

HALO SUBSTRUCTURE and implications for DARK MATTER ANNIHILATION SIGNALS

[arXiv: 1312.1729, **1603.04057**, 1703.06012]

Miguel A. Sánchez-Conde

['Comunidad de Madrid Talento' Fellow]

Instituto de Física Teórica IFT UAM/CSIC & Departamento de Física Teórica Universidad Autónoma de Madrid

> **PASCOS 2017** IFT UAM/CSIC, 19-23 June 2017

GHALO simulation [Stadel+09]

luminous matter

GHALO simulation [Stadel+09]

Unobserved satellites

The role of DM substructure in (indirect) DM searches

Both *dwarfs* and *dark satellites* are highly DM-dominated systems

→ GOOD TARGETS

The *clumpy distribution* of subhalos inside larger halos may boost the annihilation signal importantly.

→ SUBSTRUCTURE BOOSTS

The role of DM substructure in (indirect) DM searches

Both *dwarfs* and *dark satellites* are highly DM-dominated systems

→ GOOD TARGETS

The *clumpy distribution* of subhalos inside larger halos may boost the annihilation signal importantly.

→ SUBSTRUCTURE BOOSTS

DM annihilation signal is proportional to the DM density squared
 → Enhancement of the DM annihilation signal expected due to subhalos.

$$B(M) = \frac{1}{L(M)} \int_{M_{min}}^{M} (dN/dm) \left[1 + B(m)\right] L(m) \ dm$$

DM annihilation signal is proportional to the DM density squared
 → Enhancement of the DM annihilation signal expected due to subhalos.

$$B(M) = \frac{1}{L(M)} \int_{M_{min}}^{M} (dN/dm) [1 + B(m)] L(m) dm$$

Subhalo mass function

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

- Integration down to the minimum predicted halo mass ~10⁻⁶ Msun.
- Current Milky Way-size simulations "only" resolve subhalos down to ~10⁵ Msun.

→ Extrapolations below the mass resolution needed.

Subhalo concentrations? Yes.

- Difficulty in defining them:
 - More complex evolution compared to field halos.
 - Tidal forces modify the DM density profile (e.g. Kazantzidis+04)
 - Reduced R_{max}, i.e. the radius at which the maximum circular velocity
 V_{max} is reached (e.g. Bullock+01).
- Solution: choose a definition independent of the profile

$$c_{\rm V} = \frac{\bar{\rho}(R_{\rm max})}{\rho_c} = 2\left(\frac{V_{\rm max}}{H_0 R_{\rm max}}\right)^2$$

See also Diemand+o8

• Still useful to compare to the standard c₂₀₀:

For NFW:
$$c_{\rm V} = \left(\frac{c_{\Delta}}{2.163}\right)^3 \frac{f(R_{\rm max}/r_s)}{f(c_{\Delta})} \Delta$$

c_v from N-body simulations

VIA LACTEA II

BOTH PUBLIC!

<u>ELVIS</u>

One MW-size halo. WMAP₃ cosmology. 4100 Msun mass resolution. Over one billion particles.

48 MW-size halos. Half in paired configurations. 3 additional MW with higher resolution. WMAP7 cosmology.

10⁵ Msun mass resolution for the 48 MW.

	$\Omega_{\mathrm{m,0}}$	Ω_{Λ}	h	n_s	σ_8	Δ	$N_{ m sub}$	
VL-II	0.238	0.762	0.73	0.951	0.74	47.6	6914	ybdis Romulus
ELVIS	0.266	0.734	0.71	0.963	0.801	97	35292	

(Diemand et al. 2008)

z=0.0

c_v results from VL-II and ELVIS

Median values

Four radial bins

Clear increase of subhalo concentration as we approach the host halo center

Scatter similar to that of main halos

Subhalo concentrations at all masses

Subhalo data:

- VL-II and ELVIS between 10⁶ – 10¹⁰ Msun.
- Ishiyama (2014) main halos at the lowest masses
- BolshoiP main halos at the largest masses

Clear increase of subhalo concentrations as we approach the host halo center.

<u>Future</u>: add BolshoiP, MultidDark, Lomonosov, `lshiyama'...

(Improved) subhalo boost model

- 1. Make use of our best knowledge on subhalo concentrations.
- 2. Tidal stripping included (Roche criterium).

[Agrees also with Bartels & Ando (2015) and Zavala & Afshordi (2015)]

Remarks

• Subhalo concentrations:

- Used VL-II and ELVIS.
- Used a concentration parameter independent of the profile.
- The closer to the host halo center the more concentrated.
- Substantially larger (factor ~ 2) than field halos.

• Substructure boosts factors:

- Improved the model in Sánchez-Conde & Prada (2014).
- More accurate subhalo concentrations + tidal stripping.
- About a factor 2-3 larger than before (main halos).
- Negligible for dwarf galaxies of the Milky Way.

Thanks!

Miguel A. Sánchez-Conde (miguel.sanchezconde@uam.es)

ADDITIONAL MATERIAL

The DM annihilation γ-ray flux

Integ

$$F(E_{\gamma} > E_{th}, \Psi_{0}) = J(\Psi_{0}) \times f_{PP}(E_{\gamma} > E_{th}) \text{ photons cm}^{-2} s^{-1}$$
Astrophysics
$$Particle physics$$

$$Integration of the squared DM density$$

$$J-FACTOR$$

$$J(\Psi_{0}) = \frac{1}{4\pi} \int_{\Delta \Omega} d\Omega \int_{Lo.s.} \rho_{DM}^{2} [r(\lambda)] d\lambda$$

$$SMOOTH + SUBSTRUCTURE$$

$$Prove S_{PP}(E_{\gamma} > E_{th}) Porticle for spectrum of photons period of the squared DM density of the squared DM densit$$

Current knowledge of the c(M) relation at z=o

Concentration $c = R_{vir} / r_s$

New LOMONOSOV simulations

Concentration $c = R_{vir} / r_s$

Pilipenko, MASC+17 [astro-ph/1703.06012]

What does ACDM tell us about c(M) at the smallest scales?

- Natal concentrations are mainly set by the halo formation time.
- Given the CDM power spectrum , the smallest halos typically collapse *nearly* at the same time:
 - ightarrow Concentration is nearly the same for the smallest halos over a wide range of masses.
 - → power-law c(M) extrapolations not correct!

No more simple power-law c(M) extrapolations!

Our current knowledge of the c(M) relation from simulations also support the theoretical expectations.

SCP14 substructure boosts

<u>Reminder</u>: they all assume that both main halos and subhalos possess similar structural properties!

SCP14: caveats

1) Strictly valid only for field DM halos (i.e., no subhalos).

- \rightarrow Not easily applicable to e.g. Milky Way satellites.
- \rightarrow Subhalo concentrations are larger \rightarrow *lower limits* to actual boost values.
- ightarrow Tidal forces will remove material from the outskirts ightarrow upper limits

2) Total integrated boosts for the whole object.

- \rightarrow No radial information.
- → Suggestion: follow 3k10 formalism (Kamionkowski+10) with the recipe in MASC+11, assuming the total boost given by MASC+14.

[Slide taken from my presentation at the UCLA DM 14]

Subhalo DM density profiles

Springel+o8

Similar to those of main halos but in the outermost regions, where they exhibit a exponential cut-off (tidal stripping)

 \rightarrow 'standard' virial radius definition not valid \rightarrow concentration??

Substructure modifies the annihilation flux profile

[MASC, Cannoni, Zandanel et al., JCAP 12 (2011) 011]

Annihilation signal becomes *more spatially extended*.

- \rightarrow Instrumental sensitivity is worse for extended sources.
- \rightarrow More relevant for galaxy clusters; irrelevant for dwarfs.