SU(16) to SO(10).

4D SU(n) chiral gauge theory [3, e.g., N.Yamatsu'15]

- A 4D Weyl fermion in $(\mathbf{10} \oplus \overline{\mathbf{5}})$ of SU(5) has zero 4D anomaly coefficient: $A(\mathbf{10} \oplus \overline{\mathbf{5}}) = 0$.
- A 4D Weyl fermion in $(\mathbf{15} \oplus 2 \times \overline{\mathbf{6}})$ of SU(6) has A(R) = 0
- In general, a 4D Weyl fermion in $\left(\frac{\mathbf{n}(\mathbf{n}-1)}{2} \oplus (n-4) \times \overline{\mathbf{n}}\right)$ of SU(n) has A(R) = 0.

A 4D Weyl fermion in $(120 \oplus 12 \times \overline{16})$ of SU(16) has zero anomaly coefficient: $A(120 \oplus 12 \times \overline{16}) = 0$.

4D SU(16) special GUT [1, N.Yamatsu'17]

- A 4D Weyl fermion in $(12 \times 16 \oplus \overline{120})$ of SU(16) is OK from the viewpoint of 4D anomaly cancellation.
- \bullet However, once SU(16) is broken to SO(10), the number of generations of the SM chiral fermions is 12.
- Fortunately, since $\overline{120}$ of SU(16) is real under the SO(10) subgroup, a 4D Weyl fermion in 120 of SO(10) is not chiral.

It seems impossible to realize three generations of the SM fermions in 4D. How about higher dimensions?

6D SU(16) special **GUT** [1, N.Yamatsu'17]

• We consider 6D orbifold spacetime $M^4 \times T^2/\mathbb{Z}_2$:

$$ds^{2} = e^{-2\sigma(y)} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dv^{2}) + dy^{2}.$$

• The \mathbb{Z}_2 parity reflection around each fixed point (j = 1, 2, 3, 4) is

$$P_j: (x_{\mu}, y_j + y, v_j + v) \rightarrow (x_{\mu}, y_j - y, v_j - y).$$

 Orbifold BCs for e.g., a 6D Weyl fermion in 16 of SU(16) are given by [24, Y.Hosotani,N.Yamatsu'17]

$$\Psi_{16\pm}(x, y_j - y, v_j - v) = \eta_j(-i\Gamma^5\Gamma^6)P_{j16}\Psi_{16\pm}(x, y_j + y, v_j + v).$$

Symmetry breaking pattern [1, N.Yamatsu'17]

 $SU(16) \rightarrow G_{SM}$ can be realized e.g., by the Higgs mechanism;

$$\begin{array}{lll} SU(16) & \xrightarrow{\text{BCs}} & SU(16) \\ & \xrightarrow{\text{BCs}} & SO(10) \\ & & \swarrow & SO(10) \\ & \xrightarrow{\langle \phi_{5440} \rangle \neq 0} & SU(5) \\ & & \xrightarrow{\langle \phi_{16} \rangle \neq 0} & SU(5) \\ & & \xrightarrow{\langle \phi_{255} \rangle \neq 0} & SU(3) \times SU(2) \times U(1). \end{array}$$

Note that the nonvanishing VEVs of scalars in 5440, 16, 255 of SU(16) are responsible for breaking SU(16) to G_{SM} .

4D SM Weyl fermions [1, N.Yamatsu'17]

6D Bulk field	$\Psi^{(a)}_{{f 16}+}$	$\Psi^{(b)}_{f 16+}$	$\Psi^{(c)}_{{f 16}-}$	$\Psi_{f 16-}^{(d)}$
SU(16)	16	16	16	16
SO(5,1)	4_+	4_+	4_{-}	4_{-}
Orbifold BC	$\left(\begin{array}{c} - & - \\ - & - \end{array}\right)$	$\left(\begin{array}{c} + & + \\ - & - \end{array}\right)$	$\left(\begin{array}{c} + & - \\ - & + \end{array}\right)$	$\left(\begin{array}{c} - & + \\ - & + \end{array}\right)$

- We can identify the zero modes of 6D positive Weyl fermions $\Psi_{16+}^{(a)}$ (a = 1, 2, 3) with three generations of the SM fermions.
- 6D anomaly in the bulk is canceled because of vectorlike.
- 4D anomaly on a fixed point is not canceled by 6D bulk fermions.

4D gauge anomaly cancellation [1, N.Yamatsu'17]

4D Brane field	$\psi_{\overline{120}}$
SU(16)	$\overline{120}$
$SL(2,\mathbb{C})$	(1/2, 0)
Spacetime (y, v)	(0,0)

- We introduce a 4D Weyl brane fermion in $\overline{120}$ of SU(16).
- The brane fermion cancels 4D anomaly generated by 6D bulk fermions at the fixed point (y, v) = (0, 0).
- The 4D SU(16) $\overline{120}$ Weyl brane fermion is not chiral at the SU(16) vacuum because 120 of SO(10) is real.

Matter content in the special GUT [1, N.Yamatsu'17]

6D Bulk field	A_M	$\Psi_{16+}^{(a)}$	$\Psi^{(b)}_{f 16+}$	$\Psi^{(c)}_{f 16-}$	$\Psi_{f 16-}^{(d)}$
SU(16)	255	16	16	16	16
SO(5,1)	6	4_+	4_+	4_{-}	4_
Orbifold BC		— —) — —)	$\begin{pmatrix} + & + \\ - & - \end{pmatrix}$	$) \left(\begin{array}{c} + & - \\ - & + \end{array}\right)$	$\left(\begin{array}{c} - & + \\ - & + \end{array}\right)$
5D Brane field	Φ_{5440}	Φ_{255}	Φ_{16}		
SU(16)	5440	255	16	4D Brane field	$\psi_{\overline{120}}$
SO(4,1)	1	1	1	$\overline{SU(16)}$	$\overline{120}$
Orbifold BC	$\left(\begin{array}{c} + \\ + \end{array}\right)$	$\left(\begin{array}{c} + \\ + \end{array}\right)$	$\left(\begin{array}{c} + \\ + \end{array}\right)$	$SL(2,\mathbb{C})$ Spacetime (y,v)	$(1/2,0)\ (0,0)$
Spacetime	y = 0	y = 0	y = 0		

Summary

I proposed 6D SU(16) special GUT on $M^4 \times T^2/\mathbb{Z}_2$ by using a special embedding $SU(16) \supset SO(10)$.

Results

- Three generations of the SM fermions can be identified with the zero modes of 6D positive Weyl fermions $\Psi_{16+}^{(a)}$ (a = 1, 2, 3).
- 6D and 4D gauge anomalies on the bulk and fixed points are canceled by 6D bulk and 4D brane Weyl fermions.
- There are no 4D exotic chiral fermions.

Comments

- Special embeddings such as $SU(10) \supset SU(5)$, $SU(15) \supset SU(6)$, $SU\left(\frac{n(n-1)}{2}\right) \supset SU(n)$, $SU\left(\frac{n(n+1)}{2}\right) \supset SU(n)$, $(n \ge 8)$ seem useless to construct special GUTs because the SM fermions cannot be embedded into their lower dimensional representations.
- For $SO(32) \supset SU(16) \times U(1) \supset SO(10) \times U(1)$, an SO(32)vector representation **32** is decomposed into SO(10) spinor representations **16** and $\overline{\mathbf{16}}$.
- A 4D $SU(27) \supset E_6$ special GUT has 252 generations from the constraints of anomaly and absence of non-SM chiral fermions.

References

- [1] N. Yamatsu, "Special Grand Unification," Prog. Theor. Exp. Phys. 2017 (2017) in press, arXiv:1704.08827 [hep-ph].
- [2] R. Slansky, "Group Theory for Unified Model Building," *Phys. Rept.* 79 (1981) 1–128.
- [3] N. Yamatsu, "Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building," arXiv:1511.08771 [hep-ph].
- [4] H. Georgi and S. L. Glashow, "Unity of All Elementary Particle Forces," *Phys. Rev. Lett.* 32 (1974) 438–441.
- [5] K. Inoue, A. Kakuto, and Y. Nakano, "Unification of the Lepton-Quark World by the Gauge Group SU(6)," *Prog. Theor. Phys.* 58 (1977) 630.
- [6] H. Fritzsch and P. Minkowski, "Unified Interactions of Leptons and Hadrons," Ann. Phys.
 93 (1975) 193–266.
- [7] F. Gursey, P. Ramond, and P. Sikivie, "A Universal Gauge Theory Model Based on E₆," *Phys. Lett.* B60 (1976) 177.

- [8] K. Kojima, K. Takenaga, and T. Yamashita, "Grand Gauge-Higgs Unification," *Phys. Rev.* D84 (2011) 051701, arXiv:1103.1234 [hep-ph].
- [9] K. Kojima, K. Takenaga, and T. Yamashita, "Gauge Symmetry Breaking Patterns in an SU(5) Grand Gauge-Higgs Unification Model," *Phys. Rev.* D95 no. 1, (2017) 015021, arXiv:1608.05496 [hep-ph].
- [10] G. Burdman and Y. Nomura, "Unification of Higgs and Gauge Fields in Five-Dimensions," Nucl. Phys. B656 (2003) 3–22, arXiv:hep-ph/0210257 [hep-ph].
- [11] C. Lim and N. Maru, "Towards a Realistic Grand Gauge-Higgs Unification," *Phys.Lett.* B653 (2007) 320–324, arXiv:0706.1397 [hep-ph].
- [12] H. D. Kim and S. Raby, "Unification in 5-D SO(10)," JHEP 01 (2003) 056, arXiv:hep-ph/0212348 [hep-ph].
- [13] T. Fukuyama and N. Okada, "A Simple SO(10) GUT in Five Dimensions," *Phys. Rev.* D78 (2008) 015005, arXiv:0803.1758 [hep-ph].
- [14] Y. Kawamura and T. Miura, "Classification of Standard Model Particles in E₆ Orbifold Grand Unified Theories," Int. J. Mod. Phys. A28 (2013) 1350055, arXiv:1301.7469
 [hep-ph].

- [15] K. Kojima, K. Takenaga, and T. Yamashita, "The Standard Model Gauge Symmetry from Higher-Rank Unified Groups in Grand Gauge-Higgs Unification Models," arXiv:1704.04840 [hep-ph].
- [16] Y. Hosotani and N. Yamatsu, "Gauge-Higgs Grand Unification," *Prog. Theor. Exp. Phys.* 2015 (2015) 111B01, arXiv:1504.03817 [hep-ph].
- [17] Y. Hosotani and N. Yamatsu, "Gauge-Higgs Grand Unification," *PoS* PLANCK2015 (2015) 058, arXiv:1511.01674 [hep-ph].
- [18] N. Yamatsu, "Gauge Coupling Unification in Gauge-Higgs Grand Unification," Prog. Theor. Exp. Phys. 2016 (2016) 043B02, arXiv:1512.05559 [hep-ph].
- [19] A. Furui, Y. Hosotani, and N. Yamatsu, "Toward Realistic Gauge-Higgs Grand Unification," Prog. Theor. Exp. Phys. 2016 (2016) 093B01, arXiv:1606.07222 [hep-ph].
- [20] Y. Hosotani, "Gauge-Higgs EW and Grand Unification," Int. J. Mod. Phys. A31 no. 20n21, (2016) 1630031, arXiv:1606.08108 [hep-ph].
- [21] E. Dynkin, "Maximal Subgroups of the Classical Groups," Amer. Math. Soc. Transl. 6 (1957) 245.
- [22] E. Dynkin, "Semisimple Subalgebras of Semisimple Lie Algebras," Amer. Math. Soc. Transl.
 6 (1957) 111.

PASCOS 2017 @ IFT, Madrid, Spain

- [23] R. Cahn, *Semi-Simple Lie Algebras and Their Representations*. Benjamin-Cummings Publishing Company, 1985.
- [24] Y. Hosotani and N. Yamatsu, "Gauge-Higgs Seesaw Mechanism in Six-Dimensional Grand Unification," arXiv:1706.03503 [hep-ph].