Microscopic constraints for de Sitter uplifts in String Theory

Ander Retolaza

DESY, Hamburg

PASCOS 2017 IFT UAM/CSIC, Madrid, 20th June 2017

1707.xxxxx by Jakob Moritz, A.R. & Alexander Westphal

Constructing String Theory Vacua

Compactify (Type IIB) String Theory to 4d:	
Many scalars/moduli \Rightarrow stabilize them. Usual steps:	
• Complex structure + τ get masses	m _{CS}
Stähler/volume modulus ρ with mass ⇒ Anti de Sitter (or Minkowski) vacuum	$m_{CS} \gg m_{ ho} V_0 \leq 0$
• Uplift to de Sitter (SUSY) $\Delta V \Rightarrow$	$V_0 + \Delta V \ge 0$

< 🗆 🕨

Sac

Constructing String Theory Vacua

Compactify (Type IIB) String Theory to 4d:	
Many scalars/moduli \Rightarrow stabilize them. Usual steps:	
• Complex structure + τ get masses	m _{CS}
Similar Kähler/volume modulus ρ with mass \Rightarrow Anti de Sitter (or Minkowski) vacuum	$m_{CS} \gg m_{ ho} onumber V_0 \le 0$
• Uplift to de Sitter (SUSY) $\Delta V \Rightarrow$	$V_0 + \Delta V \ge 0$

To which extent can we decouple steps 2 & 3 ?

We cannot always do so, but the way out is rather simple.

KKLT vacua

[Kachru, Kallosh, Linde, Trivedi '03]

Consider that $h^{1,1} = 1$. Volume modulus ρ stabilized by gaugino condensate

- Vacuum is SUSY AdS with $V_0 \simeq -m_{
 ho}^2 M_P^2$
- To end up on de Sitter one needs $\Delta V \sim |V_0|$, $\Delta \rho$ not small

Do we know 4d EFT for ρ well enough when uplifting?

We need higher dimensional picture to answer this question.

A toy model example

Consider a 6d theory on $M_4 \times S^2$ [Freund, Rubin '80]

$$\mathcal{S}_6 = \frac{1}{2} \int \left(\ast \textit{R}_6 - \frac{1}{2}\textit{F}_2 \land \ast \textit{F}_2 \right)$$

• Stabilize S^2 radius by taking $\int_{S^2} F_2 \simeq N$. Then

$$L_0^2 = \frac{3N^2}{32}$$
 & $\frac{V_0}{M_P^4} = -\frac{256}{27\pi N^4}$ so $\mathcal{M}_4 = AdS_4$

Image: A matrix and a matrix

Sac

A toy model example

Consider a 6d theory on $M_4 \times S^2$ [Freund, Rubin '80]

$$\mathcal{S}_6 = rac{1}{2}\int \left(*\mathcal{R}_6 - rac{1}{2}\mathcal{F}_2 \wedge *\mathcal{F}_2
ight)$$

• Stabilize S^2 radius by taking $\int_{S^2} F_2 \simeq N$. Then

$$L_0^2 = \frac{3N^2}{32}$$
 & $\frac{V_0}{M_P^4} = -\frac{256}{27\pi N^4}$ so $\mathcal{M}_4 = AdS_4$

Now we add N₃ 3-branes of tension T₃.

- S^2 backreacts: it grows $L_0^2 \rightarrow L_0^2 \left(1 \frac{N_3 T_3}{4\pi}\right)^{-1}$
- This results in a 4d vacuum energy change

$$\frac{V_0}{M_P^4} \rightarrow \frac{V_0}{M_P^4} \left(1 - \frac{N_3 T_3}{4\pi}\right)^3 = \frac{V_0}{M_P^4} + \frac{N_3 T_3}{M_P^4} + \mathcal{O}\left(\left(\frac{N_3 T_3}{m_{KK}^2 M_P^2}\right)^2\right)$$

We can add energy, but the uplift flattens out leaving $\,\,V\leq0$

The String Theory case I: setup

A generalization of [Giddings, Kachru, Polchinski '01] vacua: Type IIB on

$$ds^{2} = e^{2A(y)} \tilde{g}_{\mu\nu} dx^{\mu} dx^{\nu} + \underbrace{e^{-2A(y)} \tilde{g}_{mn}^{6}}_{=g_{mn}^{6}} dy^{m} dy^{n} \quad ; \quad F_{5} = (1 + \star_{10}) d\alpha \wedge dx^{4}$$

• 10d trace reversed Einstein's eq.s & EoM of F₅

$$\begin{split} \tilde{R}_{4D} &= \tilde{\nabla}^2 (e^{4A} - \alpha) - e^{-6A} |\partial (e^{4A} - \alpha)|^2 - e^{2A} \left(\frac{|G_3^-|^2}{6 \text{Im}(\tau)} + \frac{\Delta^{loc}}{2\pi} \right) \\ \text{where} \quad \star_6 G_3^- &= -iG_3^- \quad \& \quad \Delta^{loc} \equiv \frac{1}{4} \left(T_m^m - T_\mu^\mu \right)^{\text{loc}} - T_3 \rho_3^{\text{loc}} \end{split}$$

The String Theory case I: setup

A generalization of [Giddings, Kachru, Polchinski '01] vacua: Type IIB on

$$ds^{2} = e^{2A(y)} \tilde{g}_{\mu\nu} dx^{\mu} dx^{\nu} + \underbrace{e^{-2A(y)} \tilde{g}_{mn}^{6}}_{=g_{mn}^{6}} dy^{m} dy^{n} \quad ; \quad F_{5} = (1 + \star_{10}) d\alpha \wedge dx^{4}$$

10d trace reversed Einstein's eq.s & EoM of F₅

$$\tilde{R}_{4D} = \tilde{\nabla}^2 (\boldsymbol{e}^{4A} - \alpha) - \boldsymbol{e}^{-6A} |\partial (\boldsymbol{e}^{4A} - \alpha)|^2 - \boldsymbol{e}^{2A} \left(\frac{|\boldsymbol{G}_3^-|^2}{6\mathsf{Im}(\tau)} + \frac{\Delta^{\textit{loc}}}{2\pi} \right)$$

where
$$\star_6 G_3^- = -iG_3^- \& \Delta^{loc} \equiv \frac{1}{4} \left(T_m^m - T_\mu^\mu \right)^{loc} - T_3 \rho_3^{loc}$$

• From here $\left(V = M_P^2 \tilde{R}_{4D} / 4; \ \mathcal{V} = \int \sqrt{g^6} e^{2A} d^6 y; \ \tilde{\mathcal{V}} = \int \sqrt{g^6} e^{6A} d^6 y \right)$

$$\frac{V}{M_{P}^{4}} = -\frac{1}{16\pi \mathcal{V}\tilde{\mathcal{V}}} \int d^{6}y \sqrt{g^{6}} \left[\left| \partial (e^{4A} - \alpha) \right|^{2} + e^{8A} \left(\frac{|G_{3}^{-}|^{2}}{6\text{Im}(\tau)} + \frac{\Delta^{\text{loc}}}{2\pi} \right) \right]$$

• We can use this expression when stabilizing all moduli, including *ρ*.

▲ 문 ► ▲ 문 ► ...

The String Theory case II: moduli stabilization

$$\frac{V}{M_P^4} = -\frac{1}{16\pi \mathcal{V}\tilde{\mathcal{V}}} \int d^6 y \sqrt{g^6} \left[\left| \partial (e^{4A} - \alpha) \right|^2 + e^{8A} \left(\frac{|G_3^-|^2}{6 \text{Im}(\tau)} + \frac{\Delta^{\text{loc}}}{2\pi} \right) \right]$$

• CS moduli & dilaton: via G_3^+ fluxes & with $(e^{4A} - \alpha) = 0$.

• Kähler: via $\langle \lambda \lambda \rangle$ from a stack of D7-branes: [Dymarsky, Martucci '10]

• Local:
$$e^{8A} \frac{\Delta^{loc}}{2\pi} = -3 \frac{|\lambda\lambda|^2 |\Omega|^2}{(4\pi)^4} |g^{m\bar{n}} \nabla_m \nabla_{\bar{n}} F(z)|^2 \le 0$$

• Bulk: $e^{8A} \frac{|G_3^-|^2}{6 \text{Im}(\tau)} = 4 \frac{|\lambda\lambda|^2 |\Omega|^2}{(4\pi)^4} |\nabla_p \nabla_q F(z)|^2 \ge 0$
[Baumann, Dymarsky, Kachru, Klebanov, McAllister '10]
 $\frac{V_{\lambda\lambda}}{M_P^4} = -\frac{|\lambda\lambda|^2}{(4\pi)^6 \mathcal{V}\tilde{\mathcal{V}}} \int d^6 y \sqrt{g^6} \left[|\Omega|^2 |g^{m\bar{n}} \nabla_m \nabla_{\bar{n}} F(z)|^2 \right] \le 0$

In agreement with the 4d EFT we have an AdS vacuum.

The String Theory case III: the uplift

$$\frac{V}{M_P^4} = -\frac{1}{16\pi \mathcal{V}\tilde{\mathcal{V}}} \int d^6 y \sqrt{g^6} \left[|\partial(e^{4A} - \alpha)|^2 + e^{8A} \left(\frac{|G_3^-|^2}{6\text{Im}(\tau)} + \frac{\Delta^{loc}}{2\pi} \right) \right]$$

- Add **D3-brane** (+ G_3^+ fluxes for tadpoles) on warped throat ($e_{IR}^{4A} \ll 1$).
- In 10d picture, we don't know details of D3 backreaction down the throat.
 (Don't worry!!! We assume there exists a stable solution :)

The String Theory case III: the uplift

$$\frac{V}{M_P^4} = -\frac{1}{16\pi \mathcal{V}\tilde{\mathcal{V}}} \int d^6 y \sqrt{g^6} \left[|\partial(e^{4A} - \alpha)|^2 + e^{8A} \left(\frac{|G_3^-|^2}{6\text{Im}(\tau)} + \frac{\Delta^{loc}}{2\pi} \right) \right]$$

• Add **D3-brane** (+ G_3^+ fluxes for tadpoles) on warped throat ($e_{IR}^{4A} \ll 1$).

- In 10d picture, we don't know details of D3 backreaction down the throat. (Don't worry!!! We assume there exists a stable solution :)
- We should find that $\Delta V_{\overline{D3}} \simeq e_{IR}^{4A}(2T_3) + ...$
- But Δ^{loc} is suppressed by $e_{lR}^{8A} \ll e_{lR}^{4A}$. This is not the origin of $\Delta V_{\overline{D3}}$!

The String Theory case III: the uplift

$$\frac{V}{M_P^4} = -\frac{1}{16\pi \mathcal{V}\tilde{\mathcal{V}}} \int d^6 y \sqrt{g^6} \left[|\partial(e^{4A} - \alpha)|^2 + e^{8A} \left(\frac{|G_3^-|^2}{6\text{Im}(\tau)} + \frac{\Delta^{loc}}{2\pi} \right) \right]$$

- Add **D3-brane** (+ G_3^+ fluxes for tadpoles) on warped throat ($e_{IR}^{4A} \ll 1$).
- In 10d picture, we don't know details of D3 backreaction down the throat.
 (Don't worry!!! We assume there exists a stable solution :)
- We should find that $\Delta V_{D3} \simeq e_{IR}^{4A}(2T_3) + ...$
- But Δ^{loc} is suppressed by $e_{lR}^{8A} \ll e_{lR}^{4A}$. This is not the origin of $\Delta V_{\overline{D3}}$!
- Approach: check how an IR perturbation $\delta \phi_{IR}$ affects bulk physics.
 - Using tools from [Gandhi, McAllister, Sjors '11] $\delta \phi_{UV} \sim e_{IR}^{4A} \, \delta \phi_{IR}$
 - In particular, for the Kähler modulus $\delta
 ho \sim rac{e_{IR}^{4A}T_3}{m^2M_2^2}$
 - Such that we recover $V_{\lambda\lambda}(\rho_0 + \delta\rho) = V_0 + \mathcal{O}(T_3 e^{4A}) + ...$
 - Recall from EFT $V_0 = -m_\rho^2 M_P^2$

For
$$V_0 + \Delta V_{\overline{D3}} \stackrel{!}{>} 0 \quad \Rightarrow \quad \delta \rho \sim 1$$
 Uplift flattens (V < 0)

It seems that we can uplift, but not uplift to de Sitter (in this setup)

The way out

$$\frac{V}{M_P^4} = -\frac{1}{16\pi \mathcal{V}\tilde{\mathcal{V}}} \int d^6 y \sqrt{g^6} \left[|\partial(e^{4A} - \alpha)|^2 + e^{8A} \left(\frac{|G_3^-|^2}{6\text{Im}(\tau)} + \frac{\Delta^{loc}}{2\pi} \right) \right]$$

- $\bullet\,$ From the EFT perspective, for being safe we need $\,|V_0| \lesssim \Delta V \ll m_i^2 M_P^2$
- Decouple the AdS scale L_{AdS} from $m_{
 ho}$, such that $m_{
 ho}L_{AdS}\gg$ 1

The way out

$$\frac{V}{M_P^4} = -\frac{1}{16\pi \mathcal{V}\tilde{\mathcal{V}}} \int d^6 y \sqrt{g^6} \left[|\partial (e^{4A} - \alpha)|^2 + e^{8A} \left(\frac{|G_3^-|^2}{6\text{Im}(\tau)} + \frac{\Delta^{loc}}{2\pi} \right) \right]$$

- From the EFT perspective, for being safe we need $|V_0| \lesssim \Delta V \ll m_i^2 M_P^2$
- Decouple the AdS scale L_{AdS} from m_{ρ} , such that $m_{\rho}L_{AdS} \gg 1$
- From 10d, we need Δ^{loc} < 0. Gaugino condensateS (There was already a 4d proposal by [Kallosh, Linde '04])
- After Kähler moduli stabization one may find $V_0 = 0$ due to

$$\frac{|G_{3}^{-}|^{2}}{6\text{Im}(\tau)} + \frac{\Delta^{loc}}{2\pi} \sim 4 \left| \sum_{a} \langle \lambda \lambda \rangle_{a} \nabla_{\rho} \nabla_{q} F_{a}(z) \right|^{2} - \sum_{a} 3 \left| \langle \lambda \lambda \rangle_{a} g^{m\bar{n}} \nabla_{m} \nabla_{\bar{n}} F_{a}(z) \right|^{2}$$

The way out

$$\frac{V}{M_P^4} = -\frac{1}{16\pi \mathcal{V}\tilde{\mathcal{V}}} \int d^6 y \sqrt{g^6} \left[|\partial(e^{4A} - \alpha)|^2 + e^{8A} \left(\frac{|G_3^-|^2}{6\text{Im}(\tau)} + \frac{\Delta^{loc}}{2\pi} \right) \right]$$

• From the EFT perspective, for being safe we need $|V_0| \lesssim \Delta V \ll m_i^2 M_P^2$

- Decouple the AdS scale L_{AdS} from $m_{
 ho}$, such that $m_{
 ho}L_{AdS}\gg$ 1
- From 10d, we need Δ^{loc} < 0. Gaugino condensateS (There was already a 4d proposal by [Kallosh, Linde '04])
- After Kähler moduli stabization one may find $V_0 = 0$ due to

$$\frac{|G_{3}^{-}|^{2}}{6\text{Im}(\tau)} + \frac{\Delta^{loc}}{2\pi} \sim 4 \left| \sum_{a} \langle \lambda \lambda \rangle_{a} \nabla_{p} \nabla_{q} F_{a}(z) \right|^{2} - \sum_{a} 3 \left| \langle \lambda \lambda \rangle_{a} g^{m\bar{n}} \nabla_{m} \nabla_{\bar{n}} F_{a}(z) \right|^{2}$$

• Inclusion of an $\overline{D3}$ -brane: $\Delta V_{\overline{D3}} = e^{4A}(2T_3) + ... \Rightarrow V_0 + \Delta V_{\overline{D3}} > 0 !!!$

• 2^{nd} term contributes more on the integral when including the $\overline{D3}$ -brane

Thank you!

Ander Retolaza Microscopic constraints for de Sitter uplifts in String Theory > 4 🗇 > 4 물 > 4 물 > 물 - - 오 이 이