Effective field theory of inflation in Lifshitz regime of gravity

Yuko Urakawa (Nagoya university)

w/S. Arai(Nagoya university), S. Sibiryakov(CERN, EPFL)

Lifshitz regime of gravity

Non-reormalizability of GR

$$M_{pl}^2 \int d^4x \sqrt{-g} R \longrightarrow M_{pl}^2 \int d^4x [(\partial h)^2 + h(\partial h)^2 \cdots]$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad \text{irrelevant op.}$$

Isotropic scaling $t \rightarrow b^{-1}t, x^i \rightarrow b^{-1}x^i \longrightarrow h \rightarrow bh$

Power counting renormalizabilityHorava(09)
$$S \sim \int dt d^3 x (\dot{h}^2 - h(-\Delta)^z h + \cdots)$$
Lifshitz scaling $t \rightarrow b^{-z}t$, $x^i \rightarrow b^{-1} x^i \longrightarrow h \rightarrow b^{(3-z)/2} h$ e.g. $z=3$, scaling dim. of $h = 0$ $h^p \times h(-\Delta)^3 h$ relevant

Effective field theory

Write all the possible terms compatible w/Lifshitz scaling

Gravity sector

$$\mathcal{L}_{HG} = N\sqrt{h} \left\{ \frac{M_*^2}{2} \left[\frac{1}{\alpha_1} K_{ij} K^{ij} - \frac{1}{\alpha_2} K^2 + \frac{1}{\alpha_3} R + a_i a^i \right] - \frac{1}{2} \left[\frac{R_{ij} R^{ij}}{\beta_1} + \frac{R^2}{\beta_2} - \frac{R \nabla_i a^i}{\beta_3} + \frac{a_i \Delta a^i}{\beta_4} \right] - \frac{1}{2M_*^2} \left[\frac{(\nabla_i R_{jk})^2}{\gamma_1} + \frac{(\nabla_i R)^2}{\gamma_2} + \frac{\Delta R \nabla_i a^i}{\gamma_3} - \frac{a_i \Delta^2 a^i}{\gamma_4} \right] + \dots$$

 $\mathcal{M}*$:Lorentz violating scale

$$\alpha \equiv \frac{M_*^2}{M_{pl}^2} \ll 1$$

Looks messy?

Effective field theory

Write all the possible terms compatible w/Lifshitz scaling

Gravity sector

$$\mathcal{L}_{HG} = N\sqrt{h} \left\{ \frac{M_*^2}{2} \left[\frac{1}{\alpha_1} K_{ij} K^{ij} - \frac{1}{\alpha_2} K^2 + \frac{1}{\alpha_3} R + a_i a^i \right] \\
- \frac{1}{2} \left[\frac{R_{ij} R^{ij}}{\beta_1} + \frac{R^2}{\beta_2} - \frac{R \nabla_i a^i}{\beta_3} + \frac{a_i \Delta a^i}{\beta_4} \right] \\
- \frac{1}{2M_*^2} \left[\frac{(\nabla_i R_{jk})^2}{\gamma_1} + \frac{(\nabla_i R)^2}{\gamma_2} + \frac{\Delta R \nabla_i a^i}{\gamma_3} - \frac{a_i \Delta^2 a^i}{\gamma_4} \right] \right] + \dots$$

M *: Lorentz Violating scale

 $\alpha \equiv \frac{M_*^2}{M_{pl}^2} \ll 1$

Looks messy?

Yet, soft limit in Lifshitz regime shows universal behaviour.

 $M^* \ll \omega/a \ll H_{inf}$

Lifshitz scalar w/o metric perturbations

$$\mathcal{L}_{\varphi} \sim \frac{a^3}{2} \left(\dot{\varphi}^2 - \frac{\omega^2}{a^2} \varphi^2 \right)$$

Mukohyama(09),...

dispersion relation
$$\omega^2 \sim p^2 \left(\frac{p}{aM_*}\right)^{2(z-1)}$$
 z=1,2, ...

at
$$\omega_p/a_p \sim H_p$$
 $P_{\rm LS}(p) \sim \frac{1}{a_p^2} \frac{1}{2\omega_p} \sim \frac{M_*^{3(z-1)/z}}{p^3} H_p^{\frac{3}{z}-1}$

<u>GW spectrum</u>

$$P_{\rm GW}(p) \sim \frac{1}{p^3} \left(\frac{H_p}{M_{pl}}\right)^{\frac{3}{z}-1} \qquad n_t \simeq -\frac{3-z}{z} \varepsilon_{1,p} \qquad \text{no-tilt for } z=3$$

Including gravity

4D Diff. \longrightarrow Foliation preserving Diff $t \rightarrow t'(t)$ $\begin{cases}
- Khronon (Scalar graviton): DOF for time foliation - Inflaton
\end{cases}$

Spatial metric $h_{ij} = a^2 e^{2\mathcal{R}} \delta_{ij}$ \mathcal{R} :KhrononDilatation sym. $\boldsymbol{x} \to e^s \boldsymbol{x}$ $\mathcal{R} - s$ Naive guessTwo massless fields ($\boldsymbol{\phi}, \mathcal{R}$) ?

- Absence of conserved variable at large scales?
- Model dependent prediction?

Projectable version ($z \neq 1$)

$$N = N(t)$$

Khronon \mathcal{R} and Inflaton $\boldsymbol{\phi}$ starts to be coupled,where gravity becomes important.Arai, Sibiryakov, Y.U.

No robust predictions

$$N = N(t, x')$$

Arai, Sibiryakov, Y.U. EoM for \mathcal{R} becomes non-local, since N is non-local.

Taking de Sitter limit

$$\mathcal{L}_{\mathcal{R}} \sim M_{pl}^2 a^3 \left[\frac{\alpha (\omega/aH)^2}{1 + \alpha^2 (\omega/aH)^2} \dot{\mathcal{R}}^2 - \frac{\omega^2}{a^2} \left(C + (\omega/aH)^2 \right) \mathcal{R}^2 \right]$$

dispersion relation $\omega^2 \sim p^2 \left(\frac{p}{aM_*} \right)^{2(z-1)}$

- Lifshitz scaling regime, i.e., H > M* C=O(1)

For $\omega/a < H/a^{1/2}$, Khronon is gapped by $m_K \sim H/a^{1/2}$

Non-projectable version 2

Non-projectable version 2

Primordial power spectrum

Spectral index

$$n_s - 1 = -\frac{3-z}{z}\varepsilon_1 - \varepsilon_2 + \mathcal{O}(\varepsilon^2)$$

Tensor to scalar ratio

$$r = 16\varepsilon_{\mathbb{C}} \left(\frac{\varkappa_{z}}{\varkappa_{\gamma,z}}\right)^{\frac{3}{2z} + \frac{\varepsilon_{-}}{2(z - \varepsilon_{\mathbb{C}})} \left(\frac{3}{z} - 1\right)}$$

$$\omega_{\phi}^{2} \sim \kappa_{z} p^{2} \left(\frac{p}{aM_{*}}\right)^{2(z-1)}$$
$$\omega_{\gamma}^{2} \sim \kappa_{\gamma,z} p^{2} \left(\frac{p}{aM_{*}}\right)^{2(z-1)}$$

Consistency relation

$$n_{t} = -\frac{3-z}{z-\varepsilon} \frac{r}{16} \left(\frac{\varkappa_{\gamma,z}}{\varkappa_{z}}\right)^{\frac{3}{2z} + \frac{\varepsilon}{2(z-\varepsilon)} \left(\frac{3}{z} - 1\right)}$$
Creminelli et al.(14)

N.B. ³4D Diff $n_t = -\frac{r}{8c_s}$ for $c_s < 1$, $-n_t > r/8$ Violation of consistency relation $\rightarrow c_s > 1$ or 4D Diff.

Arai, Sibiryakov, Y.U.

Anti-friction of Khronon

For $H > M_*$, $\omega/a < m_K$

Arai, Sibiryakov, Y.U.

$$\mathcal{L}_{\mathcal{R}} \sim M_*^2 a^3 \left(\frac{\omega}{aH}\right)^2 \left[\dot{\mathcal{R}}^2 - m_K^2 \mathcal{R}^2\right] \qquad \omega^2 \sim p^2 \left(\frac{p}{aM_*}\right)^{2(z-1)}$$

- Khronon \mathcal{P} , canonically normalised in UV Grows due to anti-friction as $\mathcal{R} \propto a^{\frac{2z-3}{2}} e^{-im_K t}$
- Canonical field in IR is $\mathcal{R}_c \sim M_* \frac{\omega}{aH} \mathcal{R}$ No exponential growth

Changing foliation removes the anti-friction.

Summary

- Examined inflation in Lifshitz regime of gravity with H > M*
- In non-projectable ver. ($H >> M_*$), Khronon gets gapped with $m_K >> H$ before the Hubble crossing.

 $P_{\zeta}(p)$, $P_{GW}(p)$ are robustly determined by the scaling.

- In projectable ver. and non-projectable ver. (H < M*), need to solve mixed system w/ two light scalar fields.
- Violation of consistency relation indicates either super-luminal propagation or violation of 4D Diff.