The quest for New Physics at the Intensity Frontier

Paride Paradisi

University of Padova

PASCOS 2017 19-23 June 2017, Madrid

Plan of the talk

- Ourrent status of the (very!) Standard Model
- Strategies to look for New Physics at low-energy
- 3 Current anomalies and their interpretations
 - ► The g 2 of the muon
 - LFUV in semileptonic B decays
- 4 Conclusions and future prospects

The SM Lagrangian on a T-shirt

$$\begin{array}{rcl} \mathbf{L_{SM}} & = & -\frac{1}{4}\mathbf{F}^{a}_{\mu\nu}\mathbf{F}^{a\mu\nu} \\ & + & i\overline{\psi}\mathcal{D}\psi + h.c. \\ & + & \psi_{i}y_{jj}\psi_{j}\phi + h.c. \\ & + & |D_{\mu}\phi|^{2} - V(\phi) \end{array}$$

"This is short enough to write on a T-shirt!"

The SM legacy

The LEP legacy

- Z-pole observables @ the 0.1% level
- Important constraints on many BSM

The B-factories legacy

- Confirmation of the CKM mechanism
- Important constraints on many BSM

Belle II + LHCb phase 2 upgrade: improvement in reach of factor 2.7-4 Like going from 8 TeV to 21-32 TeV!

[Tim Gershon's summary talk @ Moriond 2017]

The LHC legacy

Higgs Boson mass (combined LHC Run 1 results of ATLAS and CMS)

$$m_H \ = \ 125.09 \pm 0.21 ({\rm stat.}) \pm 0.11 ({\rm syst.})$$

 $\qquad \textbf{Higgs Boson couplings: } \mu_i^f = \frac{\sigma_i \textit{Br}^f}{(\sigma_i)_{\textit{SM}}(\textit{Br}^f)_{\textit{SM}}} \qquad (\mu_i^f \equiv \textit{signal strengths})$

The NP "scale"

- Gravity $\Longrightarrow \Lambda_{Planck} \sim 10^{18-19} \; \mathrm{GeV}$
- Neutrino masses $\implies \Lambda_{\text{see-saw}} \lesssim 10^{15} \; \mathrm{GeV}$
- BAU: evidence of CPV beyond SM
 - ▶ Electroweak Baryogenesis $\Longrightarrow \Lambda_{NP} \lesssim \text{TeV}$
 - ▶ Leptogenesis $\Longrightarrow \Lambda_{\text{see-saw}} \lesssim 10^{15} \; \mathrm{GeV}$
- Hierarchy problem: $\Longrightarrow \Lambda_{NP} \lesssim {\rm TeV}$
- Dark Matter (WIMP) $\Longrightarrow \Lambda_{NP} \lesssim {\rm TeV}$

SM = effective theory at the EW scale

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{d \geq 5} \frac{c_{ij}^{(d)}}{\Lambda_{NP}^{d-4}} \ \textit{O}_{ij}^{(d)}$$

- $\mathcal{L}_{\text{eff}}^{d=5} = \frac{y_{\nu}^{ij}}{\Lambda_{\text{see-saw}}} L_i L_j \phi \phi$,
- \$\mathcal{L}_{\text{eff}}^{d=6}\$ generates FCNC operators

Hierarchy see-saw

[Rattazzi @ ppLHCb2013, Genova]

Hierarchy problem: Λ_{NP} ≲ TeV
 SM Yukawas: M_W ≲ Λ_{NP} ≲ M_P
 Flavor problem: Λ_{NP} ≫ TeV

(Desperately) Looking for NP

TERRA INCOGNITA

- We do not have a cross in the map to know where the BSM treasure is, as we had for the Higgs boson: we have to explore the whole territory!
- Is the BSM treasure is in the territory to be explored? Does it exist at all?
- The content of the BSM treasure is also a mystery: SUSY, new strong interactions, extra dimensions, something unexpected,?

Where to look for New Physics at low-energy?

- Processes very suppressed or even forbidden in the SM
 - ▶ LFV processes ($\mu \rightarrow e\gamma$, $\mu \rightarrow e$ in N, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow 3\mu$, · · ·)
 - CPV effects in the electron/neutron EDMs
 - ► FCNC & CPV in B_{s,d} & D decay/mixing amplitudes
- Processes predicted with high precision in the SM
 - ▶ EWPO as $(g-2)_{\mu}$: $\Delta a_{\mu} = a_{\mu}^{exp} a_{\mu}^{SM} \approx (3\pm1)\times 10^{-9}$ (3 σ discrepancy!)
 - ▶ LFUV in $M \to \ell \nu$ (with $M = \pi, K, B$), $B \to D^{(*)}\ell \nu$, $B \to K\ell \ell'$, τ and Z decays

Experimental status

Process	Present	Experiment	Future	Experiment
$\mu o {f e} \gamma$	4.2×10^{-13}	MEG	$\approx 4 \times 10^{-14}$	MEG II
μo 3 e	1.0×10^{-12}	SINDRUM	$\approx 10^{-16}$	Mu3e
μ^- Au $ ightarrow$ e^- Au	7.0×10^{-13}	SINDRUM II	?	
μ^- Ti $ ightarrow$ e^- Ti	4.3×10^{-12}	SINDRUM II	?	
μ^- Al $ o$ e^- Al	_		$pprox 10^{-16}$	COMET, MU2e
$ au o {m e}\gamma$	3.3×10^{-8}	Belle & BaBar	$\sim 10^{-9}$	Belle II
$ au o \mu \gamma$	4.4×10^{-8}	Belle & BaBar	$\sim 10^{-9}$	Belle II
au o 3e	2.7×10^{-8}	Belle & BaBar	$\sim 10^{-10}$	Belle II
$ au o 3\mu$	2.1×10^{-8}	Belle & BaBar	$\sim 10^{-10}$	Belle II
$d_e({ m e~cm})$	8.7×10^{-29}	ACNE	?	
$d_{\mu}({ m e~cm})$	1.9×10^{-19}	Muon (g-2)	?	

Table: Present and future experimental sensitivities for relevant low-energy observables.

- So far, only upper bounds. Still excellent prospects for exp. improvements.
- We can expect a NP signal in all above observables below the current bounds.

On the muon q-2

- Today: $a_{\mu}^{EXP} = (116592089 \pm 54_{stat} \pm 33_{sys}) \times 10^{-11} [0.5 \text{ppm}].$
- Future: new muon g-2 experiments at:
 - Fermilab E989: aims at $\pm 16 \times 10^{-11}$, ie 0.14ppm. Beam expected next year. First result expected in 2018 with a precision comparable to that of BNL E821.
 - J-PARC proposal: aims at phase 1 start with 0.37ppm (2016) revised TDR).
- Are theorists ready for this (amazing) precision? Not yet

On the muon g-2

Comparisons of the SM predictions with the measured g-2 value:

$$a_{\mu}^{EXP}$$
 = 116592091 (63) x 10⁻¹¹

E821 – Final Report: PRD73 (2006) 072 with latest value of $\lambda = \mu_{\mu}/\mu_{p}$ from CODATA'10

$a_{\mu}^{\scriptscriptstyle \mathrm{SM}} imes 10^{11}$	$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}}$	σ
116 591 761 (57)	$330 (85) \times 10^{-11}$	3.9 [1]
116 591 818 (51)	$273~(81)\times 10^{-11}$	3.4 [2]
116 591 841 (58)	$250 (86) \times 10^{-11}$	2.9 [3]

with the recent "conservative" hadronic light-by-light $a_{\mu}^{HNLO}(IbI) = 102 (39) x$ 10^{-11} of F. Jegerlehner arXiv:1511.04473, and the hadronic leading-order of:

- [1] Jegerlehner, arXiv:1511.04473.
- [2] Davier, arXiv:1612:02743.
- [3] Hagiwara et al, JPG38 (2011) 085003.

[courtesy of M. Passera]

On leptonic dipoles: $\ell \to \ell' \gamma$

NP effects are encoded in the effective Lagrangian

$$\mathcal{L} = e \frac{m_\ell}{2} \left(\bar{\ell}_R \sigma_{\mu\nu} \textcolor{red}{A_{\ell\ell'}} \ell_L' + \bar{\ell}_L' \sigma_{\mu\nu} \textcolor{blue}{A_{\ell\ell'}^\star} \ell_R \right) F^{\mu\nu} \qquad \ell,\ell' = e,\mu,\tau \,,$$

▶ Branching ratios of $\ell \to \ell' \gamma$

$$\frac{\mathrm{BR}(\ell \to \ell' \gamma)}{\mathrm{BR}(\ell \to \ell' \nu_\ell \bar{\nu}_{\ell'})} = \frac{48 \pi^3 \alpha}{G_F^2} \Big(|A_{\ell \ell'}|^2 + |A_{\ell' \ell}|^2 \Big) \,.$$

 $ightharpoonup \Delta a_{\ell}$ and leptonic EDMs

$$\Delta a_{\ell} = 2m_{\ell}^2 \operatorname{Re}(A_{\ell\ell}), \qquad \qquad \frac{d_{\ell}}{a} = m_{\ell} \operatorname{Im}(A_{\ell\ell}).$$

"Naive scaling":

$$\Delta a_\ell/\Delta a_{\ell'} = m_\ell^2/m_{\ell'}^2, \qquad \qquad d_\ell/d_{\ell'} = m_\ell/m_{\ell'}.$$

Model-independent predictions

• BR $(\ell_i \to \ell_j \gamma)$ vs. $(g-2)_{\mu}$ $\mathrm{BR}(\mu \to e \gamma) \quad \approx \quad 3 \times 10^{-13} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{e\mu}}{10^{-5}}\right)^2$ $\mathrm{BR}(\tau \to \mu \gamma) \quad \approx \quad 4 \times 10^{-8} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{\ell\tau}}{10^{-2}}\right)^2$

• EDMs assuming "Naive scaling" $d_{\ell_i}/d_{\ell_j}=m_{\ell_i}/m_{\ell_j}$

$$\begin{array}{lcl} \textit{d}_{e} & \simeq & \left(\frac{\Delta \textit{a}_{\mu}}{3\times 10^{-9}}\right) 10^{-28} \left(\frac{\phi_{e}^{\textit{CPV}}}{10^{-4}}\right) \; e \; \mathrm{cm} \, , \\ \\ \textit{d}_{\mu} & \simeq & \left(\frac{\Delta \textit{a}_{\mu}}{3\times 10^{-9}}\right) 2\times 10^{-22} \; \phi_{\mu}^{\textit{CPV}} \; \; e \; \mathrm{cm} \, . \end{array}$$

Main message: the explanation of the anomaly $\Delta a_{\mu} \approx (3\pm1)\times 10^{-9}$ requires a NP scenario nearly flavor and CP conserving

[Giudice, P.P., & Passera, '12]

Testing new physics with the electron g-2

Longstanding muon g − 2 anomaly

$$\Delta a_{\mu} = a_{\mu}^{\mathrm{EXP}} - a_{\mu}^{\mathrm{SM}} pprox (3 \pm 1) imes 10^{-9}$$
 $\Delta a_{\mu} pprox a_{\mu}^{\mathrm{EW}} = rac{m_{\mu}^2}{(4\pi v)^2} \left(1 - rac{4}{3} s_{\mathrm{W}}^2 + rac{8}{3} s_{\mathrm{W}}^4
ight) pprox 2 imes 10^{-9}.$

- How could we check if the a_{μ} discrepancy is due to NP?
- Testing NP effects in $a_{
 m e}$ [Giudice, P.P., & Passera, '12]: $\Delta a_{
 m e}/\Delta a_{\mu}=m_{
 m e}^2/m_{\mu}^2$

$$\Delta a_{\theta} = \left(\frac{\Delta a_{\mu}}{3\times 10^{-9}}\right) 0.7\times 10^{-13}.$$

- ▶ a_e has never played a role in testing NP effects. From $a_e^{\rm SM}(\alpha) = a_e^{\rm EXP}$, we extract α which is is the most precise value of α available today!
- The situation has now changed thanks to th. and exp. progresses.

The Standard Model prediction of the electron g-2

• Using the second best determination of α from atomic physics $\alpha(^{87}{\rm Rb})$

$$\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}} = -9.2 \, (8.1) \times 10^{-13},$$

- Beautiful test of QED at four-loop level!
- $\delta \Delta a_e = 8.1 \times 10^{-13}$ is dominated by $\delta a_e^{\rm SM}$ through $\delta \alpha (^{87}{\rm Rb})$.
- Future improvements in the determination of ∆a_e

$$\underbrace{(0.2)_{\rm QED4},\ (0.2)_{\rm QED5},\ (0.2)_{\rm HAD},\ (7.6)_{\delta\alpha},\ (2.8)_{\delta a_{\tilde{e}}^{\rm EXP}}.}_{(0.4)_{\rm TH}}$$

- ▶ The errors from QED4 and QED5 will be reduced soon to 0.1×10^{-13} [Kinoshita]
- Experimental uncertainties from $\delta a_e^{\rm EXP}$ and $\delta \alpha$ dominate!
- We expect a reduction of $\delta a_e^{\rm EXP}$ to a part in 10⁻¹³ (or better). [Gabrielse]
- Work is also in progress for a significant reduction of $\delta\alpha$. [Nez]
- Δa_e at the 10^{-13} (or below) is not too far! This will bring a_e to play a pivotal role in probing new physics in the leptonic sector. [Giudice, P.P., & Passera, '12]

Not only $\mu \to \overline{e\gamma...}$

LFV operators @ dim-6

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda_{\text{LFV}}^2} \, \mathcal{O}^{\text{dim}-6} + \dots \, .$$

$$\mathcal{O}^{\dim-6} \ni \ \bar{\mu}_{\text{R}} \, \sigma^{\mu\nu} \, \text{He}_{\text{L}} \, \text{F}_{\mu\nu} \, , \ (\bar{\mu}_{\text{L}} \gamma^{\mu} e_{\text{L}}) \left(\bar{\textit{f}}_{\text{L}} \gamma^{\mu} \textit{f}_{\text{L}} \right) \, , \ (\bar{\mu}_{\text{R}} e_{\text{L}}) \left(\bar{\textit{f}}_{\text{R}} \textit{f}_{\text{L}} \right) \, , \ \textit{f} = \textit{e}, \textit{u}, \textit{d}$$

- $\ell \to \ell' \gamma$ probe ONLY the dipole-operator (at tree level)
- $\ell_i \to \ell_i \bar{\ell}_k \ell_k$ and $\mu \to e$ in Nuclei probe dipole and 4-fermion operators
- When the dipole-operator is dominant:

$$BR(\ell_i \to \ell_j \ell_k \bar{\ell}_k) \approx \alpha \times BR(\ell_i \to \ell_j \gamma)$$

$$CR(\mu \to e \text{ in N}) \approx \alpha \times BR(\mu \to e \gamma)$$

$$\frac{\mathrm{BR}(\mu \to 3\mathrm{e})}{3 \times 10^{-15}} \approx \frac{\mathrm{BR}(\mu \to \mathrm{e}\gamma)}{5 \times 10^{-13}} \approx \frac{\mathrm{CR}(\mu \to \mathrm{e} \ \mathrm{in} \ \mathrm{N})}{3 \times 10^{-15}}$$

- Ratios like $Br(\mu \to e\gamma)/Br(\tau \to \mu\gamma)$ probe the NP flavor structure
- Ratios like $Br(\mu \to e\gamma)/Br(\mu \to eee)$ probe the NP operator at work

Hints of LFUV in semileptonic B decays

• LFUV in CC $b \rightarrow c$ transitions (tree-level in the SM) @ 3.9 σ

$$\begin{split} R_D^{\tau/\ell} &= \frac{\mathcal{B}(B \to D\tau\bar{\nu})_{\mathrm{exp}}/\mathcal{B}(B \to D\tau\bar{\nu})_{\mathrm{SM}}}{\mathcal{B}(\bar{B} \to D\ell\bar{\nu})_{\mathrm{exp}}/\mathcal{B}(B \to D\ell\bar{\nu})_{\mathrm{SM}}} = 1.34 \pm 0.17 \\ R_{D^*}^{\tau/\ell} &= \frac{\mathcal{B}(B \to D^*\tau\bar{\nu})_{\mathrm{exp}}/\mathcal{B}(B \to D^{(*)}\tau\bar{\nu})_{\mathrm{SM}}}{\mathcal{B}(B \to D^*\ell\bar{\nu})_{\mathrm{exp}}/\mathcal{B}(B \to D^*\ell\bar{\nu})_{\mathrm{SM}}} 1.23 \pm 0.07 \end{split}$$

[HFAG averages of BaBar '13, Belle '15, LHCb '15, Fajfer, Kamenik and Nisandzic '12]

• LFUV in NC $b \rightarrow s$ transitions (1-loop in the SM) @ 2.6 σ

$$\begin{split} R_K^{\mu/e} &= \frac{\mathcal{B}(B \to K \mu \bar{\mu})_{\rm exp}}{\mathcal{B}(B \to K e \bar{e})_{\rm exp}} \bigg|_{q^2 \in [1,6] {\rm GeV}^2} = 0.745^{+0.090}_{-0.074} \pm 0.036 \text{ [LHCb '14]} \\ R_{K^*}^{\mu/e} &= \frac{\mathcal{B}(B \to K^* \mu \bar{\mu})_{\rm exp}}{\mathcal{B}(B \to K^* e \bar{e})_{\rm exp}} \bigg|_{q^2 \in [1.1,6] {\rm GeV}^2} = 0.685^{+0.113}_{-0.069} \pm 0.047 \text{ [LHCb '17]} \end{split}$$

while $(R_K^{\mu/e})_{SM} = 1$ up to few % corrections [Hiller et al, '07, Bordone, Isidori and Pattori, '16].

High-energy effective Lagrangian

- A simultaneous explanation of both $R_K^{\mu/e}$ and $R_D^{\tau/\ell}$ anomalies naturally selects a left-handed operator $(\bar{c}_L\gamma_\mu b_L)(\bar{\tau}_L\gamma_\mu\nu_L)$ which is related to $(\bar{s}_L\gamma_\mu b_L)(\bar{\mu}_L\gamma_\mu\mu_L)$ by the $SU(2)_L$ gauge symmetry [Bhattacharya et al., '14].
- Global fits of B → K*ℓℓ data favour (not exclusively) an effective 4-fermion operator involving left-handed currents (\$\bar{s}_L \gamma_{\mu} b_L \ight)(\bar{\mu}_L \gamma_{\mu} \pu_L \ight), i.e. the \$C_9 = -C_{10}\$ solution [Hiller et al., '14, Hurth et al., '14, Altmannshofer and Straub '14, Descotes-Genon et al., '15,].
- This picture can work only if NP couples much more strongly to the third generation than to the first two. Two interesting scenarios are:
 - ▶ **Lepton Flavour Violating case:** NP couples in the interaction basis only to third generations. Couplings to lighter generations are generated by the misalignment between the mass and the interaction bases [Glashow, Guadagnoli and Lane, '14].
 - ▶ **Lepton Flavour Conserving case:** NP couples dominantly to third generations but LFV does not arise if the groups $U(1)_e \times U(1)_\mu \times U(1)_\tau$ are unbroken [Alonso et al., '15].

LFV case: high-energy effective Lagrangian

• In the energy window between the EW scale ν and the NP scale Λ , NP effects are described by $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{NP}}$ with \mathcal{L} invariant under $SU(2)_L \otimes U(1)_Y$.

$$\mathcal{L}_{\mathrm{NP}} = \; \frac{C_{1}}{\Lambda^{2}} \left(\overline{\textbf{q}}_{3L} \gamma^{\mu} \textbf{q}_{3L} \right) \left(\overline{\boldsymbol{\ell}}_{3L} \gamma_{\mu} \boldsymbol{\ell}_{3L} \right) + \frac{C_{3}}{\Lambda^{2}} \left(\overline{\textbf{q}}_{3L} \gamma^{\mu} \tau^{a} \textbf{q}_{3L} \right) \left(\overline{\boldsymbol{\ell}}_{3L} \gamma_{\mu} \tau^{a} \boldsymbol{\ell}_{3L} \right).$$

After EWSB we move to the mass basis through the unitary transformations

$$u_L
ightarrow \, V_u u_L \qquad d_L
ightarrow \, V_d d_L \qquad \,
u_L
ightarrow \, U_e
u_L
ightarrow \, e_L
ightarrow \, U_e e_L \, ,$$

[Calibbi, Crivellin, Ota, '15]

$$\lambda_{ij}^{\emph{d}} = \emph{V}_{\emph{d}3i}^{*}\emph{V}_{\emph{d}3j} \qquad \lambda_{ij}^{\emph{e}} = \emph{U}_{\emph{e}3i}^{*}\emph{U}_{\emph{e}3j} \qquad \qquad \emph{V}_{\emph{u}}^{\dagger}\emph{V}_{\emph{d}} = \emph{V}_{\mathrm{CKM}} \equiv \emph{V}$$

• Assumption for the flavor structure: $\lambda_{33}^{d,e} \approx 1$, $\lambda_{22}^{d,e} = |\lambda_{23}^{d,e}|^2$, $\lambda_{13}^{d,e} = 0$.

Semileptonic observables

• $B \to K\ell\bar{\ell}$

$$R_K^{\mu/e} pprox 1 - 0.28 \, rac{(C_1 + C_3)}{\Lambda^2 ({
m TeV})} rac{\lambda_{23}^d \, |\lambda_{23}^e|^2}{10^{-3}} \qquad (R_K^{\mu/e})_{exp} < 1$$

• $R_{D^{(*)}}^{\tau/\ell}$

$$R_{D^{(*)}}^{ au/\ell} pprox 1 - rac{0.12\ C_3}{\Lambda^2({
m TeV})} \left(1 + rac{\lambda_{23}^d}{V_{cb}}
ight) \lambda_{33}^e \qquad (R_{D^{(*)}}^{ au/\ell})_{exp} > 1$$

• $B \rightarrow K \nu \bar{\nu}$

$$\begin{split} R_{K}^{\nu\nu} &\approx 1 + \frac{0.6 \, (C_1 - C_3)}{\Lambda^2 ({\rm TeV})} \left(\frac{\lambda_{23}^{\it d}}{0.01} \right) + \frac{0.3 \, (C_1 - C_3)^2}{\Lambda^4 ({\rm TeV})} \left(\frac{\lambda_{23}^{\it d}}{0.01} \right)^2 \\ R_{K}^{\nu\nu} &= \frac{\mathcal{B}(B \to K \nu \bar{\nu})}{\mathcal{B}(B \to K \nu \bar{\nu})_{\rm SM}} \leq 4.3 \end{split}$$

The correct pattern of deviation from the SM is reproduced for $C_3 < 0$, $\lambda_{23}^d < 0$ and $|\lambda_{23}^d/V_{cb}| \lesssim 1$. For $|C_3| \sim \mathcal{O}(1)$, we need $\Lambda \sim 1$ TeV and $|\lambda_{23}^e| \gtrsim 0.1$.

[Calibbi, Crivellin and Ota, '15]

Low-energy effective Lagrangian

Construction of the low-energy effective Lagrangian: running and matching

- We use the renormalization group equations (RGEs) to evolve the effective lagrangian $\mathcal{L}_{\mathrm{NP}}$ from $\mu \sim \Lambda$ down to $\mu \sim 1$ GeV. This is done is three steps:
 - First step: the RGEs in the unbroken $SU(2)_L \otimes U(1)_Y$ theory [Manohar et al.,'13] are used to compute the coefficients in the effective lagrangian down to a scale $\mu \sim m_Z$.
 - Second step: the coefficients are matched to those of an effective lagrangian for the theory in the broken symmetry phase of $SU(2)_L \otimes U(1)_Y$, that is $U(1)_{el}$.
 - Third step: the coefficients of this effective lagrangian are computed at $\mu \sim$ 1 GeV using the RGEs for the theory with the only $U(1)_{el}$ gauge group.
- Then we take matrix elements of the relevant operators. The scale dependence
 of the RGE contributions cancels with that of the matrix elements.

[Feruglio, P.P., Pattori, PRL '16, '17]

Leptonic Z-coupling modifications

• $\mathcal{L}_{\mathrm{NP}}$ induces modification of the W,Z couplings

$$\begin{split} \mathcal{L}_{\mathrm{NP}} = & \frac{1}{\Lambda^2} [(C_1 + C_3) \, \lambda^u_{ij} \lambda^e_{kl} \, (\bar{u}_{Li} \gamma^\mu u_{Lj}) (\bar{\nu}_{Lk} \gamma_\mu \nu_{Ll}) \, + \\ & (C_1 - C_3) \, \lambda^u_{ij} \lambda^e_{kl} \, (\bar{u}_{Li} \gamma^\mu u_{Lj}) (\bar{e}_{Lk} \gamma_\mu e_{Ll}) \, + \ldots] \end{split}$$

$$\mathcal{L}_{Z} = \frac{g_2}{c_W} \bar{e}_i \Big(Z g_{\ell L}^{ij} P_L + Z g_{\ell R}^{ij} P_R \Big) e_j + \frac{g_2}{c_W} \bar{\nu}_{Li} Z g_{\nu L}^{ij} \nu_{Lj}$$

$$\begin{split} \Delta g^{ij}_{\ell L} &\simeq \frac{v^2}{\Lambda^2} \left(3 y^2_t (C_1 - C_3) \lambda^u_{33} + g^2_2 C_3 \right) \log \left(\frac{\Lambda}{m_Z} \right) \frac{\lambda^e_{ij}}{16\pi^2} \\ \Delta g^{ij}_{\nu L} &\simeq \frac{v^2}{\Lambda^2} \left(3 y^2_t (C_1 + C_3) \lambda^u_{33} - g^2_2 C_3 \right) \log \left(\frac{\Lambda}{m_Z} \right) \frac{\lambda^e_{ij}}{16\pi^2} \end{split}$$

Figure: Z couplings with fermions. Upper: RGE induced coupling. Lower: one-loop diagram.

- Approximate LO results obtained adding to the RGE contributions from gauge and top yukawa interactions the one-loop matrix element.
- The scale dependence of the RGE contribution cancels with that of the matrix element dominated by a quark loop.

Z-pole observables

Non-universal leptonic vector and axial-vector Z couplings [PDG]

$$\begin{split} \frac{v_{\tau}}{v_{e}} &\approx 1 - 0.05 \, \frac{[(C_{1} - C_{3}) \lambda_{33}^{u} + 0.2 \, C_{3}]}{\Lambda^{2}(\mathrm{TeV})} \\ \frac{a_{\tau}}{a_{e}} &\approx 1 - 0.004 \, \frac{[(C_{1} - C_{3}) \lambda_{33}^{u} + 0.2 \, C_{3}]}{\Lambda^{2}(\mathrm{TeV})} \,, \end{split}$$

to be compared with the LEP result [PDG]

$$\frac{v_{\tau}}{v_e} = 0.959 \pm 0.029 \,, \qquad \frac{a_{\tau}}{a_e} = 1.0019 \pm 0.0015$$

Number of neutrinos N_ν from the invisible Z decay width

$$N_{\nu} pprox 3 + 0.008 \, rac{[(C_1 + C_3) \lambda_{33}^{\it u} - 0.2 \, C_3]}{\Lambda^2 ({
m TeV})}$$

to be compared with the LEP result [PDG]

$$N_{\nu} = 2.9840 \pm 0.0082$$

Purely leptonic effective Lagrangian

Quantum effects generate a purely leptonic effective Lagrangian:

$$\begin{split} \mathcal{L}_{\mathrm{eff}}^{\mathrm{NC}} &= -\frac{4\textit{G}_{\textit{F}}}{\sqrt{2}}\lambda_{ij}^{\textit{e}} \bigg[(\overline{\textit{e}}_{\textit{Li}}\gamma_{\mu}\textit{e}_{\textit{Lj}}) {\sum}_{\psi} \overline{\psi} \gamma^{\mu} \psi \left(2\textit{g}_{\psi}^{z} \textbf{c}_{\mathsf{t}}^{\mathsf{e}} - \textit{Q}_{\psi} \textbf{c}_{\gamma}^{\mathsf{e}} \right) + \textit{h.c.} \bigg] \\ \mathcal{L}_{\mathrm{eff}}^{\mathrm{CC}} &= -\frac{4\textit{G}_{\textit{F}}}{\sqrt{2}}\lambda_{ij}^{\textit{e}} \bigg[\textbf{c}_{\mathsf{t}}^{\mathsf{cc}} (\overline{\textit{e}}_{\textit{Li}}\gamma_{\mu}\nu_{\textit{Lj}}) (\overline{\nu}_{\textit{Lk}}\gamma^{\mu}\textit{e}_{\textit{Lk}} + \overline{u}_{\textit{Lk}}\gamma^{\mu}\textit{V}_{\textit{kl}}\textit{d}_{\textit{Ll}}) + \textit{h.c.} \bigg] \\ \psi &= \{ \nu_{\textit{Lk}}, \textit{e}_{\textit{Lk},\textit{Rk}}, \textit{u}_{\textit{LR}}, \textit{d}_{\textit{LR}}, \textit{s}_{\textit{LR}} \} & \textit{g}_{\psi}^{z} = \textit{T}_{3}(\psi) - \textit{Q}_{\psi} \sin^{2}\theta_{\textit{W}} \end{split}$$

$$\begin{split} \mathbf{c_t^e} &= \mathbf{y_t^2} \frac{3}{32\pi^2} \frac{v^2}{\Lambda^2} (C_1 - C_3) \lambda_{33}^u \log \frac{\Lambda^2}{m_t^2} \\ \mathbf{c_t^{cc}} &= \mathbf{y_t^2} \frac{3}{16\pi^2} \frac{v^2}{\Lambda^2} C_3 \, \lambda_{33}^u \log \frac{\Lambda^2}{m_t^2} \\ \mathbf{c_\gamma^e} &= \frac{\mathbf{e^2}}{48\pi^2} \frac{v^2}{\Lambda^2} \bigg[(3C_3 - C_1) \log \frac{\Lambda^2}{\mu^2} + \ldots \bigg] \end{split}$$

Figure: Diagram generating a four-lepton process.

- Top-quark yukawa interactions affect both neutral and charged currents.
- Gauge interactions are proportional to e² and to the e.m. current.

LFU violation in $au o \ell \bar{\nu} \nu$

• LFU breaking effects in $au o \ell ar{
u}
u$

$$\begin{split} R_{\tau}^{\tau/e} &= \frac{\mathcal{B}(\tau \to \mu \nu \bar{\nu})_{\rm exp}/\mathcal{B}(\tau \to \mu \nu \bar{\nu})_{\rm SM}}{\mathcal{B}(\mu \to e \nu \bar{\nu})_{\rm exp}/\mathcal{B}(\mu \to e \nu \bar{\nu})_{\rm SM}} \\ R_{\tau}^{\tau/\mu} &= \frac{\mathcal{B}(\tau \to e \nu \bar{\nu})_{\rm exp}/\mathcal{B}(\tau \to e \nu \bar{\nu})_{\rm SM}}{\mathcal{B}(\mu \to e \nu \bar{\nu})_{\rm exp}/\mathcal{B}(\mu \to e \nu \bar{\nu})_{\rm SM}} \end{split}$$

• $R_{\tau}^{\tau/\ell}$: experiments vs. theory

$$R_{ au}^{ au/\mu}=1.0022\pm0.0030\,,\;\;R_{ au}^{ au/e}=1.0060\pm0.0030\,$$
 [HFAG, 14]
$$R_{ au}^{ au/\ell}pprox 1+rac{0.01\ C_3}{\Lambda^2({
m TeV})}\,\lambda_{33}^{\mu}\lambda_{33}^e$$

• $R_{p(*)}^{\tau/\ell}$: experiments vs. theory

$$\begin{split} R_D^{\tau/\ell} &= 1.37 \pm 0.17, \qquad R_{D^*}^{\tau/\ell} = 1.28 \pm 0.08 \\ R_{D^{(*)}}^{\tau/\ell} &\approx 1 - \frac{0.12 \ C_3}{\Lambda^2 (\mathrm{TeV})} \left(1 + \frac{\lambda_{23}^d}{V_{cb}} \right) \lambda_{33}^e \end{split}$$

Strong tension between $R_{ au}^{ au/\ell}$ and $R_{ au}^{ au/\ell}$

LFV decays

• LFV τ decays (1-loop)

$$\begin{split} \mathcal{B}(\tau \to 3\mu) &\approx 5 \times 10^{-8} \, \frac{(C_1 - C_3)^2}{\Lambda^4 (\mathrm{TeV})} \left(\frac{\lambda_{23}^e}{0.3}\right)^2 \\ \mathcal{B}(\tau \to 3\mu) &\approx \mathcal{B}(\tau \to \mu\rho) \approx \mathcal{B}(\tau \to \mu\pi) \end{split}$$

LFV B decays (tree-level)

$$\mathcal{B}(B \to K\tau\mu) \approx 4 \times 10^{-8} \left| C_9^{\mu\tau} \right|^2 \approx 10^{-7} \left| \frac{C_9^{\mu\mu}}{0.5} \right|^2 \left| \frac{0.3}{\lambda_{23}^e} \right|^2,$$

since $C_9^{\mu\mu}/C_9^{\mu\tau} \approx \lambda_{23}^e$ and $|C_9^{\mu\mu}| \approx 0.5$ from $R_K^{e/\mu} \approx 0.75$.

• Experimental bounds [HFAG]:

$$\mathcal{B}(au o 3\mu)_{
m exp} \leq 2.1 imes 10^{-8}$$
 $\mathcal{B}(au o \mu
ho)_{
m exp} \leq 1.2 imes 10^{-8}$ $\mathcal{B}(au o \mu\pi)_{
m exp} \leq 2.7 imes 10^{-8}$ $\mathcal{B}(B o K au\mu)_{
m exp} \leq 4.8 imes 10^{-5}$

B anomalies

[Feruglio, P.P., Pattori, PRL '16, '17]

Discussion

- Question: are there ways out to the EWPT bounds discussed here?
 - Log effects can be cancelled/suppressed by finite terms, not captured by our RGE-based approach, which require the knowledge of the complete UV theory.
 - Our starting point can be generalized by allowing more operators at the scale Λ, making it possible cancellation/suppression of log effects [Barbieri et al,16, Isidori et al,17]
 - ullet EWPT constraints are relaxed if $\lambda^d_{23}\gg V_{cb}$ [Crivellin, Muller and Ota, '17]

•
$$\lambda_{23}^d \sim$$
 1, $\lambda_{22}^e \ll 10^{-2}$, $\Lambda \sim$ 5 TeV $\Longrightarrow R_D^{\tau/\ell}$

•
$$\lambda_{23}^d \sim 1, \lambda_{22}^e \sim 1, \Lambda \sim 30 \text{ TeV} \Longrightarrow R_{\nu(*)}^{\mu/e}$$

•
$$\lambda_{23}^d \sim$$
 1, $\lambda_{22}^e \sim 10^{-2}$, $\Lambda \sim$ 5 TeV $\Longrightarrow R_{D(*)}^{\tau/\ell}$ and $R_{K(*)}^{\mu/e}$

 $\lambda_{23}^{d} \sim$ 1 requires a large fine tuning to reproduce the CKM matrix

$$V_{\mathrm{CKM}} = V_u^{\dagger} V_d$$
 $\lambda_{ii}^q = V_{a3i}^* V_{q3j}$ $(q = u, d)$

Answer: Yes but they require some amount of fine tunings.

Testable predictions in models with $U(2)^n$ flavor symmetry

*b
$$\rightarrow$$
 c(u) Iv
$$= BR(B \rightarrow D^* \tau v)/BR_{SM} = BR(B \rightarrow D \tau v)/BR_{SM} = BR(\Lambda_b \rightarrow \Lambda_c \tau v)/BR_{SM}$$

$$= BR(B \rightarrow \pi \tau v)/BR_{SM} = BR(\Lambda_b \rightarrow p \tau v)/BR_{SM} = BR(B_u \rightarrow \tau v)/BR_{SM}$$
*b \rightarrow s $\mu\mu$
$$\Delta C_9^{\mu} = -\Delta C_{10}^{\mu} \quad (\rightarrow \text{ to be checked in several other modes...})$$
*b \rightarrow s $\tau\tau$
$$|NP| \sim |SM| \rightarrow \text{ large enhancement (easily 10 \times SM)}$$
*b \rightarrow s vv
$$\sim O(1) \text{ deviation from SM in the rate}$$
*K $\rightarrow \pi vv$
$$\sim O(1) \text{ deviation from SM in the rate}$$
*Meson mixing
$$\sim 10\% \text{ deviations from SM both in } \Delta M_{Bs} \& \Delta M_{Bd}$$
* τ decays
$$\tau \rightarrow 3\mu \text{ not far from present exp. Bound (BR $\sim 10^{-9}$)}$$

B anomalies

• The b o c au
u process is related to $b ar b o au^+ au^-$

$$\mathcal{L}_U^{ ext{eff}} \supset -rac{|g_U|^2}{M_U^2}\left[(V_{cb}(ar{c}_ ext{L}\gamma^\mu b_ ext{L})(ar{ au}_ ext{L}\gamma_\mu
u_ ext{L}) + h.c.) + (ar{b}_ ext{L}\gamma^\mu b_ ext{L})(ar{ au}_ ext{L}\gamma_\mu au_ ext{L})
ight]$$

• The explanation of the b o c au
u anomaly is constrained by LHC searches

 $bar{b}
ightarrow au^+ au^-$ @ LHC

[Faroughy, Greljo, Kamenik, '16]

Conclusions and future prospects

Important questions in view of ongoing/future experiments are:

- What are the expected deviations from the SM predictions induced by TeV NP?
- Which observables are not limited by theoretical uncertainties?
- ▶ In which case we can expect a substantial improvement on the experimental side?
- ▶ What will the measurements teach us if deviations from the SM are [not] seen?

• (Personal) answers:

- We can expect any deviation from the SM expectations below the current bounds.
- LFV processes, leptonic EDMs and LFUV observables do not suffer from theoretical limitations and there are still excellent prospects for experimental improvements.
- The observed LFUV in $B \to D^{(*)}\ell\nu$, $B \to K\ell\ell'$ might be true NP signals. It's worth to look for LFUV in $B_{(c)} \to \ell\nu$, $B \to K\tau\tau$, $\Lambda_b \to \Lambda_c\tau\nu$ and $\tau \to \ell\nu\nu$,
- If LFUV arise from LFV sources, the most sensitive LFV channels are typically not B-decays but τ decays such as $\tau \to \mu \ell \ell$ and $\tau \to \mu \rho$,
- The longstanding $(g-2)_\mu$ anomaly will be checked soon by the experiments E989 at Fermilab and E34 at J-PARK. If confirmed it will imply NP at/below the TeV scale!

Message: an exciting Physics program is in progress at the Intensity Frontier!