

Measuring the Bispectrum in Galaxy Surveys

A comparison of DM codes

Johnathan Hung, with James Fergusson and Paul Shellard

DAMTP, University of Cambridge

Outline

- Introduction
 - CMB and LSS
 - Statistics
- LSS Bispectrum
 - MODAL-LSS
 - Fast Dark Matter codes
- Conclusions and Future Work

Introduction

CMB and LSS

CMB LSS

2D dataset 3D dataset

Linear Non-linear

Both equally important:

Complementarity of scales

Cross-correlation

Statistics

- Power spectrum, or two-point correlation function
- At small scales the bispectrum surpasses the power spectrum in signalto-noise
 - Better at tracing non-linear evolution of structure
 - Break degeneracies in parameter space, e.g. bias
 - Investigate primoridial non-Gaussianity
- We have developed a fast code (MODAL-LSS) for reconstructing the full bispectrum of cosmological simulations (Schmittfull et al. 2013)

LSS Bispectrum

LSS Bispectrum

Bispectrum tetrapyd cut in half:

Different shapes have strongest signals in different parts of the tetrapyd

Simulation bispectrum:

The morphology gives us qualitative information about the bispectrum shape

MODAL-LSS

- General bispectra computationally intractable
- Expansion of signal-to-noise (SN) weighted bispectrum in separable basis:

$$\sqrt{\frac{k_{1}k_{2}k_{3}}{P(k_{1})P(k_{2})P(k_{3})}}B^{th}(k_{1}, k_{2}, k_{3})$$

$$\approx \sum_{n}^{n_{max}} \alpha_{n}^{Q}Q_{n}(k_{1}/k_{max}, k_{2}/k_{max}, k_{3}/k_{max})$$

The basis functions are symmetrised products over polynomial functions:

$$Q_n(x,y,z) \equiv q_{\{r}(x)q_s(y)q_{t\}}(z)$$

- Reduces bispectrum estimation from 3D problem to 1D problem
- Can use O(1000) modes for highly accurate reconstruction

MODAL-LSS

Bispectrum Theory Validation

• Fractional deviation of 10⁻⁶ (with 1000 modes)

Signal Reconstruction Residuals

Cosmological simulations

- N-body codes such as GADGET are expensive to run
- Need many runs to reduce statistical errors in estimation of covariance matrices, comparison to theory etc.
- Fast DM codes such as L-PICOLA: more than 100x reduction in CPUhours (1000x for 2LPT)
- Can benchmark these codes with power spectrum and bispectrum
- Diagnostics:

- Shape:
$$S(B_i, B_j) \equiv \frac{\begin{bmatrix} B_i, B_j \end{bmatrix}}{\sqrt{\begin{bmatrix} B_i, B_i \end{bmatrix} \begin{bmatrix} B_j, B_j \end{bmatrix}}}$$
 Amplitude: $A(B_i, B_j) \equiv \frac{\begin{bmatrix} B_i, B_j \end{bmatrix}}{\begin{bmatrix} B_i, B_i \end{bmatrix}}$

Results

- We ran a 6400 Mpc/h GADGET3 simulation with 2048³ particles and PMGRID of 2048 for maximum resolution
- We benchmarked L-PICOLA and 2LPT against GADGET3
- We compare their power spectrum and bispectrum

Bispectrum Results

Bispectrum Results

Conclusions

Conclusions and Future work

- LSS will become very important cosmological observable
 - Bispectrum computationally difficult but will provide a wealth of information for breaking parameter degeneracies, constrain early universe scenarios, and investigating primordial NG or alternatives to GR
 - Computation made efficient by MODAL-LSS code
- Need many N-body simulations for parameter estimation etc.
 - Fast codes can be benchmarked through bispectrum, and power spectrum can't
- Will move towards halo codes with galaxy survey data in mind

