Effect of CP violation in the singlet-doublet dark matter model

Tomohiro Abe

Institute for Advanced Research Nagoya University Kobayashi-Maskawa Institute Nagoya University

based on PLB 771 (2017) 125-130 (arXiv:1702.07236)

A reason why CP violation in dark sector

To avoid strong constraint from DM direct detection

- take advantage of the pseudo-scalar interaction
- * the interaction can be there if CPV in dark sector

Singlet-doublet DM model

New particles (three Z₂ odd Weyl fermions)

	$SU(3)_c$	$\mathrm{SU}(2)_L$	$U(1)_Y$	Z_2
ω	1	1	0	-1
$\mid \eta \mid$	1	2	1/2	-1
ξ^{\dagger}	1	2	1/2	-1

Mass terms and Yukawa interactions with the SM Higgs

$$\mathcal{L}_{int.} = -\frac{M_1}{2}\omega\omega - M_2\xi\eta - y\omega H^{\dagger}\eta - y'\xi H\omega + (h.c.)$$

There is a CP phase naturally

- four complex parameters
- three phases are unphysical, eliminated by the rotation of the three Weyl fermions

five parameters: $(|M_1|, |M_2|, |y|, |y'|, \phi)$ $\phi = \operatorname{Arg}(M_1^*M_2^*yy')$

Mixing Majorana fermion with Dirac fermions

three neutral Majorana fermions + one charged Dirac fermion

Three important couplings

Another effect of CP violation in this model

prediction of the electric dipole moment (EDM)

- * EDM is predicted via Barr-Zee type diagram
- * nice complement to direct detection

nice complement to direct detection

- $\star\,$ In large CPV case, $\sigma_{\rm SI}$ is small, EDM is large
- * In small CPV case, σ_{SI} is large, EDM is small
- * EDM helps to test this model in the region where direct detection signal is not expected

 γ

W

CPV

W

Result I : all couplings exist case

 $c_{h\chi\chi} \neq 0, \ c_{Z\chi\chi} \neq 0, \ c_{h\chi\chi}^{P} \neq 0$ (M₂ = 1000GeV, y/y' = 0.5)

[prospects for LZ is given in 1310.8327]

pink : excluded by σ_{SI} orange : excluded by σ_{SD} contours: electron EDM electron EDM (d_e)

- * current bound : $|d_e| < 8.7 \times 10^{-29}$ e CM ACME experiment [1310.7534]
- * future prospect: $|d_e| < O(10^{-30})$ e Cm [1208.4507, 1502.04317, ...]

Result 2 : $c_{h\chi\chi} = 0$ case

 $c_{h\chi\chi} = 0, \ c_{Z\chi\chi} \neq 0, \ c_{h\chi\chi}^{P} \neq 0 \quad (y/y' = 0.5)$

pink : excluded by σ_{SI} **orange** : excluded by σ_{SD} **contours**: electron EDM electron EDM (*d*_e)

- * current bound : $|d_e| < 8.7 \times 10^{-29} \text{ e cm}$ ACME experiment [1310.7534]
- * future prospect: $|d_e| < O(10^{-30})$ e cm [1208.4507, 1502.04317, ...]

Result 3 : only pseudo-scalar coupling case

pink : excluded by **σ**_{SI} **orange** : excluded by **σ**_{SD} **contours:** electron EDM electron EDM (d_e)

* current bound : $|d_e| < 8.7 \times 10^{-29} \text{ e cm}$ ACME experiment [1310.7534]

* future prospect: $|d_e| < O(10^{-30})$ e cm

Summary

Effect of CP violation

- generate pseudo-scalar interaction
- avoid strong constraints from direct detection
- keep DM annihilation cross section

CPV in singlet-doublet DM model

- * CP violation naturally arises
- * constraints from direct detection is avoidable
- * prediction of EDM > 10^{-30} [e cm], within future prospect
- * direct detection and EDM complement to each other

Backup slides

Introduction

Motivation: Escape from strong constraints from DM direct detection

two simple realizations of the pseudo-scalar interaction

yukawa and M2 values in blind spot

