New applications of gauge/gravity duality

Johanna Erdmenger

Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Foundations

Duality:

A physical theory has two equivalent formulations Same dynamics, one-to-one map between states

Gauge/Gravity Duality: String Theory Origin

D3 branes in 10d

↓ Low energy limit

 $\mathcal{N}=4$ SU(N) Super Yang-Mills theory $(N o \infty)$

IIB Supergravity on $AdS_5 \times S^5$

Limits $N \to \infty$, 't Hooft coupling $\lambda \equiv g_{\rm YM}^2 N \to \infty$

Limits $N \to \infty$, 't Hooft coupling $\lambda \equiv g_{\rm YM}^2 N \to \infty$

Limits $N \to \infty$, 't Hooft coupling $\lambda \equiv g_{\rm YM}^2 N \to \infty$

Theories similar to large N QCD by breaking conformal + supersymmetry

Extra dimension identified with renormalization scale

Limits $N \to \infty$, 't Hooft coupling $\lambda \equiv g_{\rm YM}^2 N \to \infty$

Theories similar to large N QCD by breaking conformal + supersymmetry

Extra dimension identified with renormalization scale

Adding flavour degrees of freedom (quarks)

Limits $N \to \infty$, 't Hooft coupling $\lambda \equiv g_{\rm YM}^2 N \to \infty$

Theories similar to large N QCD by breaking conformal + supersymmetry

Extra dimension identified with renormalization scale

Adding flavour degrees of freedom (quarks)

Gauge/gravity duality valid more generally than string theory examples?

Gauge/gravity duality: Examples

- 1. Mesons in large N QCD
- 2. Low-x physics
- 3. Kondo model: Simple condensed matter model similar to QCD
- 4. Gauge/Gravity Duality and Quantum Information

Example 1: Light mesons

Babington, J.E., Evans, Guralnik, Kirsch Phys.Rev. D69 (2004) 066007

Gauge/gravity duality realization of

spontaneous chiral symmetry breaking and light mesons

Mesons: quark-antiquark bound states

Example 1: Light mesons

Babington, J.E., Evans, Guralnik, Kirsch Phys.Rev. D69 (2004) 066007

Gauge/gravity duality realization of

spontaneous chiral symmetry breaking and light mesons

Mesons: quark-antiquark bound states

Meson masses

from solving classical equations of motion in higher-dimensional gravity

Light mesons

Babington, J.E., Evans, Guralnik, Kirsch PRD 2004

Meson masses obtained from fluctuations of probe D7-brane

 π pseudoscalar meson mass: From fluctuations of probe D7-brane embedding

 ρ vector meson mass: From fluctuations of gauge field on D7-brane

Comparison to lattice gauge theory

Mass of ρ meson as function of π meson mass² (for $N \to \infty$)

Comparison to lattice gauge theory

Gauge/Gravity Duality: J.E., Evans, Kirsch, Threlfall '07, review EPJA

Lattice gauge theory: Lucini, Del Debbio, Bali, Panero et al '13

Result Gauge/Gravity Duality:

$$\frac{m_{\rho}(m_{\pi})}{m_{\rho}(0)} = 1 + 0.307 \left(\frac{m_{\pi}}{m_{\rho}(0)}\right)^{2}$$

Result Lattice Gauge Theory (Bali, Bursa '08): Slope 0.341 ± 0.023

Comparison to lattice gauge theory

Gauge/Gravity Duality: J.E., Evans, Kirsch, Threlfall '07, review EPJA

Lattice gauge theory: Lucini, Del Debbio, Bali, Panero et al '13

Result Gauge/Gravity Duality:

$$\frac{m_{\rho}(m_{\pi})}{m_{\rho}(0)} = 1 + 0.307 \left(\frac{m_{\pi}}{m_{\rho}(0)}\right)^{2}$$

Result Lattice Gauge Theory (Bali, Bursa '08): Slope 0.341 ± 0.023

Why is the agreement so good?

Spontaneous symmetry breaking in flat space:

Spontaneous symmetry breaking in flat space:

In Anti-de Sitter space, instability occurs if quark mass is below the Breitenlohner-Freedman bound

$$m^2L^2 \ge -\frac{d^2}{4}$$

Spontaneous symmetry breaking in flat space:

In Anti-de Sitter space, instability occurs if quark mass is below the Breitenlohner-Freedman bound

$$m^2L^2 \ge -\frac{d^2}{4}$$

Classical dimension of quark bilinear $\bar{\psi}\psi$: $\Delta = 3$

AdS/CFT: Mass of dual scalar $m^2L^2=\Delta(\Delta-d)$, here: $m^2L^2=-3\geq -4$

Along the RG flow, $\Delta \rightarrow \Delta' = \Delta - \gamma$

When $\Delta' < 2$, $m^2L^2 < -4$ below BF bound \Rightarrow Instability

Anomalous dimension

Anomalous dimension leads to violation of BF bound

Anomalous dimension in gauge/gravity model originating from string theory:

Anomalous dimension

Anomalous dimension leads to violation of BF bound

Anomalous dimension in gauge/gravity model originating from string theory:

Phenomenological model: Make contact with QCD by chosing

$$\gamma = \frac{3(N^2 - 1)}{2N\pi} \alpha_s$$

Gravity side: Anomalous dimension of operator $\bar{\psi}\psi$ leads to instability

⇒ Spontaneous chiral symmetry breaking as in QCD

Example for Universality

Example 2: Deep inelastic scattering and Froissart bound

Froissart 1961:

At high energies, the total cross-section for two-particle scattering (protons) has an upper bound

$$\sigma \propto \ln^2 \frac{s}{s_0}$$

s centre-of-mass energy, s_0 energy scale

General argument based on unitarity of S matrix and analyticity properties of the scattering amplitude

Example 2: Deep inelastic scattering and Froissart bound

Froissart 1961:

At high energies, the total cross-section for two-particle scattering (protons) has an upper bound

$$\sigma \propto \ln^2 \frac{s}{s_0}$$

s centre-of-mass energy, s_0 energy scale

General argument based on unitarity of S matrix and analyticity properties of the scattering amplitude

QCD considerations link the Froissart bound at high energies to the dynamics of ultra-soft gluons (strongly coupled)

Example: Froissart bound in gauge/gravity duality

Giddings Phys.Rev. D67 (2003) 126001; Kang, Nastase Phys.Rev. D72 (2005) 106003

AdS metric with IR cutoff ('hard wall'), point mass m is placed on this IR wall

This creates perturbations of the AdS space which may lead to the formation of a black hole in AdS space

Geometrical cross section of this black hole ⇔ maximum possible scattering cross section in the field theory

$$\sigma \le \sigma_{\rm BH} = \pi r_h^2 \propto \ln^2 \frac{E}{E_0}$$

Subleading corrections to Froissart bound from AdS black holes

Diez, Godbole, SInha, Phys.Lett. B746 (2015) 285

Subleading corrections $\propto -\ln(s/s_0)$ and $\propto \ln s/s_0 \ln \ln s/s_0$, from higher curvature corrections

improve fits to cosmic ray and LHC data

Subleading corrections to Froissart bound from AdS black holes

Diez, Godbole, SInha, Phys.Lett. B746 (2015) 285

FIG. 1: (Colour online.) Fit results to experimental values of σ^{pp}_{tot} and $\sigma^{p\bar{p}}_{tot}$. The magenta solid, orange dot-dashed, blue dashed and black dotted curves are the (57)-(60) fits to the pp (green circles) and $p\bar{p}$ (red squares) data points, respectively. The data are from CDF, E710, E811, UA1, UA5 experiments [35–42]. The pp data points also include σ^{pp}_{tot} results from the LHC (at $\sqrt{s}=7,8$ TeV) [43–45] and cosmic-ray data [46].

Case for plasma wakefield acceleration Caldwell, Wing Eur. Phys. J. C76 (2016) 463

Example 3: Gauge/Gravity Dual of a Kondo model

A simple model in which perturbation theory breaks down at low energies just as in QCD:

Kondo model of condensed matter physics

Magnetic impurity interacting with electron gas

- Negative beta function
- Asymptotic freedom and confinement
- Dynamical scale generation

Example 3: Gauge/Gravity Dual of a Kondo model

Example 3: Kondo model

Gravity dual:

Based on probe brane construction with D7 and D5 probe branes

Essential features captured by

Three-dimensional Chern-Simons theory in AdS₃ black hole background coupled to matter fields on AdS₂ subspace

Electron gas strongly coupled

J.E., Flory, Hoyos, Newrzella, O'Bannon, Wu JHEP 2013, 2014, 2015, 2017 Fortschr. Phys. 2016

Example 3: Kondo model

Gravity dual:

Based on probe brane construction with D7 and D5 probe branes

Essential features captured by

Three-dimensional Chern-Simons theory in AdS₃ black hole background coupled to matter fields on AdS₂ subspace

Electron gas strongly coupled

J.E., Flory, Hoyos, Newrzella, O'Bannon, Wu JHEP 2013, 2014, 2015, 2017 Fortschr. Phys. 2016

Recent new duality example:

Sachdev 2015, Maldacena, Stanford 2016

Quantum mechanics for strange metal with infinite range interactions (Sachdev-Ye Kitaev model)

⇔ Charged AdS₂ black hole

Kondo effect within gauge/gravity duality

Magnetic impurity coupled to strongly correlated electron system

- Model
 J.E., Hoyos, O'Bannon, Wu 1310.3271, JHEP 2013
- Screening, resistivity
- Quantum quenches
 J.E., Flory, Newrzella, Strydom, Wu JHEP 2017
- Entanglement entropy
 J.E., Flory, Newrzella 1410.7811, JHEP 2014

 J.E., Flory, Hoyos, Newrzella, Wu 1511.03666, Fortschr. Phys. 2016
- Two-point correlators J.E., Hoyos, O'Bannon, Papadimitriou, Probst, Wu JHEP 2017

Quantum quench in Kondo model within gauge/gravity duality

J.E., Flory, Newrzella, Strydom, Wu JHEP 2017

Formation of screening cloud:

Exponential fall-off of number of degrees of freedom at impurity

Timescales set by eigenmodes of gravitational system (QNM's)

Spectral function $-\mathrm{Im}\langle\mathcal{O}^{\dagger}\mathcal{O}\rangle$

$$ho_{
m peak} \propto rac{1}{T - T_c}$$

Fano resonance

A continuum scatters off a discrete set of resonant states

Observed in side-coupled quantum dots

Göres et al PRB 62 2188

Use of geometry widespread in information theory

Make use of this to gain further understanding of gauge/gravity duality

Use of geometry widespread in information theory

Make use of this to gain further understanding of gauge/gravity duality

Fisher metric in information theory: Metric on space of probability distributions

Use of geometry widespread in information theory

Make use of this to gain further understanding of gauge/gravity duality

Fisher metric in information theory: Metric on space of probability distributions

Probability distribution $p(x, \vec{\theta})$, x a stochastic variable, $\vec{\theta}$ a set of n external parameters

Spectrum $\gamma(x, \vec{\theta}) \equiv -\ln p(x, \theta)$

Fisher metric

$$g_{\mu\nu}(\vec{ heta}) = \int dx \, p(x, \vec{ heta}) \frac{\partial \gamma(x, \theta)}{\partial \theta^{\mu}} \frac{\partial \gamma(x, \theta)}{\partial \theta^{\nu}} = \langle \partial_{\mu} \gamma \partial_{\nu} \gamma \rangle$$

For Gaussian distribution (saddle point approximation)

$$p(x_1, \dots, x_n) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left(-\sum_{i=1}^n \frac{(x_i - \bar{x}_i)^2}{2\sigma^2}\right)$$

Fisher metric gives Anti-de Sitter space:

$$ds^2 = rac{1}{\sigma^2} \left(dar{x}_i dar{x}^i + 2nd\sigma^2
ight)$$

Question: Understanding the dynamics governing this metric

Question: Understanding the dynamics governing this metric

- In AdS/CFT, gravity action and dynamics obtained from saddle-point approximation of string theory
- Information theory may help to establish the gravity dynamics more generally

Question: Understanding the dynamics governing this metric

- In AdS/CFT, gravity action and dynamics obtained from saddle-point approximation of string theory
- Information theory may help to establish the gravity dynamics more generally

Example: Dual Fisher information for mixed states

Banerjee, J.E., Sarkar 1701.02329

Proposal: FIsher information $\partial_m \partial_m \mathcal{F}$

 \mathcal{F} given by regularized volume under Ryu-Takayanagi surface

Agrees with field-theory result Ugajin, Sarosi 2016

Conclusion and outlook

Conclusion and outlook

Future of Gauge/Gravity Duality

Conclusion and outlook

Future of Gauge/Gravity Duality

- Understanding the foundations of gauge/gravity duality
 String theory ⇔ Black holes and quantum information
- Beyond the large N limit: Quantum gravity
- Obtain further knowledge about strongly coupled systems and about quantum field theory beyond perturbation theory
- Further relations between particle physics, gravity and other branches of physics