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Lifshitz regime of gravity
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Effective field theory

Write all the possible terms compatible w/Lifshitz scaling

M* :Lorentz violating scale ↵ ⌘ M2
⇤

M2
pl

⌧ 1

we restrict only to the terms that contribute to the action at quadratic order in the per-

turbations around spatially flat backgrounds and that preserve the parity invariance. The

complete list of these terms is given in [36] and leads to the following Lagrangian,

LHG = N
√
h

{
M2

∗
2

[
1

α1
KijK

ij − 1

α2
K2 +

1

α3
R+ aia

i

]

− 1

2

[
RijRij

β1
+

R2

β2
− R∇iai

β3
+

ai∆ai

β4

]

− 1

2M2
∗

[
(∇iRjk)2

γ1
+

(∇iR)2

γ2
+

∆R∇iai

γ3
− ai∆2ai

γ4

]}
, (2.1)

where we used the ADM line element, given by

ds2 = (N2 −NiN
i)dt2 − 2Nidtdx

i − hijdx
idxj . (2.2)

Here, Kij , Rij , and ∇i denote the extrinsic curvature, 3-dimensional Ricci tensor, and the

covariant derivative with respect to hij , respectively and we defined ai as

ai ≡
∂iN

N
. (2.3)

Note that we included the integration measure in the definition of the Lagrangian density.

The terms in the first line of Eq. (2.1) describe the low energy part of the action, and

the parameters entering it are constrained by the present-day observations1. The relation

between these parameters and the parameters α,λ, ξ introduced in [37] is

M2
∗ = M2

Pα , α1 = α , α2 = α/λ , α3 = α/ξ , (2.4)

where MP is the Planck mass. For the anisotropic scaling to take place in the quantum

gravity regime, we assume

0 < α1 ≪ 1 . (2.5)

In what follows, we will write

α1 − α2 = 2α1ᾱ (2.6)

We also discuss the projectable version, where the lapse function is given by a time

dependent function as

N = N(t) . (2.7)

The action for the projectable version can be obtained simply by dropping the perturbation

of the lapse function in the action for the non-projectable version. Then, the parameters

β3, β4, γ3, and γ4 are irrelevant in the projectable version.

1We neglect the RG running of these parameters.
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Yet, soft limit in Lifshitz regime shows universal behaviour. 
M* << ω/a << Hinf



Lifshitz scalar w/o metric perturbations
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Including gravity

4D Diff.               Foliation preserving Diff  t → t’(t)       

Spatial metric 

- Khronon (Scalar graviton): DOF for time foliation 
- Inflaton 

3. Decoupling and non-decoupling of Khronon

In this section, we consider the scalar linear perturbation, including the metric perturba-

tion. We express the spatial ADM metric as

hij = a2e2Rδij . (3.1)

In general relativity, the metric perturbation R and the fluctuation of the inflaton ϕ are not

independent. By contrast, in HL gravity, R serves an additional scalar degree of freedom,

Khronon, as a consequence of the lack of 4D Diff invariance. In this section, we discuss the

evolution of Khronon in both the projectable and non-projectable versions of HL gravity.

We will find that Khronon behaves rather differently in these two cases.

3.1 Projectable HL gravity

First, we consider the projectable version of HL gravity. A review on the projectable

version can be found, e.g., in Ref. [39]. In the projectable version, the lapse function is

homogeneous. Then, in contrast to the non-projectable version, where the fluctuation of

the lapse function yields a non-local contribution in the action (see Sec. 3.2), the action in

the projectable version is given by a local form as

S =

∫
dη

∫
d3p [LR(η,p) + Lϕ(η, p) + LRϕ(η, p)] , (3.2)

with

LR(η, p) = M2
∗
1 + ᾱ

α1ᾱ
a2
[
R′

pR′
−p − ω2

R(η, p)RpR−p
]
, (3.3)

Lϕ(η, p) =
a2

2

[
ϕ′

pϕ
′
−p − ω2

ϕ(η, p)ϕpϕ−p
]
, (3.4)

LRϕ(η, p) =
1− 2ᾱ

ᾱ
a2φ′ϕpR′

−p . (3.5)

The frequencies ω2
R and ω2

ϕ are given by

ω2
R(η, p)

H2
=

α1ᾱ

1 + ᾱ

(
p

H

)2
[
− 1

α3
+

(
3

β1
+

8

β2

)(
p

aM∗

)2

+

(
3

γ1
+

8

γ2

)(
p

aM∗

)4
]
, (3.6)

ω2
ϕ(η, p)

H2
=

(
p

H

)2
[
κ1 + κ2

(
p

aM∗

)2

+ κ3

(
p

aM∗

)4
]
− 1 + ᾱ

ᾱ
ε1 + 3ηV . (3.7)

In the absence of the mixing term, since Khronon R is massless, it is conserved in the large

scale limit.

Setting the transition scale and the order of the effective frequency in the UV limit at

p/a ≃ M∗ and O(pz/(aM∗)z−1), respectively, require

α1,2,3 ≃ β1,2 ≃ γ1,2 ≪ 1 , (3.8)

and

ᾱ ≃ O(1) , (3.9)
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Figure 1: This figure summarises the time evolution of the fluctuations. The central axis denotes
the physical frequency.

which can be solved as

R ∝ (−η)−
2z−3

2 +imK,z/H ∝ a
2z−3

2 (η) e−i
∫
dηa(η)mK,z , (3.31)

where we only kept the positive frequency mode. Likewise for a 4D Diff invariant theory,

the fact that the action remains invariant under the dilatation x → esx with a constant

parameter s, which shifts R as R − s at the linear order of perturbation, implies that

all Rs in the quadratic action are multiplied by the time or spatial derivative operator,

i.e., the curvature perturbation R is massless. However, in the non-projectable version

of HL gravity, since the kinetic term with R′
pR′

−p is also multiplied by X, Khronon is

gapped by the mass mK, z. Since the mass mK, z is much larger than the Hubble parameter

in the anisotropic scaling regime, Khronon rapidly oscillates with the growing frequency

ωeff (η) = a(η)mK, z, while satisfying the WKB condition:

ω′
eff

ω2
eff

=
H

mK, z
≪ 1 . (3.32)

Another distinctive aspect due to the presence of the multiplicative factor X in the

coefficient of R′
pR′

−p is converting the friction into the anti-friction by introducing −2zHR′
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Projectable version (z ≠1)

Khronon � and Inflaton φ starts to be coupled, 
 where gravity becomes important.

ω/a

H
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N = N(t)

~ WKB solution

No robust predictions

Arai, Sibiryakov, Y.U.



Non-projectable version

Taking de Sitter limit

N = N(t, xi)

EoM for � becomes non-local, since N is non-local.

dispersion relation
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Non-projectable version 2
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Non-projectable version 2

ω/a

H

 ( �, φ) Decoupled ~ WKB solution

mK ~ H/α1/2 

Khronon decoupled from inflaton sector

renormalizability 

large scale limit, because of the slow-roll correction which is proportional to ε1. This may

obscure the decoupling between Khronon and the fluctuation of the inflaton.

Nevertheless, we can still find a diagonal basis in the large scale limit in a generic

inflationary spacetime. In Ref. [20], it was shown that, in Einstein-Aether theory or the

IR limit of the non-projectable version of HL gravity, another gauge invariant variable

ζ ≡ R− H

φ̇
ϕ (3.35)

are decoupled from the other degree of freedom in the large scale limit. In Einstein-Aether

theory, the aether field can be understood as Stückelberg field which restores Lorentz

invariance [42]. In the covariant description, R is the curvature perturbation on the slicing

where the aether field becomes homogeneous and ζ is the one on the slicing where the

inflaton becomes homogeneous, which may be identified with the curvature perturbation

in the uniform density slicing after the reheating. In the anisotropic scaling regime, it is

not clear if we can covariantize the system without introducing an unhealthy degree of

freedom such as a ghost.

As seen in the Lagrangian given in Appendix A, ζ is decoupled from ϕ in the large scale

limit. Since ζ is a massless field, it should be conserved in this limit. Meanwhile, when we

express the Lagrangian in terms of ζ and ϕ, the kinetic term of ϕ, which is proportional to

ϕ′2, is multiplied by X like Khronon R in the de Sitter limit. Notice that both the kinetic

terms of ϕ and the mixing terms are multiplied by the terms of O(X), ϕ is not decoupled

from ζ, while ζ is decoupled from ϕ. In fact, keeping the decoupling of ζ, we can rotate

ϕ to take a diagonal basis. Then, the degree of freedom which is orthogonal to ζ acquires

the mass mK, z and grows exponentially due to the anti-friction. Therefore, this degree

of freedom should correspond to Khronon, whose behaviour in the decoupling limit was

studied in the de Sitter limit in Sec. 3.2.2.

In the anisotropic scaling regime, since Khronon acquires the mass mK which is much

larger than the Hubble scale at the Hubble crossing and is decoupled from the adiabatic

perturbation ζ, the power spectrum of ζ is determined only by the inflaton as

Pζ(p) ≃
1

ε1,pM2
P

PLS(p) , (3.36)

where PLS(p) denotes the power spectrum of the Lifshitz scalar at the Hubble crossing

time. Here, the presence of the factor ε1M2
P can be understood from the fact that the

kinetic term of ζ is proportional to

∫
dη d3xM2

P ε1a
2ζ ′2

for X < ε1/α1. Inserting Eq. (2.23) into the above expression, we obtain

Pζ(p) ≃
1

ε1,p

(
Hp

MP

) 3
z−1

, (3.37)
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Primordial power spectrum

Spectral index

Tensor to scalar ratio
!2
� ⇠ z p

2
⇣ p

aM⇤

⌘2(z�1)

!2
� ⇠ �,z p

2
⇣ p

aM⇤

⌘2(z�1)

we can set the sound speed cT to the light speed c. Meanwhile, performing the conformal

transformation, we can set M2
P to the value in general relativity. The equivalence between

the Einstein frame and the Jordan frame for the gravitational waves was explicitly con-

firmed in Ref. [38]. The price to pay is that these transformations also alter another sector.

For instance, if the sound speed of the inflaton cs is 1 in the original frame, after the above

disformal transformation which sets cT to 1, the sound speed cs is changed into cs = c−1
T .

After inflation, the non-minimal coupling introduced by the inflaton should disappear.

Therefore, it is reasonable to calculate the primordial spectra in the Einstein frame for

the gravitational waves. Then, the spectrum for the gravitational waves is given by the

standard expression and as is widely known, we obtain the so-called consistency relation

nt = − r

8cs
, (4.4)

which relates the spectral index for the gravitational waves, nt, and the tensor to scalar ratio

r. (The sub leading contribution to the consistency relation in the slow-roll approximation

can be found, e.g., in Ref. [43].) This is rather robust prediction in a 4D Diff invariant

theory.

4.2 Violation of consistency relation in LV theories

Next, we discuss the primordial spectra generated during the anisotropic scaling regime. In

this regime, the sound speed of the graviton depends on the wavenumber p. In such a case,

we cannot set the sound speed to c by the disformal transformation which globally changes

the time shift. Then, the deformed dispersion relation physically changes the spectrum of

the gravitational waves.

Using Eqs. (2.37) and (3.37), we obtain the tensor to scalar ratio as

r ≡ Pγ

Pζ
= 16ε1

(
κz

κγ,z

) 3
2z
(
Hp,γ

Hp

) 3
z−1

. (4.5)

For κz ̸= κγ,z, the Hubble crossing time for the adiabatic perturbation does not necessarily

coincide with the one for the gravitational waves and they are related as

Hp,γ

Hp
=

(
κz

κγ, z

) ε1
2(z−ε1)

. (4.6)

Inserting this expression into Eq. (4.7), we obtain

r = 16ε1

(
κz

κγ,z

) 3
2z+

ε1
2(z−ε1)

( 3
z−1)

. (4.7)

Exceptionally, for κz = κγ,z, the Hubble crossing times for the adiabatic mode and the

gravitational waves coincide and the tensor to scalar ratio is given by the standard expres-

sion irrespective of the value of z. Using Eqs. (3.40) and (4.7), we obtain

r ≃ 16

3

z

z + 1

(
κz
κγ, z

) 3
2z

(−ns + 1 + 2ηV ) , (4.8)
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Consistency relation

at the leading order in the slow-roll approximation. In particular, for κz = κγ,z, the border

between the concave and convex potentials, where ηV = 0, in the ns−r plane inclines more

steeply in the anisotropic scaling regime.

Using Eqs. (2.38) and (4.7), we obtain the modified consistency relation for the pri-

mordial perturbations in the anisotropic scaling regime as

nt = − 3− z

z − ε1

r

16

(
κγ,z

κz

) 3
2z+

ε1
2(z−ε1)

( 3
z−1)

, (4.9)

where nt and r are still related linearly but the coefficient depends on z, κz, and κγ,z. In

a 4D Diff invariant theory, when there is no superluminal propagation, i.e., cs ≤ 1, the

tensor spectral index is bounded as

− nt ≥
r

8
. (4.10)

Obviously, this lower bound on −nt can be violated for the primordial perturbations gen-

erated during the anisotropic regime.

Recently, the detections of the gravitational waves were reported by the LIGO/VIRGO

collaboration [44, 45, 46, 47]. Through the propagation of the gravitational waves, we can

constrain the dispersion relation of the gravitational waves, from which we can investigate

a possible Lorentz violation in the gravity sector. If the primordial gravitational waves are

detected, exploring a deviation from the standard consistency relation may provide us a

way to detect the Lorentz violation in the gravity sector in inflationary era.

5. Concluding remarks

In HL gravity, it is known that there appears an additional scalar degree of freedom in

the gravity sector, Khronon, which describes the degree of freedom for the time foliation.

Therefore, in a single field model of inflation, there exist two scalar degrees of freedom:

the inflaton and Khronon. These two fields are coupled gravitationally even in the absence

of their direct interaction. In the small scale limit, as usual, the gravitational interaction

is suppressed and we simply have two decoupled Lifshitz scalar fields. Naively, one may

expect that in the large scale limit, the gravitational interaction becomes important and

these two fields start to be coupled. This is actually what happens in the projectable version

of HL gravity and the non-projectable one in the isotropic scaling regime for ε/α <∼ O(1).

The inflaton and Khronon stay nearly gapless modes which are bi-linearly coupled. Then,

the adiabatic curvature perturbation ζ can evolve also at large scales.

On the other hand, the situation is crucially different in the non-projectable version in

the anisotropic scaling regime. Much before the Hubble crossing time, Khronon acquires

the mass mK which is much larger than the Hubble scale and it gets decoupled from

the adiabatic mode ζ. Therefore, Khronon does not leave any impact on the the power

spectrum of ζ, evaluated at the Hubble crossing time. As one may naively expect, the

power spectrum of ζ is simply given by the one for the Lifshitz scalar with the multiplicative

factor 1/(ε1M2
P ). The decoupled Khronon rapidly oscillates, while growing exponentially

– 19 –

Creminelli et al.(14)

we can set the sound speed cT to the light speed c. Meanwhile, performing the conformal

transformation, we can set M2
P to the value in general relativity. The equivalence between

the Einstein frame and the Jordan frame for the gravitational waves was explicitly con-

firmed in Ref. [38]. The price to pay is that these transformations also alter another sector.

For instance, if the sound speed of the inflaton cs is 1 in the original frame, after the above

disformal transformation which sets cT to 1, the sound speed cs is changed into cs = c−1
T .

After inflation, the non-minimal coupling introduced by the inflaton should disappear.

Therefore, it is reasonable to calculate the primordial spectra in the Einstein frame for

the gravitational waves. Then, the spectrum for the gravitational waves is given by the

standard expression and as is widely known, we obtain the so-called consistency relation

nt = − r

8cs
, (4.4)

which relates the spectral index for the gravitational waves, nt, and the tensor to scalar ratio

r. (The sub leading contribution to the consistency relation in the slow-roll approximation

can be found, e.g., in Ref. [43].) This is rather robust prediction in a 4D Diff invariant

theory.

4.2 Violation of consistency relation in LV theories

Next, we discuss the primordial spectra generated during the anisotropic scaling regime. In

this regime, the sound speed of the graviton depends on the wavenumber p. In such a case,

we cannot set the sound speed to c by the disformal transformation which globally changes

the time shift. Then, the deformed dispersion relation physically changes the spectrum of

the gravitational waves.

Using Eqs. (2.37) and (3.37), we obtain the tensor to scalar ratio as

r ≡ Pγ

Pζ
= 16ε1

(
κz

κγ,z

) 3
2z
(
Hp,γ

Hp

) 3
z−1

. (4.5)

For κz ̸= κγ,z, the Hubble crossing time for the adiabatic perturbation does not necessarily

coincide with the one for the gravitational waves and they are related as

Hp,γ

Hp
=

(
κz

κγ, z

) ε1
2(z−ε1)

. (4.6)

Inserting this expression into Eq. (4.7), we obtain

r = 16ε1

(
κz

κγ,z

) 3
2z+

ε1
2(z−ε1)

( 3
z−1)

. (4.7)

Exceptionally, for κz = κγ,z, the Hubble crossing times for the adiabatic mode and the

gravitational waves coincide and the tensor to scalar ratio is given by the standard expres-

sion irrespective of the value of z. Using Eqs. (3.40) and (4.7), we obtain

r ≃ 16

3

z

z + 1

(
κz
κγ, z

) 3
2z

(−ns + 1 + 2ηV ) , (4.8)

– 18 –

N.B. ∃4D Diff for cs < 1, -nt > r/8
Violation of consistency relation → cs > 1or 4D Diff.

Arai, Sibiryakov, Y.U.

IR limit of the non-projectable version of HL gravity, another gauge invariant variable

⇣ ⌘ R� H

�̇
' (3.36) Def:zeta

are decoupled from the other degree of freedom in the large scale limit. In Einstein-Aether

theory, the aether field can be understood as Stückelberg field which restores the Lorentz

invariance [37]. In the covariant description, R is the curvature perturbation on the slicing

where the aether field becomes homogeneous and ⇣ is the one on the slicing where the

inflaton becomes homogeneous, which may be identified with the curvature perturbation

in the uniform density slicing after the reheating. In the Lifshitz scaling regime, it is not

clear if we can covariantize the system without introducing an unhealthy degree of freedom

such as a ghost.

While the physical meaning of R and ⇣ is not as clear as in the isotropic scaling regime,

as seen in the Lagrangian given in Eqs. (A.7)-(A.9), ⇣ is decoupled from ' in the large scale

limit. Since ⇣ is a massless field, it should be conserved in time at large scales. Meanwhile,

when we express the Lagrangian in terms of ⇣ and ', the time derivative term of ' is

proportional to X like Khronon R in the de Sitter limit. Notice that both the kinetic terms

of ' and the mixing terms are of O(X), ' is not decoupled from ⇣, while ⇣ is decoupled

from '. In fact, keeping the decoupling of ⇣, we can rotate ' to the linear combination of

⇣ and ' to take a diagonal basis. Then, the degree of freedom which is orthogonal to ⇣

acquires the mass mK, z and grows exponentially due to the anti-friction. Therefore, this

degree of freedom corresponds to Khronon, whose behaviour in the decoupling limit was

studied in the de Sitter limit in the previous subsection.
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IR limit of the non-projectable version of HL gravity, another gauge invariant variable
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�̇
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Anti-friction of Khronon

!2 ⇠ p2
⇣ p

aM⇤

⌘2(z�1)
LR ⇠ M2

⇤a
3
⇣ !

aH

⌘2

Ṙ2 �m2

KR2

�
For H > M*  ,  ω/a < mK   

- Khronon �, canonically normalised in UV 
Grows due to anti-friction as R / a

2z�3
2 e�imKt

- Canonical field in IR is Rc ⇠ M⇤
!

aH
R

No exponential growth

Changing foliation removes the anti-friction. 

Arai, Sibiryakov, Y.U.



Summary

- Examined inflation in Lifshitz regime of gravity with H > M*  

Pζ(p), PGW(p) are robustly determined by the scaling.

- In non-projectable ver. (H >> M*), Khronon gets gapped  
    with mK >> H before the Hubble crossing.  

- In projectable ver. and non-projectable ver. (H < M*), 
    need to solve mixed system w/ two light scalar fields.

- Violation of consistency relation indicates either super-luminal 
    propagation or violation of 4D Diff.


