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as done in P12 and shown in the right panel of Fig. 1. In
such c – ⌅(M)�1 plane, the P12 model adopts a character-
istic U-shape, with its minimum value corresponding to the
natal concentration of DM halos. We propose that halo evo-
lution tracks follow this U-shape from right to left, in such
a way that halos found to the right of the minimum (⌅ < 1)
are not formed yet, while halos located to the left already
have collapsed. This is supported by the fact that at the
high-mass end (⌅ < 1) the median halo kinematic profiles
show large signatures of infall and highly radial orbits (see
P12). As the P12 model was derived and tested between
�0.5 . log[⌅(M)]�1 . 0.5 (i.e., the range around the U-
shape minimum) by using Bolshoi and Multidark data at
di⇥erent redshifts, the model can be safely used to predict
concentration values of any simulation data whose ⌅(M) val-
ues lie within that particular tested interval of the U-shape.
As shown in the right panel of Fig. 1, this is exactly the case
for all the simulation data set displayed in the left panel of
the same figure. Thus, no extrapolation of the P12 model
is done, which also explains its remarkable agreement with
simulations.

Finally, we provide a simple parametrization of the
concentration-mass relation provided by the P12 model at
z = 0, that will turn out to be very useful for the next sec-
tion, where we will compute the expected substructure halo
boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5X

i=0

ci ⇥

ln

✓
M200

h�1M�

◆�i

, (1)

where ci = [37.5153,�1.5093, 1.636 · 10�2, 3.66 · 10�4,
�2.89237 · 10�5, 5.32 · 10�7]. This parametrization, inspired
on the functional form proposed by Lavalle et al. (2008),
provides an accuracy better than 1% in the halo mass range
between 10�6 < h�1M� < 1015. It also captures the char-
acteristic c(M) upturn at higher masses found in Prada et
al. (2012). We note that, interestingly, the best fit to VL-II
(subhalo) concentrations found by Pieri et al. (2011) agrees
very well with Eq.(1) in the mass range well resolved in that
simulation, i.e. 105 . h�1M� . 109, desviations becoming
only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-
structure in ⇥-ray DM searches. Indeed, DM substructure
might represent the key component in future DM search
strategies for several reasons. In particular, as the DM an-
nihilation ⇥-ray signal is proportional to the DM density
squared, the clumpy distribution of subhalos inside larger
halos expected in �CDM may boost the DM annihilation
flux considerably. This flux enhancement is more important
for the most massive halos as they enclose more hierarchical
levels of structure formation. The e⇥ect of substructures on
the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri
et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and
making use of N-body simulations, e.g., Kuhlen et al. (2008);
Springel et al. (2008). It is a challenge to calculate ana-
lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations
are computational prohibited to simulate the sub-halo hi-
erarchy below a mass ⇠105h�1M�, still very far from the
predicted halo cut-o⇥ mass, of the order of 10�6h�1M� or
even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-
fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke
et al. (2011); Gao et al. (2011)) implicitly rely on power-
law extrapolations of the c(M) relation below the resolution
limit of N-body simulations all the way down to the min-
imum halo mass. Thus, these power-law extrapolations as-
sign very high concentrations to the smallest halos. As the
annihilation luminosity of a given halo scales as L / c3,
the substructure boosts obtained in this way are usually
very large. Furthermore, the results are very sensitive to the
power-law index used in such extrapolations. However, as
already shown, these power-law extrapolations are not ex-
pected in the �CDM cosmology. Indeed, as small halos over
a broad range of masses collapse at nearly the same time in
the early Universe (given the shape of P (k)), and natal con-
centrations are set by the halo formation epoch, low-mass
halos possess rather similar natal concentrations, and thus
will also possess similar concentrations at the present time.
This fact translates in a flattening of c(M) at low masses,
which is evident in the left panel of Fig. 1. We remark that,
ultimately, natal halo concentrations are the key for this to
happen. In the following, we will calculate the substructure
boosts implied by the P12 model. We note that by doing
so we assume the P12 model to be also a good representa-
tion of subhalo concentrations. This is partially supported
by the fact that most subhalos at present time have been
accreted by their hosts at late times, up to 70% after z=0.5
according to some estimates, the latter being almost inde-
pendent of subhalo or parent halo mass (Gao et al. 2004).
Therefore, concentrations of field halos should be a fair es-
timate of those typical of subhalos of the same mass. Nev-
ertheless, subhalos are known to have slightly higher con-
centrations, the closer they lie from their host halo centers
the larger their concentrations, e.g., Diemand et al. (2008b).
Thus, overall, the P12 substructure boosts will represent a
lower limit to their actual values.

To compute the boosted annihilation luminosity of a
halo of mass M due to substructures, it is necessary to inte-
grate subhalo annihilation luminosities all the way down to
the minimum subhalo mass, Mmin. Since subhalos also host
sub-substructure, ideally, all levels of substructure should be
included. We define the boost B(M) as follows (Strigari et
al. 2007; Kuhlen et al. 2008):

B(M) =
1

L(M)

Z M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4⇤Mc3/f(c)2 is the halo annihilation
luminosity with no substructures, c being the concentra-
tion and f(c) = log(1 + c) � 1/(1 + c), and dN/dm =
A/M (m/M)�� is the subhalo mass function. Values for
� ranging between � = 1.9� 2 are possible (Diemand et al.
2007; Madau et al. 2008; Springel et al. 2008). The normal-
ization factor A is chosen to match the amount of substruc-
ture resolved in current simulations, and is equal to 0.XXX
and 0.XXX for � = 1.9 and 2, respectively. Note that fol-
lowing the definition of the boost in Eq. (2), an scenario
with no boost would be given by B = 0, while a value of
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the substructure boosts obtained in this way are usually
very large. Furthermore, the results are very sensitive to the
power-law index used in such extrapolations. However, as
already shown, these power-law extrapolations are not ex-
pected in the �CDM cosmology. Indeed, as small halos over
a broad range of masses collapse at nearly the same time in
the early Universe (given the shape of P (k)), and natal con-
centrations are set by the halo formation epoch, low-mass
halos possess rather similar natal concentrations, and thus
will also possess similar concentrations at the present time.
This fact translates in a flattening of c(M) at low masses,
which is evident in the left panel of Fig. 1. We remark that,
ultimately, natal halo concentrations are the key for this to
happen. In the following, we will calculate the substructure
boosts implied by the P12 model. We note that by doing
so we assume the P12 model to be also a good representa-
tion of subhalo concentrations. This is partially supported
by the fact that most subhalos at present time have been
accreted by their hosts at late times, up to 70% after z=0.5
according to some estimates, the latter being almost inde-
pendent of subhalo or parent halo mass (Gao et al. 2004).
Therefore, concentrations of field halos should be a fair es-
timate of those typical of subhalos of the same mass. Nev-
ertheless, subhalos are known to have slightly higher con-
centrations, the closer they lie from their host halo centers
the larger their concentrations, e.g., Diemand et al. (2008b).
Thus, overall, the P12 substructure boosts will represent a
lower limit to their actual values.

To compute the boosted annihilation luminosity of a
halo of mass M due to substructures, it is necessary to inte-
grate subhalo annihilation luminosities all the way down to
the minimum subhalo mass, Mmin. Since subhalos also host
sub-substructure, ideally, all levels of substructure should be
included. We define the boost B(M) as follows (Strigari et
al. 2007; Kuhlen et al. 2008):

B(M) =
1

L(M)

Z M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4⇤Mc3/f(c)2 is the halo annihilation
luminosity with no substructures, c being the concentra-
tion and f(c) = log(1 + c) � 1/(1 + c), and dN/dm =
A/M (m/M)�� is the subhalo mass function. Values for
� ranging between � = 1.9� 2 are possible (Diemand et al.
2007; Madau et al. 2008; Springel et al. 2008). The normal-
ization factor A is chosen to match the amount of substruc-
ture resolved in current simulations, and is equal to 0.XXX
and 0.XXX for � = 1.9 and 2, respectively. Note that fol-
lowing the definition of the boost in Eq. (2), an scenario
with no boost would be given by B = 0, while a value of
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4 Sánchez-Conde & Prada

as done in P12 and shown in the right panel of Fig. 1. In
such c – ⌅(M)�1 plane, the P12 model adopts a character-
istic U-shape, with its minimum value corresponding to the
natal concentration of DM halos. We propose that halo evo-
lution tracks follow this U-shape from right to left, in such
a way that halos found to the right of the minimum (⌅ < 1)
are not formed yet, while halos located to the left already
have collapsed. This is supported by the fact that at the
high-mass end (⌅ < 1) the median halo kinematic profiles
show large signatures of infall and highly radial orbits (see
P12). As the P12 model was derived and tested between
�0.5 . log[⌅(M)]�1 . 0.5 (i.e., the range around the U-
shape minimum) by using Bolshoi and Multidark data at
di⇥erent redshifts, the model can be safely used to predict
concentration values of any simulation data whose ⌅(M) val-
ues lie within that particular tested interval of the U-shape.
As shown in the right panel of Fig. 1, this is exactly the case
for all the simulation data set displayed in the left panel of
the same figure. Thus, no extrapolation of the P12 model
is done, which also explains its remarkable agreement with
simulations.

Finally, we provide a simple parametrization of the
concentration-mass relation provided by the P12 model at
z = 0, that will turn out to be very useful for the next sec-
tion, where we will compute the expected substructure halo
boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5X

i=0

ci ⇥

ln

✓
M200

h�1M�

◆�i

, (1)

where ci = [37.5153,�1.5093, 1.636 · 10�2, 3.66 · 10�4,
�2.89237 · 10�5, 5.32 · 10�7]. This parametrization, inspired
on the functional form proposed by Lavalle et al. (2008),
provides an accuracy better than 1% in the halo mass range
between 10�6 < h�1M� < 1015. It also captures the char-
acteristic c(M) upturn at higher masses found in Prada et
al. (2012). We note that, interestingly, the best fit to VL-II
(subhalo) concentrations found by Pieri et al. (2011) agrees
very well with Eq.(1) in the mass range well resolved in that
simulation, i.e. 105 . h�1M� . 109, desviations becoming
only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-
structure in ⇥-ray DM searches. Indeed, DM substructure
might represent the key component in future DM search
strategies for several reasons. In particular, as the DM an-
nihilation ⇥-ray signal is proportional to the DM density
squared, the clumpy distribution of subhalos inside larger
halos expected in �CDM may boost the DM annihilation
flux considerably. This flux enhancement is more important
for the most massive halos as they enclose more hierarchical
levels of structure formation. The e⇥ect of substructures on
the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri
et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and
making use of N-body simulations, e.g., Kuhlen et al. (2008);
Springel et al. (2008). It is a challenge to calculate ana-
lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations
are computational prohibited to simulate the sub-halo hi-
erarchy below a mass ⇠105h�1M�, still very far from the
predicted halo cut-o⇥ mass, of the order of 10�6h�1M� or
even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-
fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke
et al. (2011); Gao et al. (2011)) implicitly rely on power-
law extrapolations of the c(M) relation below the resolution
limit of N-body simulations all the way down to the min-
imum halo mass. Thus, these power-law extrapolations as-
sign very high concentrations to the smallest halos. As the
annihilation luminosity of a given halo scales as L / c3,
the substructure boosts obtained in this way are usually
very large. Furthermore, the results are very sensitive to the
power-law index used in such extrapolations. However, as
already shown, these power-law extrapolations are not ex-
pected in the �CDM cosmology. Indeed, as small halos over
a broad range of masses collapse at nearly the same time in
the early Universe (given the shape of P (k)), and natal con-
centrations are set by the halo formation epoch, low-mass
halos possess rather similar natal concentrations, and thus
will also possess similar concentrations at the present time.
This fact translates in a flattening of c(M) at low masses,
which is evident in the left panel of Fig. 1. We remark that,
ultimately, natal halo concentrations are the key for this to
happen. In the following, we will calculate the substructure
boosts implied by the P12 model. We note that by doing
so we assume the P12 model to be also a good representa-
tion of subhalo concentrations. This is partially supported
by the fact that most subhalos at present time have been
accreted by their hosts at late times, up to 70% after z=0.5
according to some estimates, the latter being almost inde-
pendent of subhalo or parent halo mass (Gao et al. 2004).
Therefore, concentrations of field halos should be a fair es-
timate of those typical of subhalos of the same mass. Nev-
ertheless, subhalos are known to have slightly higher con-
centrations, the closer they lie from their host halo centers
the larger their concentrations, e.g., Diemand et al. (2008b).
Thus, overall, the P12 substructure boosts will represent a
lower limit to their actual values.

To compute the boosted annihilation luminosity of a
halo of mass M due to substructures, it is necessary to inte-
grate subhalo annihilation luminosities all the way down to
the minimum subhalo mass, Mmin. Since subhalos also host
sub-substructure, ideally, all levels of substructure should be
included. We define the boost B(M) as follows (Strigari et
al. 2007; Kuhlen et al. 2008):

B(M) =
1

L(M)

Z M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4⇤Mc3/f(c)2 is the halo annihilation
luminosity with no substructures, c being the concentra-
tion and f(c) = log(1 + c) � 1/(1 + c), and dN/dm =
A/M (m/M)�� is the subhalo mass function. Values for
� ranging between � = 1.9� 2 are possible (Diemand et al.
2007; Madau et al. 2008; Springel et al. 2008). The normal-
ization factor A is chosen to match the amount of substruc-
ture resolved in current simulations, and is equal to 0.XXX
and 0.XXX for � = 1.9 and 2, respectively. Note that fol-
lowing the definition of the boost in Eq. (2), an scenario
with no boost would be given by B = 0, while a value of
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as done in P12 and shown in the right panel of Fig. 1. In
such c – ⌅(M)�1 plane, the P12 model adopts a character-
istic U-shape, with its minimum value corresponding to the
natal concentration of DM halos. We propose that halo evo-
lution tracks follow this U-shape from right to left, in such
a way that halos found to the right of the minimum (⌅ < 1)
are not formed yet, while halos located to the left already
have collapsed. This is supported by the fact that at the
high-mass end (⌅ < 1) the median halo kinematic profiles
show large signatures of infall and highly radial orbits (see
P12). As the P12 model was derived and tested between
�0.5 . log[⌅(M)]�1 . 0.5 (i.e., the range around the U-
shape minimum) by using Bolshoi and Multidark data at
di⇥erent redshifts, the model can be safely used to predict
concentration values of any simulation data whose ⌅(M) val-
ues lie within that particular tested interval of the U-shape.
As shown in the right panel of Fig. 1, this is exactly the case
for all the simulation data set displayed in the left panel of
the same figure. Thus, no extrapolation of the P12 model
is done, which also explains its remarkable agreement with
simulations.

Finally, we provide a simple parametrization of the
concentration-mass relation provided by the P12 model at
z = 0, that will turn out to be very useful for the next sec-
tion, where we will compute the expected substructure halo
boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5X

i=0

ci ⇥

ln

✓
M200

h�1M�

◆�i

, (1)

where ci = [37.5153,�1.5093, 1.636 · 10�2, 3.66 · 10�4,
�2.89237 · 10�5, 5.32 · 10�7]. This parametrization, inspired
on the functional form proposed by Lavalle et al. (2008),
provides an accuracy better than 1% in the halo mass range
between 10�6 < h�1M� < 1015. It also captures the char-
acteristic c(M) upturn at higher masses found in Prada et
al. (2012). We note that, interestingly, the best fit to VL-II
(subhalo) concentrations found by Pieri et al. (2011) agrees
very well with Eq.(1) in the mass range well resolved in that
simulation, i.e. 105 . h�1M� . 109, desviations becoming
only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-
structure in ⇥-ray DM searches. Indeed, DM substructure
might represent the key component in future DM search
strategies for several reasons. In particular, as the DM an-
nihilation ⇥-ray signal is proportional to the DM density
squared, the clumpy distribution of subhalos inside larger
halos expected in �CDM may boost the DM annihilation
flux considerably. This flux enhancement is more important
for the most massive halos as they enclose more hierarchical
levels of structure formation. The e⇥ect of substructures on
the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri
et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and
making use of N-body simulations, e.g., Kuhlen et al. (2008);
Springel et al. (2008). It is a challenge to calculate ana-
lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations
are computational prohibited to simulate the sub-halo hi-
erarchy below a mass ⇠105h�1M�, still very far from the
predicted halo cut-o⇥ mass, of the order of 10�6h�1M� or
even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-
fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke
et al. (2011); Gao et al. (2011)) implicitly rely on power-
law extrapolations of the c(M) relation below the resolution
limit of N-body simulations all the way down to the min-
imum halo mass. Thus, these power-law extrapolations as-
sign very high concentrations to the smallest halos. As the
annihilation luminosity of a given halo scales as L / c3,
the substructure boosts obtained in this way are usually
very large. Furthermore, the results are very sensitive to the
power-law index used in such extrapolations. However, as
already shown, these power-law extrapolations are not ex-
pected in the �CDM cosmology. Indeed, as small halos over
a broad range of masses collapse at nearly the same time in
the early Universe (given the shape of P (k)), and natal con-
centrations are set by the halo formation epoch, low-mass
halos possess rather similar natal concentrations, and thus
will also possess similar concentrations at the present time.
This fact translates in a flattening of c(M) at low masses,
which is evident in the left panel of Fig. 1. We remark that,
ultimately, natal halo concentrations are the key for this to
happen. In the following, we will calculate the substructure
boosts implied by the P12 model. We note that by doing
so we assume the P12 model to be also a good representa-
tion of subhalo concentrations. This is partially supported
by the fact that most subhalos at present time have been
accreted by their hosts at late times, up to 70% after z=0.5
according to some estimates, the latter being almost inde-
pendent of subhalo or parent halo mass (Gao et al. 2004).
Therefore, concentrations of field halos should be a fair es-
timate of those typical of subhalos of the same mass. Nev-
ertheless, subhalos are known to have slightly higher con-
centrations, the closer they lie from their host halo centers
the larger their concentrations, e.g., Diemand et al. (2008b).
Thus, overall, the P12 substructure boosts will represent a
lower limit to their actual values.

To compute the boosted annihilation luminosity of a
halo of mass M due to substructures, it is necessary to inte-
grate subhalo annihilation luminosities all the way down to
the minimum subhalo mass, Mmin. Since subhalos also host
sub-substructure, ideally, all levels of substructure should be
included. We define the boost B(M) as follows (Strigari et
al. 2007; Kuhlen et al. 2008):

B(M) =
1

L(M)

Z M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4⇤Mc3/f(c)2 is the halo annihilation
luminosity with no substructures, c being the concentra-
tion and f(c) = log(1 + c) � 1/(1 + c), and dN/dm =
A/M (m/M)�� is the subhalo mass function. Values for
� ranging between � = 1.9� 2 are possible (Diemand et al.
2007; Madau et al. 2008; Springel et al. 2008). The normal-
ization factor A is chosen to match the amount of substruc-
ture resolved in current simulations, and is equal to 0.XXX
and 0.XXX for � = 1.9 and 2, respectively. Note that fol-
lowing the definition of the boost in Eq. (2), an scenario
with no boost would be given by B = 0, while a value of
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	à	Results	very	sensitive	to	the	c(M)	extrapolations	down	to	Mmin
	

with		

2.1.4 Scatter

It is important to include in the calculations a scatter in the concentration values. We will assume
THE SAME scatter for the three scenarios described above (MAX,MED,MIN). Intrinsic to the
stochastic process of halo formation, the concentration of individual haloes scatters around the
median c provided by the quantities cvir(M) and csub(M,Dgc), respectively. The corresponding
probability distribution follows a lognormal (see e.g. Ref. [1]):

P (c, c) =
log10 e⌅
2�⇥log10 c c

exp

⇤
�1

2

�
log10 c� log10 c

⇥log10 c

⇥2
⌅
, (4)

where ⇥log10 c = 0.14 [3, 5].

2.2 Subhalo mass function

2.3 Subhalo radial distribution

2.4 Other useful formulae

1. Distance cut for subhalo detectability: we will assume that we cannot detect subhalos
with J-factors smaller than R times (e.g. one tenth) the Draco J-factor JD. Then, the cut in
distance as a function of the subhalo mass is given by:

Dcut(M) ⇤

⇧
M D2

D c(M)3 f(cD)2

R f(c)2 MD c3D
(5)

where f(c) = ln(1 + c)� c/(1 + c), and the subindex D refers to Draco. We will take DD = 80
kpc, MD = 8⇥108M�, cD = 19, R = 0.1. As for c(M), we should take the MAX case described
in previous sections in order to be safe in our distance cut. The safer cut would be the one
provided by the Aquarius subhalo concentration (as the corresponding formula gives us the
highest c amongst all the formulae that we have for c).

2.5 Tidal radius and disruption of halos

We’ll use the Roche criterium (see e.g. to estimate the tidal radius, rt of a subhalo with mass
Msub located at a distance Rsub from the Galactic Center [6]:

rt =

�
Msub

3 MMW (< Rsub)

⇥1/3

⇥Rsub (6)

3

6 The Dark Matter Annihilation Signal from Galactic Substructure: Predictions for GLAST

Fig. 3.— The annihilation luminosity boost factor due to sub-
structure below VL-II’s resolution limit versus subhalo mass, for
different subhalo mass functions. Top panel: Dependence on the
cutoff mass m0 for slope α = 2.0. Bottom panel: Dependence on
α for m0 = 10−6 M⊙.

rvir/rs is given by

L̃(M, c) ∝ ρ2
sr

3
s ∝ M

c3

f(c)2
, (7)

where f(c) = ln(1 + c) − c/(1 + c). We use the
Bullock et al. (2001) concentration-mass relation for field
halos, albeit with a somewhat smaller value of the nor-
malization, K = 3.75 (as suggested by Kuhlen et al.
2005; Macciò et al. 2007). For the cosmology used in
the VL simulations and halos masses between 106 and
1010 M⊙, the c(M) relation is approximately c(M) ≈
18(M/108 M⊙)−0.06, which corresponds to L̃(M) ∝
M0.87, i.e. the annihilation luminosity scales almost
linearly with mass, in agreement with results from nu-
merical simulations (Stoehr et al. 2003; Diemand et al.
2007a). Note that in our numerical simulations we find
systematically higher subhalo concentrations closer to
the host halo center. This trend does not affect the mag-

nitude of the boost factor, but translates to a radial trend
in subhalo luminosity (see Section 3.1).

Eq. 6 is solved numerically using the boundary con-
dition B(m0) = 0. The resulting relation is plotted in
Fig. 3, for α = 2.0 and different values of m0 in the top
panel, and for m0 = 10−6 M⊙ and different values of α
in the bottom panel. Overall we find relatively modest
boost factors on the order of a few, ranging up to ∼ 10
for the most massive subhalos. Generally more massive
halos have larger boost factors, simply because their sub-
halo population covers more of the total subhalo hierar-
chy. For the same reason, smaller values of m0 lead to
larger boost factors. For α < 2.0 B(M) has a weaker
mass dependence and is less sensitive to m0, since in this
case more massive halos are relatively more important.
Our results are in agreement with the analytic upper lim-
its of Strigari et al. (2007a) and the recent calculations
of Lavalle et al. (2008).

A fit to the cumulative subhalo mass function in our
simulations is consistent with α = 2 (Diemand et al.
2007a), which implies equal mass in subhalos per decade
of subhalo mass. However, fits to the differential mass
function tend to favor slightly shallower slopes of 1.8−1.9
(Stoehr et al. 2003; Madau et al. 2008), possibly because
they are more sensitive to the lower mass end, where res-
olution effects may artificially flatten the slope. In this
work we use α = 2.0 and m0 = 106 M⊙ as our fiducial
model, but present results for a range of different α and
m0.

2.3. Central Flux Corrections

The host halo center is another area where our simu-
lation must be corrected to account for the artificially
low density caused by the finite numerical resolution
(Diemand et al. 2004b). Based on numerical convergence
studies (Diemand et al. 2005a) we believe that we can
trust the radial density profile of the VL-I host halo
down to rconv = 3.4×10−3r200 = 1.3 kpc (Diemand et al.
2007a), corresponding to about 10◦ from the center. The
higher mass resolution and improved time-step criterion
in VL-II results in a much smaller convergence radius of
rconv = 380 pc. The flux derived directly from the simu-
lated particles in VL-II will thus only underestimate the
true annihilation flux within the inner ∼ 2◦ from the
center. An additional uncertainty arises from the fact
that our purely collisionless DM simulation completely
neglect the effect of baryons. While this is not a prob-
lem for the signal from individual subhalos, which are
small enough that baryonic effects are likely negligible,
the central region of our host halo most likely would have
been affected by gas cooling, star formation, and stellar
dynamical processes. It is not immediately obvious how
such baryonic effects would alter the central DM distri-
bution. Adiabatic contraction (Blumenthal et al. 1986;
Gnedin et al. 2004a) would lead to a steepening of the
central DM density profile at scales of a few kpc and be-
low. A recent study of scaling relations in spiral galaxies,
however, seems to favor models of spiral galaxy formation
without adiabatic contraction, and suggests that clumpy
gas accretion might have reduced central DM densities
(Dutton et al. 2007). Stirring by a stellar bar could also
eject DM from the central regions (Weinberg & Katz
2007, and references therein). On much smaller scales
(central few pc), the presence of a supermassive black

•  Integra%on	down	to	the	minimum	predicted	halo	mass	~10-6	Msun.	

•  Current	Milky	Way-size	simula%ons	“only”	resolve	subhalos	down	to	~105	Msun.	

	à	Extrapola3ons	below	the	mass	resolu3on	needed.	

J-factor		

Subhalo	mass	function____	

α	=	-1.9	in	Aquarius	
α  =	-2	in	VL-II	

Subhalo	annihilation	luminosity_______	

5

Fig. 2.— Sub-substructure in four of VL-II’s most massive subhalos. Shown are projections of ρ2 for all particles within a subhalo’s
outer radius rsub. The dashed circle indicates the subhalo’s r1000. The clumpy sub-substructure boosts the total annihilation luminosity
of its host subhalo.

=
1

L̃(M)

∫ m1

m0

dN

dm
[1 + B(m)] L̃(m)dm. (5)

Here dN/dm is the sub-subhalo mass function, and the
integration extends from m0, the low mass cut-off of
the substructure hierarchy, to an upper limit of m1 =
min{106 M⊙, 0.1M}, such that only substructure below
VL-II’s resolution limit of ∼ 106 M⊙ contribute. For
subhalos below 107 M⊙ we cap the integration at 0.1M
under the assumption that efficient dynamical friction
would have lead to the tidal destruction of larger sub-
subhalos. For a power law substructure mass function

dN/dm = A/M(m/M)−α, Eq. 5 becomes

B(M) =
A

L̃(M)

∫ ln m1

ln m0

( m

M

)1−α
[1 + B(m)] L̃(m)dln m.

(6)
Motivated by our numerical simulations
(Diemand et al. 2004a, 2007a) and semi-analytic
studies (Zentner & Bullock 2003), we normalize the
sub-subhalo mass function by setting the mass fraction
in subclumps with masses 10−5 < m/M < 10−2 equal
to 10%.

For the determination of L̃(M) we have assumed an
NFW density profile, in which case the total annihilation
luminosity of a halo of mass M and concentration c =

Concentration	c	=	Rvir	/	rs	



Subhalo	concentrations?		Yes.	

•  Difficulty	in	defining	them:	

–  More	complex	evolution	compared	to	field	halos.	

–  Tidal	forces	modify	the	DM	density	profile	(e.g.	Kazantzidis+04)	

–  Reduced	Rmax,	i.e.	the	radius	at	which	the	maximum	circular	velocity	
Vmax	is	reached	(e.g.	Bullock+01).	

•  Solution:	choose	a	definition	independent	of	the	profile	

	
	

•  Still	useful	to	compare	to	the	standard	c200:	
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(Diemand et al. 2007b)

c
V

=
⇣ c

�

2.163

⌘
3 f(R

max

/rs)
f(c

�

)
� , (4)

where f(x) = ln(1+x)�x/(1+x). Note that, since for an NFW
profile V

max

occurs at R
max

= 2.163 rs, the relation between
both concentration definitions just depends on �.

Furthermore, it is possible to rewrite the virial mass in
terms of R

max

and V
max

in the following way:

m
�

=
f(c

�

)
f(2.163)

R
max

V 2

max

G
, (5)

with G the gravitational constant.
Below, we will investigate the dependence of the subhalo

concentration on subhalo (would-be virial) mass and distance
to the host halo center. We will do so for both definitions
of the concentration, c

V

and c
200

, by making use of N-body
simulation data. As for our notation, below we use capital
(small) letters to refer to halos (subhalos) or the index h (no
index) for halos (subhalos) otherwise.

2.2 Description of the data sets

High-resolution N-body cosmological simulations are manda-
tory in order to study subhalo properties in great detail.
Ideally, these simulations should resolve the subhalo inter-
nal structure accurately down to the innermost subhalo re-
gions and should provide excellent subhalo statistics. In our
work, we have considered two N-body cosmological simula-
tions of Milky-Way-size halos: VL-II (Diemand et al. 2008) and
ELVIS (Garrison-Kimmel et al. 014a). In both cases, present-
day (z = 0) halo catalogs are available for public download3

and we use the results for V
max

and R
max

. Note that one
may also study halo substructure properties by making use
of large-scale-structure simulations such as BolshoiP (Klypin
et al. 2011), MultiDark (Prada et al. 2012; Riebe et al. 2013;
Klypin et al. 2016; Rodŕıguez-Puebla et al. 2016), which in
turn would allow to learn about subhalo properties up to the
largest (sub)halo masses. This is left for future work.

VL-II follows the growth of a Milky Way-size system in a
⇤CDM universe from redshift 104.3 to the present time. The
simulation employs just over one billion particles of mass 4100
M� to model the formation of a M=1.93 x 1012 M� halo and
its substructure, where the halo and subhalo masses are ob-
tained assuming an overdensity of 200 relative to the mean

matter density of the Universe (or 47.6 with respect to the
critical density of the Universe at z = 0). More than 40000
individual subhalos within the host halo are resolved within
R = 402 kpc. Yet, the abundances and properties of many
of these subhalos are a↵ected by resolution e↵ects and, as a
result, the simulation team provides a reliable subsample of
⇠ 9400 subhalos with masses above ⇠ 106 M�. VL-II adopted
the cosmological parameters from the WMAP 3-year data re-
lease.

ELVIS contains 48 Milky-Way-size halos, of which half
are in paired configurations, similar to the Milky Way and
the Andromeda galaxy. The other half are isolated halos that

3 VL-II: http://www.ucolick.org/
~

diemand/vl/

ELVIS: http://localgroup.ps.uci.edu/elvis/
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⇤
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� N

sub

VL-II 0.238 0.762 0.73 0.951 0.74 47.6 6914

ELVIS 0.266 0.734 0.71 0.963 0.801 97 35292

Table 1. VL-II and ELVIS most relevant parameters for this work.
Columns 2–6 indicate the set of cosmological parameters used in
each simulation; column 7 is the overdensity � over the critical den-
sity of the Universe; and column 8 denotes the number of subhalos,
Nsub, that were finally used in our study (see Sec. 2.3 for further
details). This number does not correspond to the actual number of
subhalos present in the simulations, which is substantially larger.

are mass-matched to those in the pairs. In addition, high-
resolution simulations of three isolated halos were performed.
All simulations were initialized at redshift z = 125. The mass
resolution for the 48 galaxy-size halos is about 105 M�, while
the particle mass for the higher resolution set is 2.35 x 104 M�.
The virial mass of halos and subhalos is defined as the mass
within the radius enclosing 97 times the critical density of the
Universe. The distribution of the virial masses of field halos
covers the range (1.0 � 2.85) ⇥ 1012 M�. In addition, ELVIS
resolves over 50000 subhalos with masses above ⇠ 106M�.
There is no statistical correlation among the field halos since
they were extracted from independent collisionless simula-
tions. Cosmological parameters were taken from WMAP 7-
year results.

We provide a summary of the most relevant parameters of
both simulations in Tab. 1. Let us note that the fact that ⌦m

and �
8

are lower for the WMAP 3-year than for the WMAP
7-year data set, implies that halos assemble later for WMAP
3-year cosmology (see, e.g., Macciò et al. (2008)). However,
the e↵ect is expected to be small given the relatively close �

8

values of both simulations and, indeed, as we show in the next
section, we observe a very weak dependence of the concen-
tration values on the cosmological parameters, both data sets
being in good agreement with each other within their statis-
tical dispersion. We also note that we present our results for
c
�

in the next section adopting � = 200 as the value for the
overdensity to define halos and subhalos. This is di↵erent from
the � value used in each simulation, as described above and in
Tab. 1, which implies that our c

�

values are lower than those
obtained if using the overdensities adopted in the simulations
to define halos and subhalos. However, by doing so we are able
to merge the results of both simulations and treat them on the
same footing for our purposes.

2.3 Subhalo concentrations

It is well known that subhalos exhibit concentrations that dif-
fer substantially from that of field halos of the same mass, the
latter being found to be less concentrated (Ghigna et al. 2000;
Bullock et al. 2001; Moore et al. 999a; Ullio et al. 2002; Die-
mand et al. 2007b, 2008; Diemand & Moore 2011; Pieri et al.
2011; Bartels & Ando 2015). Indeed, subhalos are subject to
tidal forces that remove material from their outskirts, making
them more compact. As a result, during this process R

max

be-
comes smaller and the enclosed mean subhalo density, codified
in c

V

(Eq. (1)), increases (Diemand et al. 2007a; Kuhlen et al.
2008; Springel et al. 2008).

In this section, we derive an accurate fit for the

c
� 2016 RAS, MNRAS 000, 1–??

Subhalo structure and implications for DM annihilation 3

certain. For instance, no functional form has been proposed
for the subhalo concentration-mass relation, c

sub

(m
sub

), up to
now. Some of the reasons have to do with the di�culty in
defining and assigning concentrations to subhalos in simula-
tions. As a result, for computing the substructure boost to
the DM annihilation signal, a common practice in the past
has been the use of the concentration derived from field ha-
los as the concentration of subhalos of the same mass (see,
e.g., Lavalle et al. (2008); Kuhlen et al. (2008); Charbonnier
et al. (2011); Pinzke et al. (2011); Gao et al. (2012); Nezri
et al. (2012); Anderhalden & Diemand (2013); Sánchez-Conde
& Prada (2014); Ishiyama (2014)). Although this assumption
represents a reasonable first order approximation, the current
status of the field is calling for a more refined substructure
boost model that relies on more accurate subhalo concentra-
tion values. Indeed, N-body simulations have unequivocally
shown that subhalos exhibit higher inner DM densities and
are on average more concentrated than field halos of the same
mass (see, e.g., Ghigna et al. (2000); Bullock et al. (2001);
Ullio et al. (2002); Diemand et al. (2007b, 2008); Diemand &
Moore (2011)).

In this work, we address some of these questions in detail
by making use of public data from the VL-II and ELVIS N-
body cosmological simulations. Altogether, these simulations
allow us to study the subhalo internal properties over several
orders of magnitude in subhalo mass. In addition, thanks to
their superb halo statistics, they make possible a careful study
of subhalo properties as a function of the distance to the host
halo center, r. As a result, we are able to propose an accurate
fit for c

sub

(m
sub

, r), the first one of its kind to our knowledge.
We will then use the c

sub

(m
sub

, r) relation derived from the
results of the VL-II and ELVIS simulations to compute and
update the substructure boost to the total annihilation signal.

The work is organized as follows. In section 2 we start
by defining the most useful halo and subhalo quantities and
by briefly describing the N-body cosmological simulation data
sets that we use, i.e., VL-II and ELVIS. Later, in the same
section, we present in detail our analysis of subhalo concen-
trations and provide best fits as a function of radial distance
to the host halo center and of subhalo mass. We also quantify
the associated subhalo-to-subhalo scatter found in the simu-
lations. Section 3 is devoted to the calculation of the boost to
the DM annihilation signal due to subhalos, by means of the
results found in section 2. This new substructure model should
be perceived as a refinement of the one in Sánchez-Conde &
Prada (2014). We also provide accurate fits to the boost. We
conclude in section 4 with a summary of our main results.

2 INFERRING SUBHALO PROPERTIES FROM
N-BODY COSMOLOGICAL SIMULATIONS

2.1 Definition of halo and subhalo properties

A more formal definition of the halo concentration is c
�

⌘
R

vir

/r�2

, i.e., the ratio of the halo virial radius, R
vir

, and the
radius r�2

at which the logarithmic slope of the DM density
profile d log ⇢

d log r = �2. The virial radius at redshift z is defined
as the radius that encloses a halo mean density � times the
critical (or mean, depending on the chosen convention) den-
sity of the Universe, ⇢c(z). This standard definition of halo
concentration, while very useful for the study of the internal

structure of well-resolved halos, is directly less suitable for
subhalos for several reasons. On one hand, the virial radius
of subhalos is not well defined. Tidal stripping removes mass
from the outer parts of subhalos and, as a result, subhalos are
truncated at smaller radii compared to field halos of the same
mass (Ghigna et al. 1998; Taylor & Babul 2001; Kravtsov et al.
2004; Diemand et al. 2007a,b). The subhalo DM density pro-
files thus drop very steeply near the edge of the subhalo (see,
e.g., Kazantzidis et al. (2004)). On the other hand, although
the central parts of the subhalo are expected to be una↵ected
by mass loss (Diemand et al. 2008), the particle resolution
of current simulations does not allow for an accurate descrip-
tion of subhalo density profiles in the innermost regions of the
subhalos and of the host halo (see, e.g., the discussion in Die-
mand & Moore (2011)). Therefore, describing the structural
properties of a subhalo is not a trivial task and it becomes
highly desirable to find a definition for the subhalo concen-
tration which is independent of any density profile and of the
particular definition used for the virial radius.

One such way to characterize the concentration parameter
is to express the mean physical density, ⇢̄, within the radius of
the peak circular velocity V

max

, in units of the critical density
of the Universe at present, ⇢c, as (Diemand et al. 2007b, 2008;
Springel et al. 2008)

c
V

=
⇢̄(R

max

)
⇢c

= 2

✓
V
max

H
0

R
max

◆
2

, (1)

where R
max

is the radius at which V
max

is attained and H
0

is
the Hubble constant. Note that, in this way, c

V

can be directly
obtained independently of the assumed form for the subhalo
DM density profile. At the same time, c

V

still fully encodes
the essential meaning attached to the traditional concentra-
tion parameter. Moreover, V

max

is less a↵ected by tidal forces
(Kravtsov et al. 2004; Diemand et al. 2007b).

Yet, finding a relation between c
�

and c
V

is convenient
in order to facilitate both a better intuition on subhalo con-
centration values and to compute annihilation boost factors
in Sec. 3, and ultimately, for a better comparison with previ-
ous works. This c

�

� c
V

relation, though, will necessarily rely
on the assumption of a particular functional form for the DM
density profile.

For spherical (untruncated) subhalos, the virial mass,m
�

,
at redshift z = 0, is defined as

m
�

=
4⇡
3

r3
�

⇢c � , (2)

where � is the overdensity factor that defines the halos and r
�

is its virial radius. Note that this mass does not represent the
true subhalo mass since, as mentioned, subhalos su↵er tidal
forces. However, it is still a good proxy for their concentra-
tion, as tidal mass losses mainly a↵ect the subhalo outskirts
and, indeed, are not expected to change the inner structure
significantly (Kazantzidis et al. 2004; Diemand et al. 2008).

For an NFW DM density profile (Navarro et al. 1996,
1997),

⇢(r) =
4 ⇢s

(r/rs) (1 + r/rs)2
, (3)

where rs ⌘ r�2

is the scale radius and ⇢s is density at rs. It
can be shown that the relation between c

V

and c
�

is given by
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Figure 2. Visualizations of the ELVIS pairs, shown in cubes 1.5 Mpc on a side, each centred on the mean centre of the pair with names
given.
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ELVIS	
48	MW-size	halos.	Half	in	paired	configurations.	
3	additional	MW	with	higher	resolution.	
WMAP7	cosmology.	
105	Msun	mass	resolution	for	the	48	MW.	
	
																					

cv	from	N-body	simulations	

VIA	LACTEA	II		
One	MW-size	halo.	
WMAP3	cosmology.	
4100	Msun	mass	resolution.	
Over	one	billion	particles.	
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where f(x) = ln(1+x)�x/(1+x). Note that, since for an NFW
profile V

max

occurs at R
max

= 2.163 rs, the relation between
both concentration definitions just depends on �.

Furthermore, it is possible to rewrite the virial mass in
terms of R

max

and V
max

in the following way:

m
�

=
f(c

�

)
f(2.163)

R
max

V 2

max

G
, (5)

with G the gravitational constant.
Below, we will investigate the dependence of the subhalo

concentration on subhalo (would-be virial) mass and distance
to the host halo center. We will do so for both definitions
of the concentration, c

V

and c
200

, by making use of N-body
simulation data. As for our notation, below we use capital
(small) letters to refer to halos (subhalos) or the index h (no
index) for halos (subhalos) otherwise.

2.2 Description of the data sets

High-resolution N-body cosmological simulations are manda-
tory in order to study subhalo properties in great detail.
Ideally, these simulations should resolve the subhalo inter-
nal structure accurately down to the innermost subhalo re-
gions and should provide excellent subhalo statistics. In our
work, we have considered two N-body cosmological simula-
tions of Milky-Way-size halos: VL-II (Diemand et al. 2008) and
ELVIS (Garrison-Kimmel et al. 014a). In both cases, present-
day (z = 0) halo catalogs are available for public download3

and we use the results for V
max

and R
max

. Note that one
may also study halo substructure properties by making use
of large-scale-structure simulations such as BolshoiP (Klypin
et al. 2011), MultiDark (Prada et al. 2012; Riebe et al. 2013;
Klypin et al. 2016; Rodŕıguez-Puebla et al. 2016), which in
turn would allow to learn about subhalo properties up to the
largest (sub)halo masses. This is left for future work.

VL-II follows the growth of a Milky Way-size system in a
⇤CDM universe from redshift 104.3 to the present time. The
simulation employs just over one billion particles of mass 4100
M� to model the formation of a M=1.93 x 1012 M� halo and
its substructure, where the halo and subhalo masses are ob-
tained assuming an overdensity of 200 relative to the mean

matter density of the Universe (or 47.6 with respect to the
critical density of the Universe at z = 0). More than 40000
individual subhalos within the host halo are resolved within
R = 402 kpc. Yet, the abundances and properties of many
of these subhalos are a↵ected by resolution e↵ects and, as a
result, the simulation team provides a reliable subsample of
⇠ 9400 subhalos with masses above ⇠ 106 M�. VL-II adopted
the cosmological parameters from the WMAP 3-year data re-
lease.

ELVIS contains 48 Milky-Way-size halos, of which half
are in paired configurations, similar to the Milky Way and
the Andromeda galaxy. The other half are isolated halos that

3 VL-II: http://www.ucolick.org/
~

diemand/vl/

ELVIS: http://localgroup.ps.uci.edu/elvis/
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VL-II 0.238 0.762 0.73 0.951 0.74 47.6 6914

ELVIS 0.266 0.734 0.71 0.963 0.801 97 35292

Table 1. VL-II and ELVIS most relevant parameters for this work.
Columns 2–6 indicate the set of cosmological parameters used in
each simulation; column 7 is the overdensity � over the critical den-
sity of the Universe; and column 8 denotes the number of subhalos,
Nsub, that were finally used in our study (see Sec. 2.3 for further
details). This number does not correspond to the actual number of
subhalos present in the simulations, which is substantially larger.

are mass-matched to those in the pairs. In addition, high-
resolution simulations of three isolated halos were performed.
All simulations were initialized at redshift z = 125. The mass
resolution for the 48 galaxy-size halos is about 105 M�, while
the particle mass for the higher resolution set is 2.35 x 104 M�.
The virial mass of halos and subhalos is defined as the mass
within the radius enclosing 97 times the critical density of the
Universe. The distribution of the virial masses of field halos
covers the range (1.0 � 2.85) ⇥ 1012 M�. In addition, ELVIS
resolves over 50000 subhalos with masses above ⇠ 106M�.
There is no statistical correlation among the field halos since
they were extracted from independent collisionless simula-
tions. Cosmological parameters were taken from WMAP 7-
year results.

We provide a summary of the most relevant parameters of
both simulations in Tab. 1. Let us note that the fact that ⌦m

and �
8

are lower for the WMAP 3-year than for the WMAP
7-year data set, implies that halos assemble later for WMAP
3-year cosmology (see, e.g., Macciò et al. (2008)). However,
the e↵ect is expected to be small given the relatively close �

8

values of both simulations and, indeed, as we show in the next
section, we observe a very weak dependence of the concen-
tration values on the cosmological parameters, both data sets
being in good agreement with each other within their statis-
tical dispersion. We also note that we present our results for
c
�

in the next section adopting � = 200 as the value for the
overdensity to define halos and subhalos. This is di↵erent from
the � value used in each simulation, as described above and in
Tab. 1, which implies that our c

�

values are lower than those
obtained if using the overdensities adopted in the simulations
to define halos and subhalos. However, by doing so we are able
to merge the results of both simulations and treat them on the
same footing for our purposes.

2.3 Subhalo concentrations

It is well known that subhalos exhibit concentrations that dif-
fer substantially from that of field halos of the same mass, the
latter being found to be less concentrated (Ghigna et al. 2000;
Bullock et al. 2001; Moore et al. 999a; Ullio et al. 2002; Die-
mand et al. 2007b, 2008; Diemand & Moore 2011; Pieri et al.
2011; Bartels & Ando 2015). Indeed, subhalos are subject to
tidal forces that remove material from their outskirts, making
them more compact. As a result, during this process R

max

be-
comes smaller and the enclosed mean subhalo density, codified
in c

V

(Eq. (1)), increases (Diemand et al. 2007a; Kuhlen et al.
2008; Springel et al. 2008).

In this section, we derive an accurate fit for the
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Figure 1. Median halo and subhalo concentrations and 1� errors as found in the VL-II simulation (Diemand et al. 2008). The concentrations
for all individual halos and subhalos are also shown (smaller dots in the background). Top panels: Results for subhalos depicted for three
di↵erent bins of the distance to the center of the host halo. From top to bottom: bin I (red dots), II (magenta dots and gray background dots)
and III (purple dots); see text for details. The black dots correspond to the halo median concentrations in the calibration bin beyond R

�

.
The left panel shows the median c

V

as a function of V
max

, while the right panel is for c

200

as a function of m
200

. We also show the results
of our fits (solid colored lines) and the P12 parametrization for the concentration of field halos (dashed black lines) (Prada et al. 2012) using
the fit in Sánchez-Conde & Prada (2014). Bottom panels: Median c

V

(left) and c

200

(right) as a function of the distance to the center of the
host halo normalized to R

�

, x
sub

. All (sub)halo masses have been included in these two plots.

VL-II and ELVIS simulations, for all the radial bins consid-
ered in our work. It works well in the subhalo mass range
10�6 h�1 M� . m

200

. 1015 h�1 M�.
Likewise, we obtain a parametrization for c

V

as a function
of V

max

and x
sub

for subhalos:

c
V

(V
max

, x
sub

) = c
0

"
1 +

3X

i=1


ai log

✓
V
max

10 km/s

◆�i
#
⇥

[1 + b log (x
sub

)] , (7)

where c
0

= 3.5⇥104, ai = {�1.38, 0.83, �0.49} and b = �2.5.
This fit works well for 10�4 km/s . V

max

. 103 km/s.

In order to compute the boost factor in Sec. 3 we also
need to have the concentration for the field halos. In the case
of ch

200

we will use the P12 parametrization. When using ch
V

we have no parametrization for field halos and only have infor-
mation for subhalos. Nevertheless, as we discussed above, the
concentration in the calibration bin agrees very well with the
concentration of field halos, so we use these results along with
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Figure 1. Median halo and subhalo concentrations and 1� errors as found in the VL-II simulation (Diemand et al. 2008). The concentrations
for all individual halos and subhalos are also shown (smaller dots in the background). Top panels: Results for subhalos depicted for three
di↵erent bins of the distance to the center of the host halo. From top to bottom: bin I (red dots), II (magenta dots and gray background dots)
and III (purple dots); see text for details. The black dots correspond to the halo median concentrations in the calibration bin beyond R

�

.
The left panel shows the median c

V

as a function of V
max

, while the right panel is for c

200

as a function of m
200

. We also show the results
of our fits (solid colored lines) and the P12 parametrization for the concentration of field halos (dashed black lines) (Prada et al. 2012) using
the fit in Sánchez-Conde & Prada (2014). Bottom panels: Median c

V

(left) and c

200

(right) as a function of the distance to the center of the
host halo normalized to R

�

, x
sub

. All (sub)halo masses have been included in these two plots.

VL-II and ELVIS simulations, for all the radial bins consid-
ered in our work. It works well in the subhalo mass range
10�6 h�1 M� . m

200

. 1015 h�1 M�.
Likewise, we obtain a parametrization for c

V

as a function
of V

max

and x
sub

for subhalos:
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V
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)] , (7)

where c
0

= 3.5⇥104, ai = {�1.38, 0.83, �0.49} and b = �2.5.
This fit works well for 10�4 km/s . V

max

. 103 km/s.

In order to compute the boost factor in Sec. 3 we also
need to have the concentration for the field halos. In the case
of ch

200

we will use the P12 parametrization. When using ch
V

we have no parametrization for field halos and only have infor-
mation for subhalos. Nevertheless, as we discussed above, the
concentration in the calibration bin agrees very well with the
concentration of field halos, so we use these results along with
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Figure 3. Top panel: Median halo (black symbols) and subhalo (colored symbols, for each radial bin) concentration parameter c

V

, and 1�
errors, as a function of V

max

as found in the VL-II (circles) and ELVIS simulations (triangles). The concentrations for all individual subhalos
are also shown (smaller dots in the background). The results for microhalos from I14 (Ishiyama 2014) and for more massive halos from
BolshoiP (BP) (Klypin et al. 2011) are shown by black diamonds and squares, respectively. We also show our fits for halos given by Eq. (8)
(dashed black line) and subhalos in Eq. (7) (solid colored lines) for each of the three radial bins considered. Bottom panel: Same as top panel,
but for c

200

as a function of m
200

. Our proposed fit for each of the radial bins, Eq. (6), and the P12 parametrization for the concentration
of halos (Prada et al. 2012) using the fit obtained in Sánchez-Conde & Prada (2014), are also shown.
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Subhalo	concentrations	at	all	masses	

Subhalo	data:	
•  VL-II	and	ELVIS	between	106	

–	1010	Msun.	
•  Ishiyama	(2014)	main	halos	

at	the	lowest	masses	
•  BolshoiP	main	halos	at	the	

largest	masses	

Clear	increase	of	subhalo	
concentrations	as	we	approach	the	
host	halo	center.	

Future:	add	BolshoiP,	MultidDark,	
Lomonosov,	‘Ishiyama’...	
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where in the last step we have assumed an NFW profile and
for halos, we use the parametrization for the concentration
parameter from Prada et al. (2012) using the fit obtained in
Sánchez-Conde & Prada (2014).

With this at hand, the luminosity of a subhalo of mass m
at a distance R

sub

from the center of the host halo, L(m,x
sub

),
is defined as

L(m,x
sub

) = [1 +B(m,x
sub

)]L
smooth

(m,x
sub

) . (12)

where now L
smooth

(m,x
sub

) is the luminosity for the smooth
distribution of the given subhalo and B(m,x

sub

) is the boost
factor due to the next level of substructure. The luminosity
of a subhalo (sub-subhalo) is given by the same functional
form as that of a field halo, but including the dependence of
the concentration parameter on the position of the subhalo
(sub-subhalo) inside the host halo (subhalo).

In addition to the mentioned dependences, we note that
subhalos are not homogeneously distributed within the host
halo (Springel et al. 2008; Hellwing et al. 2015; Rodŕıguez-
Puebla et al. 2016). However, we have checked that the precise
spatial distribution of subhalos inside halos has only a small
impact on our results (below 10%). Therefore, for the sake
of comparison with previous works, we do not include this
dependence here and postpone its discussion to future work.
By assuming that the subhalo mass function does not change
within the halo, we can write the boost factor as

B(M) =
3

L
smooth

(M)

Z M

M
min

dN(m)
dm

dm

Z
1

0

dx
sub

[1 +B(m)] L(m,x
sub

)x2

sub

, (13)

where dN(m)/dm is the subhalo mass function for a halo of
mass M , dN(m)/dm = A/M (m/M)�↵. The normalization
factor is equal to A = 0.012 for a slope of the subhalo mass
function ↵ = 2 and to A = 0.03 for ↵ = 1.9 (Sánchez-Conde
& Prada 2014), and was chosen so that the mass in the re-
solved substructure amounts to about 10% of the total mass
of the halo,11 as found in recent simulations (Diemand et al.
2007b; Springel et al. 2008). Note that, as done in most of
previous works,12 we have not subtracted the subhalo mass
fraction from the smooth halo contribution, so in principle,
this leads to a slight overestimate of the smooth halo luminos-
ity, and hence, to a slight underestimate of the boost factor.
This is expected to be a small correction, though, since it ap-
plies mainly to the outer regions of the halo where the subhalos
represent a larger mass fraction and the smooth contribution
is much smaller and subdominant with respect to the contri-
bution from substructure (Palomares-Ruiz & Siegal-Gaskins
2010; Sánchez-Conde et al. 2011).

In the case of an NFW profile, as the one we are using,
the luminosity from the smooth DM distribution of a field
halo can also be expressed in terms of the maximum circular
velocity, V h

max

, (Diemand et al. 2008)

L
smooth

(V h
max

) '
✓

2.163
f(2.163)

◆
2 2.163H

0

12⇡G2

r
ch
V

(V h
max

)

2
(V h

max

)3 , (14)

11 Extrapolating the subhalo mass function down to m/M =
10�18, those normalizations correspond to ⇠ 50% (⇠ 30%) of the
total mass of the halo for ↵ = 2 (↵ = 1.9).
12 See, e.g., Pieri et al. (2011) for one of the few exceptions.
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Figure 6. Halo substructure boost to the DM annihilation signal as
a function of the host halo mass. We have used our c

200

(m
200

, x

sub

)
parametrization in Eq. (6) and adopted M

min

= 10�6

M�. We
present results for two values of the slope of the subhalo mass
function, ↵ = 1.9 (lower, light red lines) and ↵ = 2 (black lines).
We also show the boost obtained with the DM profile-independent
definition of c

V

(green line), for which we have used our fit for
c

V

(V
max

, x

sub

) in Eq. (7), and (V
max

)
min

= 10�3.5 km/s. Notably,
the c

V

result lies within the results found for c
200

and the two slopes
of the subhalo mass function considered. Thin lines correspond to
results obtained assuming subhalos and sub-subhalos are not trun-
cated by tidal forces, while thick lines represent the more realistic
case, in which subhalos and sub-subhalos have been tidally-stripped
(see text). The dashed lines correspond to the results obtained in
Sánchez-Conde & Prada (2014) when assuming that both halos and
subhalos of the same mass have the same concentration values.

and, in a similar way, by including the radial dependence of
the concentration of subhalos, one can obtain the subhalo lu-
minosity function, L(V

max

, x
sub

).
In this case, the boost factor for a field halo with maxi-

mum circular velocity V h
max

(analogously to Eq. (13)), can be
written as

B(V h
max

) =
3

L
smooth

(V h
max

)

Z V h
max

(V
max

)

min

dN(V
max

)
dV

max

dV
max

Z
1

0

dx
sub

[1 +B(V
max

)] L(V
max

, x
sub

)x2

sub

,

(15)

where (V
max

)
min

is the value of V
max

which corresponds to
M

min

. In order to compute the luminosity in terms of V h
max

we need the subhalo mass function in terms of V
max

, and we
use the result of Diemand et al. (2008), dN(V

max

)/dV
max

=
(0.108/V h

max

) (V h
max

/V
max

)4.
The results for the boost factor defined in Eqs. (13)

and (15) are shown in Fig. 6, where we use the parametriza-
tions for c

200

(m
200

, x
sub

), c
V

(V
max

, x
sub

), ch
V

(V h
max

) and
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ch
200

(M
200

) given by Eqs. (6), (7) (8) and P12, respectively.
We depict the boost factor for field halos as a function of the
halo mass and adopt M

min

= 10�6 M� or, equivalently for an
NFW profile, (V

max

)
min

= 10�3.5 km/s (thin solid lines). We
show the results for both c

V

(green line) and c
200

(in this case,
for two values of the slope of the subhalo mass function, ↵ = 2
and ↵ = 1.9 with black and red lines, respectively). Both re-
sults are in good agreement, with the boost factor obtained
from c

V

lying within the boost factors obtained from c
200

for
the two di↵erent slopes of the subhalo mass functions consid-
ered. The results obtained in Sánchez-Conde & Prada (2014)
are also shown (dashed lines). As done in this latter work and
discussed above, we are including only the two first levels of
substructure, namely subhalos and sub-subhalos, as the con-
tribution of the third substructure level was found to be al-
ways less than 6%. Yet, we note that the second level (namely
B(m,x

sub

) in our notation) can contribute up to ⇠ 40% in
some cases. As can be seen from Fig. 6, we obtain a total
boost which is a factor of 2 � 3 larger than that obtained
in Sánchez-Conde & Prada (2014), where, we recall, the au-
thors assumed that halos, subhalos and sub-subhalos of the
same mass have the same concentrations. Interestingly, our
results also agree well with those recently found by Bartels
& Ando (2015) by means of a semi-analytical model for the
boost based on mass-accretion histories and subhalo accretion
rates. Similar boost values have also been reported in Zavala
& Afshordi (2016), where authors invoked the universality of
DM clustering in phase space within subhalos across a wide
range of host halo masses (Zavala & Afshordi 2014) to predict
DM annihilation signals.

We caution that, in our work and in Sánchez-Conde &
Prada (2014), an NFW DM density profile is always assumed
for all virialized structures. Nevertheless, it has been recently
shown that subhalos and, very especially, microhalos with
masses close to M

min

= 10�6 M� seem to exhibit DM den-
sity profiles which are cuspier than NFW in the innermost
regions (Diemand et al. 2008; Ishiyama 2014). Thus, their
concentrations do not correspond to the NFW concentration
values discussed and adopted throughout this paper. Fortu-
nately, it is possible to convert from one to another (Ricotti
2003; Anderhalden & Diemand 2013) and to perform a one-to-
one comparison among them. The result of adopting subhalo
concentrations that are corrected by the mentioned e↵ect is a
moderate increase of the boost factor, up to ⇠ 30% (Ander-
halden & Diemand 2013; Ishiyama 2014).

3.3 E↵ect of tidal stripping on the boost

So far in the calculation of the boost factor, we have not con-
sidered the fact that subhalos su↵er from tidal forces within
their host halos and thus, that they are expected to be trun-
cated at some radius rt < r

200

. As already discussed above,
this also implies that m

200

is not the true mass of the subhalo
(which was nevertheless assumed to be such in the calculation
of the boost factor in Sec. 3.2, Eqs. (13) and (15)). Therefore,
a more precise value of the boost can be derived if the actual
subhalo mass m, obtained by integrating the subhalo density
distribution up to rt, was adopted instead. In a similar way,
the subhalo luminosity must be truncated at rt instead of r

200

,

Figure 7. Example of subhalo substructure boost to the DM anni-
hilation signal (the one expected, e.g., for dwarf satellite galaxies)
as a function of the subhalo mass for the particular case of subhalos
inside a host halo with mass M

200

= 1012 M� and located at a
distance of 80 kpc from the host halo center. This is approximately
the case of Draco, one of the Milky Way dwarf galaxy satellites
(m

Draco

⇠ ⇥108 M� (Lokas et al. 2005)). We show results ob-
tained assuming subhalos and sub-subhalos are not truncated (or,
in some cases, destroyed) by tidal forces (thin lines), and assuming
subhalos and sub-subhalos are tidally stripped (more realistic case;
thick lines). We have used our c

200

(m
200

, x

sub

) parametrization of
Eq. (6) and adopted M

min

= 10�6

M�. We also present results for
two values of the slope of the subhalo mass function, ↵ = 1.9 (light
red lines) and ↵ = 2 (black lines). See text for further discussion.

i.e.,

Lt
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(m
200

, x
sub

) ⌘
Z rt

0

⇢2
sub

(r) 4⇡ r2 dr =

m
200

c3
200

(m
200

, x
sub

)

[f(c
200

(m
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, x
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))]2
200 ⇢c
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⇥

✓
1� 1

(1 + rt/rs(m200

, x
sub

))3

◆
.

(16)

This is the only modification one has to include in the cal-
culation of the boost up to the first level of substructures.
However, to compute the boost factor of subhalos (i.e., up to
the second level of halo substructure), in addition to intro-
ducing the analogous modification in the calculation of the
sub-subhalo luminosity, the variable x

sub�sub

⌘ r
sub

/r
200

(the
equivalent to x

sub

for sub-subhalos) must be substituted by
r
sub

/rt, where r
sub

is the distance of the sub-subhalos to the
center of the host subhalo. Moreover, we assume that tidal
forces do not modify the subhalo and sub-subhalo mass func-
tions per unit volume. This means that the number of sub-
subhalos is reduced and therefore, the boost for subhalos.

c
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(Improved)	subhalo	boost	model	

[Agrees	also	with	Bartels	&	Ando	(2015)	and	Zavala	&	Afshordi	(2015)]	

MAIN	HALOS	 SUBHALOS	

O(30)	boost	for	MW-size	halos	
(factor	~2	higher	than	SCP14)	

Very	small	boost	for	subhalos,	e.g.	dwarfs	

[Moliné,	MASC,	et	al.,	(2017)	MNRAS,	466,	4974]	

1.  Make	use	of	our	best	knowledge	on	subhalo	concentrations.	
2.  Tidal	stripping	included	(Roche	criterium).	



Remarks	
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•  Subhalo concentrations: 

–  Used VL-II and ELVIS. 

–  Used a concentration parameter independent of the profile. 

–  The closer to the host halo center the more concentrated. 

–  Substantially larger (factor ~2) than field halos. 

•  Substructure boosts factors: 

–  Improved the model in Sánchez-Conde & Prada (2014). 

–  More accurate subhalo concentrations + tidal stripping. 

–  About a factor 2-3 larger than before (main halos). 

–  Negligible for dwarf galaxies of the Milky Way. 



Miguel	A.	Sánchez-Conde	
(miguel.sanchezconde@uam.es)	
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F(Eγ > Eth,Ψ0 ) = J(Ψ0 )× fPP Eγ > Eth( ) photons cm-2 s-1  

22 

The	DM	annihilation	γ-ray	flux	

Astrophysics 

J(Ψ0 ) =
1
4π

dΩ
ΔΩ

∫ ρDM
2 [r(λ)]dλ

l.o.s.∫

Particle physics 

fPP∝
dN f

γ

dEγf
∑ Bf

σ ⋅ v
mχ

2

Ng	:	number	of	photons	per	
annihila%on,	E	>Eth	

<σ v>:	cross	sec%on	
mχ:	neutralino	mass	

Alex Drlica-Wagner   |   Indirect Detection
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Current	knowledge	of	the	c(M)	relation	at	z=0	

Concentration	c	=	Rvir	/	rs	

MASC	&	Prada,	MNRAS,	442,	2271	(2014)	[astro-ph/1312.1729]	

The flattening of the concentration-mass relation and implications for the boosts 3
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Figure 1. Top panel: Current knowledge of the median concentration-mass relation at z = 0 for all halo masses available in the
literature from different simulation data sets, i.e. from the smallest Earth-like DM microhalos predicted to exist in the CDM universe
(∼10−6h−1M⊙), up to the largest cluster-size halos (∼1015h−1M⊙). At the high-mass end, the results from Bolshoi (blue circles) and
MultiDark (purple circles) are shown. The two empty black squares at ∼109h−1M⊙ and the three filled black squares at ∼108h−1M⊙

were derived from Ishiyama et al. (2013) and Coĺın et al. (2004), respectively. Another individual ”Draco-like 108h−1M⊙ halo is also
plotted as a green pentagon (Moore et al. 2001). A couple hundreds dwarf halos with masses ∼106 – 109 h−1M⊙ (red triangles) were
extracted from the VL-II data (Diemand et al. 2008). At the low-mass end, we show the microhalo results taken from Diemand et al.
(2005) (orange filled diamonds) and Anderhalden & Diemand (2013) (orange empty diamonds) for individual halos, as well as those
recently reported by Ishiyama (2014) for a sample of thousands of microhalos (empty black triangles). We also provide the upper limit
to halo concentrations obtained by Diemand et al. (2005) in the range 10−6 – 10 h−1M⊙ (pink dotted line). The P12 concentration
model (Prada et al. 2012) is shown with a solid line. The shaded gray region represents a typical 1σ concentration scatter of 0.14 dex
centered on the P12 model. The dashed curve represents the updated M08 version (Macciò, Dutton, & van den Bosch 2008) of the
B01 toy concentration model (Bullock et al. 2001). All concentration values but those from MultiDark, Bolshoi and VL-II, have been
extrapolated down to z = 0 by means of the (1 + z) correction factor. Bottom panel: Same data set but displayed in the c – σ−1 plane,
which allows for a more detailed analysis and comparison between simulations and model in terms of the amplitude of linear density
fluctuations. The concentration values shown are those in the original set of simulations at the corresponding redshift where they were
measured, while the σ(M) values are the ones that halos would have at present time for those values of the concentration, see text for
further details. Solid (dashed) line refers to the σ(M) range in which the P12 model was (not) tested against simulations.
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[SCP14]	



New	LOMONOSOV	simulations	

Concentration	c	=	Rvir	/	rs	

Pilipenko,	MASC+17	[astro-ph/1703.06012]	

6 S. V. Pilipenko et al.
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Figure 4. Lomosonov median concentration values (green filled circles for L512, open circles for zoomed regions), with 1σ-error bars, in
comparison with other simulation data sets at different halo mass scales (Coĺın et al. 2004; Diemand et al. 2005; Diemand et al. 2008b;
Ishiyama et al. 2013; Anderhalden & Diemand 2013b; Sánchez-Conde & Prada 2014; Ishiyama 2014b; Hellwing et al. 2016; Klypin et al.
2016); see legend for specific symbols. All concentration values but those of the MultiDark suite (purple circles without error bars) and
VL-II (red triangles) were extrapolated down to z = 0 by applying the corresponding [H(z)/H(0)]2/3 correction factor; see text for
details. The solid line is the concentration-mass fit proposed by Klypin et al. (2016) for the Planck cosmology, the shaded grey region
around it representing a typical 1σ concentration scatter of 0.14 dex.

from the MultiDark suite (Klypin et al. 2016). We also note
that the halo-to-halo scatter of Lomonosov concentrations
is of the same order of the one found in previous works, of
about 0.10 dex.

It is remarkable the good agreement among the dif-
ferent simulation data sets within the involved uncertain-
ties. We also confirm, once again, the excellent agreement
of simulation data with the semi-analytical c(M) model of
Prada et al. (2012), initially calibrated for the WMAP7 cos-
mology and then recently updated to the Planck cosmol-
ogy in Klypin et al. (2016). We recall that this c(M) model
is deeply rooted in the ΛCDM cosmological framework it-
self by making a full correspondence between dark matter
halo concentrations and the r.m.s. of matter fluctuations.
We note that, in order to show the c(M) relation given by
this model all the way down to 10−7 h−1 M⊙, i.e. the mini-
mum halo mass shown in Fig. 4, we first computed the r.m.s.
of matter fluctuations directly from the matter power spec-
trum that was used to generate the MultiDark simulations11

and, then, we used this r.m.s. of matter fluctuations to de-
rive halo concentrations by adopting the relationship found
between these two quantities in Klypin et al. (2016) (their
equation (25)). The agreement between data and model is
present at all simulated halo mass scales, including a new
confirmation of the flattening of the c(M) relation at masses
below ∼1010 h−1 M⊙. Indeed, we observe a clear departure
from the simple power-law behaviour that has been tradi-

11 But extrapolating it down to smaller halo masses with a sim-
ple power law, and placing an exponential mass cut-off at 10−12

h−1 M⊙, i.e., well below the range shown in Fig. 4.

tionally reported at higher halo masses. Other c(M) models
have been recently proposed that would yield similar quali-
tative results as well, e.g., Ludlow et al. (2014); Correa et al.
(2015); Diemer & Kravtsov (2015); Ludlow et al. (2016).

5 CONCLUSIONS

In this work, we have introduced the new Lomonosov sim-
ulation suite consisting of one moderate resolution full box
simulation, with box size 32 h−1 Mpc, and three high reso-
lution zoom-in re-simulations of overdense, underdense and
mean density regions within the same box. The main pur-
pose of the simulations is to allow for accurate measure-
ments of dark matter halo concentrations at masses below
those typically achievable in large cosmological simulations.
We focus on the 107 — 1010 h−1 M⊙ halo mass range.

Achieving the high resolution that is required to resolve
well low-mass halos results in a simulated volume that is
much smaller than the typical volume needed to ensure Uni-
verse homogeneity. This fact may distort the halo median
concentration values found in simulations, since concentra-
tion is known to depend on the local environment density
(e.g. Lee et al. (2017)). We confirm this dependency by mak-
ing use of data from both Lomonosov simulations and Small
MultiDark Planck (Klypin et al. 2016). Indeed, the concen-
tration of low-mass halos severely depends on the density of
the environment (Fig. 3), less concentrated halos inhabiting
less dense regions and viceversa.

We solve the issue of measuring halo concentrations
in small-volume high-resolution simulations by simulating

MNRAS 000, 1–9 (2017)
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What	does	ΛCDM	tell	us	about	c(M)		
at	the	smallest	scales?	

•  Natal	concentrations	are	mainly	set	by	the	halo	formation	time.		

•  Given	the	CDM	power	spectrum	,	the	smallest	halos	typically	collapse	nearly	at	the	same	time:	

à		Concentration	is	nearly	the	same	for	the	smallest	halos	over	a	wide	range	of	masses.		

à  power-law	c(M)	extrapolations	not	correct!	
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Our	current	knowledge	of	the	c(M)	relation	from	simulations		
also	support	the	theoretical	expectations.	

No	more	simple	power-law	c(M)	extrapolations!	

6 S. V. Pilipenko et al.
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Figure 4. Lomosonov median concentration values (green filled circles for L512, open circles for zoomed regions), with 1σ-error bars, in
comparison with other simulation data sets at different halo mass scales (Coĺın et al. 2004; Diemand et al. 2005; Diemand et al. 2008b;
Ishiyama et al. 2013; Anderhalden & Diemand 2013b; Sánchez-Conde & Prada 2014; Ishiyama 2014b; Hellwing et al. 2016; Klypin et al.
2016); see legend for specific symbols. All concentration values but those of the MultiDark suite (purple circles without error bars) and
VL-II (red triangles) were extrapolated down to z = 0 by applying the corresponding [H(z)/H(0)]2/3 correction factor; see text for
details. The solid line is the concentration-mass fit proposed by Klypin et al. (2016) for the Planck cosmology, the shaded grey region
around it representing a typical 1σ concentration scatter of 0.14 dex.

from the MultiDark suite (Klypin et al. 2016). We also note
that the halo-to-halo scatter of Lomonosov concentrations
is of the same order of the one found in previous works, of
about 0.10 dex.

It is remarkable the good agreement among the dif-
ferent simulation data sets within the involved uncertain-
ties. We also confirm, once again, the excellent agreement
of simulation data with the semi-analytical c(M) model of
Prada et al. (2012), initially calibrated for the WMAP7 cos-
mology and then recently updated to the Planck cosmol-
ogy in Klypin et al. (2016). We recall that this c(M) model
is deeply rooted in the ΛCDM cosmological framework it-
self by making a full correspondence between dark matter
halo concentrations and the r.m.s. of matter fluctuations.
We note that, in order to show the c(M) relation given by
this model all the way down to 10−7 h−1 M⊙, i.e. the mini-
mum halo mass shown in Fig. 4, we first computed the r.m.s.
of matter fluctuations directly from the matter power spec-
trum that was used to generate the MultiDark simulations11

and, then, we used this r.m.s. of matter fluctuations to de-
rive halo concentrations by adopting the relationship found
between these two quantities in Klypin et al. (2016) (their
equation (25)). The agreement between data and model is
present at all simulated halo mass scales, including a new
confirmation of the flattening of the c(M) relation at masses
below ∼1010 h−1 M⊙. Indeed, we observe a clear departure
from the simple power-law behaviour that has been tradi-

11 But extrapolating it down to smaller halo masses with a sim-
ple power law, and placing an exponential mass cut-off at 10−12

h−1 M⊙, i.e., well below the range shown in Fig. 4.

tionally reported at higher halo masses. Other c(M) models
have been recently proposed that would yield similar quali-
tative results as well, e.g., Ludlow et al. (2014); Correa et al.
(2015); Diemer & Kravtsov (2015); Ludlow et al. (2016).

5 CONCLUSIONS

In this work, we have introduced the new Lomonosov sim-
ulation suite consisting of one moderate resolution full box
simulation, with box size 32 h−1 Mpc, and three high reso-
lution zoom-in re-simulations of overdense, underdense and
mean density regions within the same box. The main pur-
pose of the simulations is to allow for accurate measure-
ments of dark matter halo concentrations at masses below
those typically achievable in large cosmological simulations.
We focus on the 107 — 1010 h−1 M⊙ halo mass range.

Achieving the high resolution that is required to resolve
well low-mass halos results in a simulated volume that is
much smaller than the typical volume needed to ensure Uni-
verse homogeneity. This fact may distort the halo median
concentration values found in simulations, since concentra-
tion is known to depend on the local environment density
(e.g. Lee et al. (2017)). We confirm this dependency by mak-
ing use of data from both Lomonosov simulations and Small
MultiDark Planck (Klypin et al. 2016). Indeed, the concen-
tration of low-mass halos severely depends on the density of
the environment (Fig. 3), less concentrated halos inhabiting
less dense regions and viceversa.

We solve the issue of measuring halo concentrations
in small-volume high-resolution simulations by simulating

MNRAS 000, 1–9 (2017)
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[only	first	two	substructure	levels	included]

27	

Comparison	with	previous	boost	models	

MASC	&	Prada,	MNRAS,	442,	2271	(2014)	[astro-ph/1312.1729]	

Reminder:	they	all	assume	that	both	main	halos	and	subhalos	possess	
	 			similar	structural	properties!	

“HIGH”	

“LOW”	



	

1)  Strictly	valid	only	for	field	DM	halos	(i.e.,	no	subhalos).	

à	Not	easily	applicable	to	e.g.	Milky	Way	satellites.	
à Subhalo	concentrations	are	larger	à	lower	limits	to	actual	boost	values.	
à Tidal	forces	will	remove	material	from	the	outskirts	à	upper	limits	

2)  Total	integrated	boosts	for	the	whole	object.	

à No	radial	information.		
à Suggestion:	follow	3k10	formalism	(Kamionkowski+10)	with	the	recipe	in	

MASC+11,	assuming	the	total	boost	given	by	MASC+14.	
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[Slide	taken	from	my	presentation	at	the	UCLA	DM	14]	

SCP14: caveats 
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Figure 2: Density profiles of main halo and subhalos. Main panel: Profile of the
Milky Way halo (thick line) and of eight large subhalos (thin lines). The lower panel gives the
relative differences between the simulated main halo profile and a fitting formula with a core29

ρ(r) = ρs exp{−2/α [(r/rs)α − 1], with best fit parameters: α = 0.170, rs = 21.5 kpc, ρs = 1.73 ×
10−3 M⊙ pc−3 (red curve) and one with a cusp20 ρ(r) = ρs(r/rs)−γ(r/rs + 1)−3+γ with a best fit
inner slope of γ = 1.24, rs = 28.1 kpc, ρs = 3.50 × 10−3 M⊙ pc−3 (blue curve). The vertical dotted
line indicates the estimated convergence radius of 380 pc: simulated local densities are only lower
limits inside of 380 pc and they should be correct to within 10% outside this region. The cuspy
profile is a good fit to the inner halo, while the cored profile has a too shallow slope in the inner
few kpc, causing it to overestimate densities around 4 kpc and to underestimate them at all radii
smaller than 1 kpc. The simulated densities are higher than the best fit cored profile even at 80 pc,
where they are certainly underestimated due to numerical limitations. We find the same behavior
in the inner few kpc in all six snapshots we have analyzed so far between z=3 an z=0. The large
residuals in the outer halos on the other hand are transient features, they are different in every
snapshot. Inset: Rescaled host (thick line) and subhalo (thin lines) density profiles multiplied by
radius square to reduce the vertical range of the figure.
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Figure 22. Subhalo density profiles for nine different subhaloes in the Aq-A halo, simulated with varying resolution. The profiles show the bound mass only
and are drawn with thick lines for the radial range where convergence is expected, based on the criterion of Power et al. (2003). They are continued with thin
lines down to the scale 2ϵ. Vertical dashed lines mark the radii where the force law becomes Newtonian (2.8ϵ). The dot–dashed purple line in each panel is the
density profile of all the mass around the subhalo’s centre (i.e. including unbound mass). The thin black line shows a fit with the Einasto profile. The labels in
each panel give the maximum circular velocity, mass and distance d to halo centre for each subhalo. α is the shape parameter of the Einasto profile, which we
here allowed to vary freely in our fits.

this representation whether the Einasto fit is significantly better than
fits with other analytic functions, like the NFW or Moore profiles.

Further insight can be obtained by studying the local logarith-
mic slopes of the subhalo density profiles as a function of radius,
which we show in Fig. 23, obtained by finite differencing of the
measured density profiles. Again, we compare the differing resolu-
tions available for Aq-A, and plot the results as thick lines for radii
where we expect convergence according to Power et al. (2003),
continuing them with thin lines towards smaller scales. The conver-
gence criterion appears to work quite well and in most cases accu-
rately delineates a limit beyond which the profiles suddenly start to
become significantly flatter. At larger radii, the local slopes change
continuously and smoothly with radius. For several subhaloes, we
have direct evidence that for the local slope is significantly shal-
lower than −1.5 in the innermost converged bin, thereby ruling out
the Moore profile for at least some dark matter subhaloes. In one
case, we find convergence to a slope which is clearly shallower than
−1.2. As for main haloes, extrapolation of the shape of these curves
to smaller radii suggests that profiles that will become significantly
shallower before reaching an asymptotic inner slope, if one exists.
From these results it seems very unlikely that typical dark matter
subhaloes could have power-law cusps with slopes as steep as −1.2,
as recently suggested by Diemand et al. (2008).

Another way to arrive at a similar conclusion is not to consider the
numerically differentiated density profile, but rather the maximum
asymptotic inner slope

β(r) = 3[1 − ρ(r)/ρ(r)], (18)

which can be supported by the enclosed mass at a certain radius.
This quantity was introduced by Navarro et al. (2004). It requires
converged values for both the local density and the enclosed mass
at each radius r. This is a more stringent convergence requirement
than asking that the density alone be converged. Nevertheless, it
can provide a powerful lower limit on the profile slope in the inner
regions; there cannot possibly be a cusp steeper than ρ ∝ r−β since
there is simply not enough mass enclosed to support it. In Fig. 24,
we show β(r) as a function of radius for the same subhaloes as
before, using the same approach to mark the Power et al. (2003)
convergence radius. We see that this convergence criterion is not
conservative enough in some of cases, where the enclosed mass is
not fully converged for the last bin. The Power et al. (2003) criterion
was actually designed for this quantity, but it has only been tested
for main haloes, and it is not surprising that we find subhaloes to be
somewhat more demanding. Nevertheless, this figure reinforces our
earlier conclusion. For most of the subhaloes, a central dark matter
cusp as steep as the Moore profile can be safely excluded, and in a

C⃝ 2008 The Authors. Journal compilation C⃝ 2008 RAS, MNRAS 391, 1685–1711

Similar	to	those	of	main	halos	but	in	the	outermost	regions,	where	they	exhibit	a	
exponential	cut-off	(tidal	stripping)		

	à	‘standard’	virial	radius	definition	not	valid	à	concentration??	

Springel+08	
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Figure 6. Left panel: Comparison of the DM annihilation flux profiles (normalized to fSUSY) for the
subsample of those three dwarfs and three clusters with the highest fluxes. Right panel: Same as left
panel but this time including substructure following the 3K10 model described in section 4.3.

5 DM annihilation flux predictions and detection prospects for IACTs

5.1 Galaxy clusters or dwarf galaxies?

In this section, we will compare the results previously obtained for dwarf galaxies with those
obtained for galaxy clusters with the aim of elucidating the best candidates for gamma-ray
DM searches. The result of the comparison is given in figure 6, where we show the case with
no substructure at all (left panel) and a second case where we included substructure, in both
dwarfs and clusters (right panel). For clarity, we do not use our whole sample of objects, but
just the sub-sample composed by those three dwarfs — Willman 1, Segue 1 and UMi-A —
and three clusters — Virgo, Fornax and Ophiuchus — with the highest fluxes.

In both panels, dwarf galaxies reach the highest flux levels at Ψ0 = 0◦, roughly an order
of magnitude larger than those expected from clusters. This therefore seems to favor dwarfs
against galaxy clusters, particularly for point-like based observational search strategies. How-
ever, note that galaxy clusters dominate the gamma-ray DM-induced emission at large angles
once substructure is properly taken into account. This happens at radii greater than ∼0.4◦

in all cases, fluxes remaining substantially higher than those expected from dwarfs and de-
creasing quite slowly up to very large radii, contrary to what happens in dwarfs. Actually,
once we include the effect of substructure, some of these galaxy clusters emit much more
DM annihilation flux in total than the best dwarf galaxies. For example Virgo, as can be
seen by comparing JT in tables 4 and 8, gives a flux larger than Willman 1 by a factor ∼13.
However, the main contribution to the total flux now comes from the outer regions, where the
flux level is comparatively quite low with respect to that reached in the very center. Thus,
if our search strategy can deal with quite extended sources (meaning ∼ 1 − 1.5◦, which, as
shown in table 8, is the typical value of ψ90, i.e., the typical size of the 90% emitting region),
then galaxy clusters probably are the best candidates or at least represent good competitors
to dwarfs.

5.2 J-values comparison with other works

Below we comment on the agreement/disagreement of our J-values with those found in some
works in the literature. We note that, when performing such a comparison, one has to be

– 20 –

Annihilation	signal	becomes	more	spatially	extended.	
à  Instrumental	sensitivity	is	worse	for	extended	sources.	
à More	relevant	for	galaxy	clusters;	irrelevant	for	dwarfs.	
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Figure 6. Left panel: Comparison of the DM annihilation flux profiles (normalized to fSUSY) for the
subsample of those three dwarfs and three clusters with the highest fluxes. Right panel: Same as left
panel but this time including substructure following the 3K10 model described in section 4.3.

5 DM annihilation flux predictions and detection prospects for IACTs

5.1 Galaxy clusters or dwarf galaxies?

In this section, we will compare the results previously obtained for dwarf galaxies with those
obtained for galaxy clusters with the aim of elucidating the best candidates for gamma-ray
DM searches. The result of the comparison is given in figure 6, where we show the case with
no substructure at all (left panel) and a second case where we included substructure, in both
dwarfs and clusters (right panel). For clarity, we do not use our whole sample of objects, but
just the sub-sample composed by those three dwarfs — Willman 1, Segue 1 and UMi-A —
and three clusters — Virgo, Fornax and Ophiuchus — with the highest fluxes.

In both panels, dwarf galaxies reach the highest flux levels at Ψ0 = 0◦, roughly an order
of magnitude larger than those expected from clusters. This therefore seems to favor dwarfs
against galaxy clusters, particularly for point-like based observational search strategies. How-
ever, note that galaxy clusters dominate the gamma-ray DM-induced emission at large angles
once substructure is properly taken into account. This happens at radii greater than ∼0.4◦

in all cases, fluxes remaining substantially higher than those expected from dwarfs and de-
creasing quite slowly up to very large radii, contrary to what happens in dwarfs. Actually,
once we include the effect of substructure, some of these galaxy clusters emit much more
DM annihilation flux in total than the best dwarf galaxies. For example Virgo, as can be
seen by comparing JT in tables 4 and 8, gives a flux larger than Willman 1 by a factor ∼13.
However, the main contribution to the total flux now comes from the outer regions, where the
flux level is comparatively quite low with respect to that reached in the very center. Thus,
if our search strategy can deal with quite extended sources (meaning ∼ 1 − 1.5◦, which, as
shown in table 8, is the typical value of ψ90, i.e., the typical size of the 90% emitting region),
then galaxy clusters probably are the best candidates or at least represent good competitors
to dwarfs.

5.2 J-values comparison with other works

Below we comment on the agreement/disagreement of our J-values with those found in some
works in the literature. We note that, when performing such a comparison, one has to be
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5 DM annihilation flux predictions and detection prospects for IACTs

5.1 Galaxy clusters or dwarf galaxies?

In this section, we will compare the results previously obtained for dwarf galaxies with those
obtained for galaxy clusters with the aim of elucidating the best candidates for gamma-ray
DM searches. The result of the comparison is given in figure 6, where we show the case with
no substructure at all (left panel) and a second case where we included substructure, in both
dwarfs and clusters (right panel). For clarity, we do not use our whole sample of objects, but
just the sub-sample composed by those three dwarfs — Willman 1, Segue 1 and UMi-A —
and three clusters — Virgo, Fornax and Ophiuchus — with the highest fluxes.

In both panels, dwarf galaxies reach the highest flux levels at Ψ0 = 0◦, roughly an order
of magnitude larger than those expected from clusters. This therefore seems to favor dwarfs
against galaxy clusters, particularly for point-like based observational search strategies. How-
ever, note that galaxy clusters dominate the gamma-ray DM-induced emission at large angles
once substructure is properly taken into account. This happens at radii greater than ∼0.4◦

in all cases, fluxes remaining substantially higher than those expected from dwarfs and de-
creasing quite slowly up to very large radii, contrary to what happens in dwarfs. Actually,
once we include the effect of substructure, some of these galaxy clusters emit much more
DM annihilation flux in total than the best dwarf galaxies. For example Virgo, as can be
seen by comparing JT in tables 4 and 8, gives a flux larger than Willman 1 by a factor ∼13.
However, the main contribution to the total flux now comes from the outer regions, where the
flux level is comparatively quite low with respect to that reached in the very center. Thus,
if our search strategy can deal with quite extended sources (meaning ∼ 1 − 1.5◦, which, as
shown in table 8, is the typical value of ψ90, i.e., the typical size of the 90% emitting region),
then galaxy clusters probably are the best candidates or at least represent good competitors
to dwarfs.

5.2 J-values comparison with other works

Below we comment on the agreement/disagreement of our J-values with those found in some
works in the literature. We note that, when performing such a comparison, one has to be
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