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Introduction

Fine tuning is required if Λ >> EW scale

Hierarchy problem
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Possible solutions

• New physics regulating the quadratic divergence around TeV

supersymmetry, extra dimension, …

• Cosmological relaxation

• Anthropic principle, …



Cosmological relaxation
Dynamical solution for hierarchy problem

Graham, Kaplan, Rajendran 2015 
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Two primary possibilities:

After inflation?

• Treheat < TEW

‣ EW symmetry is never restored

‣ Barrier potential persists

‣ Realization of correct EW scale is maintained

• Treheat > TEW : often required by e.g. baryogenesis

‣ EW symmetry is restored

‣ Barrier potential disappears and relaxion starts rolling again

‣ If relaxion overshoots the EW scale, cosmological relaxation fails …



Relaxion excursion after reheating

T = Treheat

To stop relaxion within the EW scale,                                   is 
required. 
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Problem: Hubble friction is not effective

→ This leads to relaxion scale >> Planck scale

On the other hand, for scanning of the EW scale to take place

→ slope should be extremely flat
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Relaxion excursion after reheating



Alternative possibility?

L � 1
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U(1) gauge field Xμ anomalously coupled to relaxion

We assume Xμ is  
‣ in hidden sector (i.e. dark radiation) 
‣ out of thermal equilibrium

The possibility of Xμ = hyper U(1) will be examined later.



Gauge field production
Field equation of Xμ:

One of helicity states is tachyonic at

→ Exponential production of gauge fields 
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Relaxion motion
Backreaction: frictional force on the relaxion motion

Terminal velocity is achieved when friction saturates

ξ is constant of O(10-100) with logarithmic dependences on e.g. model 
parameters and/or initial conditions etc.
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Numerical calculation
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When does relaxion stop?
Barrier potential develops at T=TEW

Relaxion stops immediately at T=TEW

�̇ / T 2

• If d�/dt|T=TEW < ⇤2
b

Relaxion continues rolling but soon stops as velocity decreases

• If d�/dt|T=TEW > ⇤2
b

In most of parameter region, the former is the actual case
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Conventional relaxion is subject of a 
variety of constraints

Choi & Im (2016), Flacke et al. (2016)

In our setup, however, relaxion can dominantly decay into Xμ

• Fifth force & Casimir effect 
• CMB, BBN, EBL 
• SN1987A, globular clusters 
• K- & B-meson decay, beam dump (CHARM) 
• LEP, LHC

→ Many of cosmological constraints (+beam dump) can be evaded
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Additional constraints
Gauge field overproduction from relaxion

• During excursion 

• Decay of coherent oscillation in the barrier potential
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cf. constraint from Δmh2 turns out to be weaker

 Produced Xμ should not dominate the Universe

Xμ should not produce ΔNeff>0.3 Planck 2015
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Parameter constraints
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Hyper U(1) can be Xμ?

• Hyper U(1) is in thermal equilibrium with charged particles in SM

‣ Due to landau damping, gauge field production is less efficient

‣ Smaller 1/F is required

• Severe constraints from ALP search

‣ 1/F is no more than 10-10 GeV-1 for mφ of our interest

Precluded by the following requirements

* Note that we don’t exclude the possibility of relaxion domination



Issue of perturbations

• Gauge field production peaks at particular scales 
→ Inhomogeneity in relaxion may develop through backreaction?

• This is unlikely at least at observably large scales (CMB, LSS) 
‣ Terminal behaviour is attractor solution.  
‣ Negative feedback works onto small deviations in velocity from 

terminal one.

• No additional large-scale perturbations



Summary
The cosmological relaxation is a novel solution for the hierarchy problem. 
However, the conventional setup is difficult to be compatible with Treheat higher 
than the EW scale. Relaxion can easily overshoot the EW scale.

Many of cosmological constraints in the conventional relaxion model can be 
circumvented in our setup. 

We extends the relaxion mechanism by incorporating anomalous relaxion 
coupling to a hidden U(1) gauge field. Relaxion motion causes tachyonic 
instability in the gauge field. As backreaction, frictional force effectively 
suppresses the relaxion excursion.
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Xμ in thermal equilibrium
Thermal correction to dispersion relaxion (1-loop) 

Tachyonic frequency
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Tachyonic growth is suppressed by (k2/T2)  compared to vacuum
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Xμ in thermal equilibrium
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FIG. 3: (Left) The evolution of field velocity when X couples to thermalized charged particles. The numerical analysis starts
from T⇤ = 520TeV. Around T ⇠ 100TeV, the gauge fields are explosively produced so that the field velocity radiply changes.
Red dotted line corresponds to �̇ = ⇤4

b/5fH while green dotted line corresponds to �̇
term

= ⇠FH(mD/H)2/3. (Right) Quantities
that are relevant for the evolutoin of scalar field. �̈ is initially positive, driven by @V/@�. Around T ⇠ 100TeV, gauge fields are
radiply produced, and �̈ changes its sign. For T < 100TeV, the scalar field continue to dissipate its energy into gauge fields.

where  ⌘ Td/T . The time when the kinetic energy
becomes similar to the height of the zero-temperature
barrier potential is estimated as
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Finally, the terminal velocity is given as

�̇
term

= ⇠FH(mD/H)2/3. (28)

As we already mentioned in the previous paragraph, this
results is valid only when mD > H. If mD < H, then the
terminal velocity should be replaced to (15). Compared
to the previous expression of the terminal velocity (15),
it is suppressed by additional factor, (mD/H)2/3.

Determining the terminal velocity of relaxion, we com-
pute the field excursion of relaxion from TR to Ts,
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We have discussed thatX production could provide ad-
ditional frictional force for the relaxion to preseve dynam-
ically chosen electroweak scale. This mechanism of gauge
field production can hardly be realized under the work-
ing assumption if we identify X as a hypercharge gauge
boson. The above discussion can be directly applied to
the hypercharge gauge boson case by setting  = 1 and
gX = g0. As is already shown in [14, 15], the relaxion
window for m� & O(0.1MeV) is strongly constrained by
rare meson decay, electric dipole moment, and astrophys-
ical/cosmological observations. Only tiny window for the

relaxion is available. Instead, we could focus on relatively
light relaxion mass, m�  O(0.1MeV), and require

F & 1010 GeV.

For this size of coupling strength, the production mech-
anism works only when

m�  10�28 GeV. (31)

This is the limit where even the Hubble friction can sta-
blize the relaxion after the reheating as discussed in the
introduction.

III. POSSIBLE ISSUES

We note that the allowed range of f and ⇤b is con-
strained by astrophysical and cosmological observations
in addition to low energy precision measurements such as
rare meson decay, and electron’s electric dipole moment
[14, 15]. In this work, we assume that the relaxion cou-
ples to the Standard model matter contents only through
the mixing between Higgs boson,

Vb = µ2

b |h|2 cos(�/f) (32)

with mixing angle given by
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For the relaxion mass m� = ⇤2

b/f � O(100MeV), low
energy precision measurements such as rare meson de-
cay [14, 15], and electric dipole moment [14] already give
severe constraints. For the mass range O(0.1MeV) 
m�  O(100MeV), the astrophysical observations, such
as extragalactic background light or cosmic microwave

�̇ = ⇠FH(mD/H)2/3 � FH
Terminal behaviour is available but with velocity much larger than vacuum

→ Larger relaxion excursion & production of Xμ
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BXμ~1
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Dependence of terminal 
velocity 
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