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Figure 1. Fractional change in the matter density power spectrum as a function of comoving wavenumber
k for di↵erent values of

P
m⌫ . Neutrino mass suppresses the power spectrum due to free streaming below

the matter-radiation equality scale. The shape of the suppression is highly characteristic and precision
observations over a range of scales can measure the sum of neutrino masses (here assumed all to be in a
single mass eigenstate). Also shown are the approximate ranges of experimental sensitivity in the power
spectrum for representative probes: the cosmic microwave background (CMB), galaxy surveys (Gal.), weak
lensing of galaxies (WL), and the Lyman-alpha forest (Ly↵). The CMB lensing power spectrum involves
(an integral over) this same power spectrum, and so is also sensitive to neutrino mass.
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, the sum of neutrino masses is at least approximately 150 meV. As we will discuss
below, future CMB-S4 and LSS experiments in the Cosmic Frontier have projected constraints to detect the
minimum mass scale of 58 meV at ⇠4� confidence, a ground-breaking result.
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to some arbitrarily chosen scale kNL. Theoretical errors
e↵ectively restrict the range of useful modes to those for
which the signal dominates over the theoretical uncer-
tainty. In this way the realistic kmax can be surprisingly
lower than kNL and this reduction of the number modes
leads to bigger uncertainties on inferred parameters.

We will describe in detail how to consistently calculate
the Fisher matrix including the theoretical uncertainties.
We will apply this general framework to measurements
of the sum of neutrino masses and primordial NG (for
a similar earlier study for the case of neutrino mass see
[11]). Obtaining realistic and very precise forecasts, par-
ticularly for very high redshift surveys, is beyond the
scope of this paper. Our primary goal is to study the
e↵ect of theoretical uncertainties on the amount of use-
ful information in a given volume. We will therefore use
simple analytical models whenever possible and assume
ideal surveys. In this sense our final results are opti-
mistic, but nevertheless give a very good estimate of how
much theoretical errors degrade the constraints.

Before moving to the more systematic treatment, in
the rest of this section we motivate the basic idea in the
example of equilateral NG.

A. Example of Equilateral NG

Primordial NG are important observables because they
contain information about the very early phases of cos-
mic evolution. The current upper bounds on the most
interesting equilateral and local shapes are [12]

f loc.
NL = 0.8± 5.0 , f eq.

NL = �4± 43 , (68% CL) . (1)

Even though these upper limits are quite strong, a theo-
retically interesting threshold is fNL ⇠ 1. Any detection
of non-zero NG would be very exciting, but even the ob-
servation that both f loc.

NL and f eq.
NL are smaller than one

would be very informative. It would favor single-field and
slow-roll inflation and practically rule out a large class of
inflationary models with modified kinetic term or more
than one light field during inflation. Although futuris-
tic experiments including polarization have a potential
to improve the current constraints almost by a factor of
2 (see for example [13]), it will be hard to reach fNL ⇠ 1
from the CMB alone.

The other way to detect primordial NG is through its
imprint on the bispectrum of density fluctuations in the
late universe. The full bispectrum B(k1,k2,k3) of the
density contrast � is a sum of the primordial part and
the one generated by the gravitational interactions. For
simplicity, let us focus on redshift z = 0 and assume that
all momenta in the bispectrum are of the same magnitude
k. The primordial contribution is approximately

Beq.(k) ⇠ P 2(k) · f eq.
NL

9H2
0⌦m

k2T (k)D+(0)
, (2)

where T (k) is the transfer function, H0 the present day
value of the Hubble constant, ⌦m the matter density pa-

rameter and D+(z) the perturbation growth factor. The
gravitational part can be calculated using perturbation
theory. If one calculates the bispectrum including (l� 1)
loops, the result can be schematically written as

Bgrav.(k) ⇠ P 2(k) [“(l � 1)�loop” + E(l, k)] , (3)

where the second term is the theoretical error. As we
discussed, the typical size of this error is E(l, k) =
O((k/kNL)(3+n)l). Notice that for the leading tree-level
bispectrum the first term in square brackets is O(1).
From the previous expressions it is clear that while the

theoretical error grows, the primordial part decays with
k. We are interested in the scale kmax for which they
become comparable. This scale sets the range of modes
that we are allowed to use in the analysis:

f eq.
NL

9H2
0⌦m

k2maxT (kmax)D+(0)
⇠

✓
kmax

kNL

◆(3+n)l

. (4)

For example, if we calculate the 1-loop bispectrum (cor-
responding to l = 2 for the error), for a target of f eq.

NL ⇠ 1
it turns out that kmax = 0.03 hMpc�1. This is quite
smaller than the naive cuto↵ kNL and deep in the per-
turbative regime. On second thought, this result should
not be so surprising. For the given kmax and f eq.

NL ⇠ 1 the
relative size of primordial part is

f eq.
NL

9H2
0⌦m

k2maxT (kmax)D+(0)
⇠ O(10�3) , (5)

which should be compared with the O(1) gravitational
contribution in Eq. (3). To get this precision on the
gravitational bispectrum one has to stay far away from
the nonlinear scale. This precision is an order of mag-
nitude smaller than the usual theoretical target, which
is O(1%). This is true for perturbation theory as well
as for simulations. In order to be useful for detection
of small equilateral NG, the theoretical models have to
significantly improve.
So far we were just comparing primordial and grav-

itational signal to estimate kmax. It is interesting to
ask whether f eq.

NL ⇠ 1 is even achievable with kmax =
0.03 h/Mpc�1 and what kind of survey volume is needed.
To find the answer we have to calculate the signal-to-
noise, which is given by

✓
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Z
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3k3

Beq.(k1,k2,k3)2

P (k1)P (k2)P (k3)

⇡ V

(2⇡)3
k3maxf

eq.
NL

2A · O(1) ,

(6)

where A = 2.215 · 10�9 is the normalization of the power
spectrum. This can be rewritten as �(f eq.

NL) ⇠ 2·104/pN ,
where N = (kmax/kmin)3 is the number of modes. With
NG of order unity we naively get kmin ⇠ 10�3kmax which,
for the above estimate of kmax, corresponds to unobserv-
able super-horizon scales.
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Another array layout giving higher resolution is to
build an array whose elements consist of FFTTs placed
far apart. After performing a spatial FFT of their indi-
vidual outputs, these can then be multiplied and inverse-
transformed pairwise, and the resulting block coverage of
the UV plane can be filled in by Earth rotation. As long
as the number of separate FFTTs is modest, the extra
numerical cost for this may be acceptable.

Above we discussed the tradeoff between different
shapes for fixed collecting area. If one instead replaces
a D × D two-dimensional FFTT by a one-dimensional
FFTT of length D using rotation synthesis, then equa-
tion (18) shows that one loses sensitivity in two separate
ways: at the angular scale ℓ ∼ D/λwhere the power spec-
trum error bar ∆Cℓ from equation (31) is the smallest,
one loses one factor of D/λ from the drop in f cover, and
a second factor of D/λ from the drop in collecting area
A. Another way of seeing this is to note that the avail-
able information scales as the number of baselines, which
scales as the square of the number of antennas and hence
as A2. This quadratic scaling can also be seen in equa-
tion (30): the total amount of information (∆φ)−2 scales
as A2Ωτ∆ν, so whereas field of view, observing time and
bandwidth help only linearly, area helps quadratically.
This is because we can correlate electromagnetic radia-
tion at different points in the telescope, but not at differ-
ent times, at different frequencies or from different points
in the sky. The common statement that the information
gathered scales as the etendu AΩ is thus true only at
fixed ℓ; when all angular scales are counted, the scaling
becomes A2Ω.

If in the quest of more sensitivity, one keeps length-
ening an oblong or one-dimensional FFT to increase the
collecting area, one eventually hits a limit: the curvature
of Earth’s surface makes a flat D ≫ 10km exceedingly
costly, requiring instead telescope curving along Earth’s
surface and the alternative analysis framework mentioned
above in Section III F. If one desires maximally straight-
forward data analysis, one thus wants to grow the tele-
scope in the other dimension to make it less oblong, as
discussed in Section III F. This means that if one needs
≫ 104 antennas for adequate 21 cm cosmology sensitiv-
ity, one is forced to build a 2D rather than 1D telescope.
For comparison, even the currently funded MWA exper-
iment with its 512 × 42 = 8192 antennas is close to this
number.

One final science application where 2D is required
is the study of transient phenomena that vary on a
time scale much shorter than a day, invalidating the
static sky approximation that underlies rotation synthe-
sis. This was the key motivation behind the aforemen-
tioned Waseda telescope [10–12].

IV. APPLICATION TO 21 CM TOMOGRAPHY

In the previous section we discussed the pros and cons
of the FFTT telescope, and found that it’s main strength

is for mapping below about 1 GHz when extreme sensi-
tivity is required. This suggests that the emerging field
of 21 cm tomography is an ideal first science applica-
tion of the FFTT: it requires sky mapping in the sub-
GHz frequency range, and the sensitivity requirements,
especially to improve cosmic microwave background con-
straints on cosmological parameters, are far beyond what
has been achieved in the past [24, 37–39].

A. 21cm tomography science

It is becoming increasingly clear that 21 cm tomog-
raphy has great scientific potential for both astrophysics
[18–21, 35] and fundamental physics [24, 36–39]. The ba-
sic idea is to produce a three-dimensional map of the mat-
ter distribution throughout our Universe through preci-
sion measurements of the redshifted 21 cm hydrogen line.
For astrophysics, much of the excitement centers around
probing the cosmic dark ages and the subsequent epoch
of reionization caused by the first stars. Here we will
focus mainly on fundamental physics, as this arguably
involves both the most extreme sensitivity requirements
and the greatest potential for funding extremely sensitive
measurements.

FIG. 5: 21 cm tomography can potentially map most of
our observable universe (light blue/gray), whereas the CMB
probes mainly a thin shell at z ≈ 1100 and current large-
scale structure maps (here exemplified by the Sloan Digital
Sky Survey and its luminous red galaxies) map only small
volumes near the center. Half of the comoving volume lies at
z > 29 (Appendix B). This paper focuses on the convenient
7
∼
< z

∼
< 9 region (dark blue/grey).

Errors on parameters scale as 1/Nmodes-1/2



Non-linear corrections in LSS: Power spectrum

1 Introduction

The mildly non-linear regime of structure formation has grown in importance recently since
the Baryon Acoustic Oscillations (BAO) in the matter power spectrum lie precisely in this
regime at low redshift (z . 3), when dark energy comes to dominate. Ever since their
detection by the SDSS [1], the BAO have become one of the central targets of cosmological
investigations.

The BAO arise (e.g. [2]) from the sound waves present in the tightly-coupled pho-
ton/baryon fluid in the early universe. After recombination, the radiation pressure can no
longer support the baryons, which until then have been driven away from overdensities. Thus,
the baryons quickly lose momentum. The resulting comoving sound horizon corresponds to
the scale of the BAO, which is ⇡ 150Mpc. The BAO in the matter two-point function appear
as a peak at that scale with a width of around 20Mpc. That peak translates to a pattern of
decaying oscillations in the matter power spectrum with a wavelength of about 0.06h/Mpc
(see Figure 1).

This acoustic signature acts as a standard ruler which may allow us to probe the behavior
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Figure 1: Shown schematically are various matter power spectra at z = 0 for ⇤CDM. The power
spectra are divided by a smooth BBKS [3] power spectrum with shape parameter � = 0.15 in order
to highlight the wiggles due to the BAO. The non-linear power spectrum (i.e. the “exact” power
spectrum obtained from N-body simulations) is given by PNL; the linear power spectrum by PL; the
part due to the “memory of the initial conditions” by R

2
PL; the power spectrum calculated in the

Zel’dovich approximation by PZ ; the power due to the projection of the non-linear density field on the
Zel’dovich density field by R̃

2
PZ . The green (long dashed) arrow represents the power generated from

mode-coupling due to bulk flows, free-streaming and structure formation; while the blue (dot-dashed)
arrow represents the power generated by structure formation alone. The current Hubble expansion
rate in units of 100 km/s/Mpc is given by h.

– 2 –

Non-linear regimePerturbative Transition

Linear  Theory

6

FIG. 1: SPT power spectrum at linear (black; dotted), 1-loop (red; solid), and 2-loop (blue; dashed) order. The squares with
error bars show the mean and error from our N-body simulations. The four panels show ΛCDM (left) and cCDM (right) at
redshifts 1 (top) and 0 (bottom). Each curve has been divided by the no-wiggle power spectrum of [40] to reduce the dynamic
range. We also indicate the domain of validity of 1-loop SPT according to the heuristic prescription of [41] (∆2 < 0.4), and
according to the criterion P (3) < α PL for α = 0.01, 0.03.

in this direction could be important.

Figure 3 shows the predicted power spectrum for the
remainder of the theories that we consider in this work.
With Figures 1 and 2, these figures give an overview of
the agreement between our N-body simulations and the
perturbation theories for ΛCDM and cCDM. Some of
the trends can be seen easily in these figures, and are
generic across cosmologies and redshifts. For instance 1-
loop SPT, which is the same as 1-loop LPT, always over-
predicts P (k) at high k. Lagrangian resummation theory
on the other hand is much too strongly damped beyond
the first wiggle. Large-N theory more or less traces 1-
loop SPT before turning over, while time-RG theory and
RGPT follow the general trends of the N-body data with-
out fitting any particular feature precisely. (Note that
the nearly perfect agreement between RGPT and sim-

ulations for cCDM at z = 1 is likely spurious, as this
level of agreement is not seen for other cosmologies or at
other redshifts.) RPT and closure give nearly identical
tree-level predictions, and very similar 1-loop predictions
for P (k). Closure theory appears to benefit greatly from
going to 2-loop order, whereas for RPT even at z = 1 it
appears that 2-loop does worse than 1-loop.

While we have run many realizations of each cosmol-
ogy to reduce run-to-run variance, one sees in Figures 1,
2 and 3 that the N-body data are still noisy at low k,
which makes it difficult to make quantitative statements
about the performance of the perturbation theories. To
overcome this we define a ‘reference spectrum’ which in-
terpolates the N-body results at high and intermediate
k with the 1-loop SPT calculation at low k. This elimi-
nates the large scatter from the finite number of modes

1-Loop
2-Loop
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companion papers [31, 32] we compare perturbation theory with the results of numerical simulations for the same
initial conditions. This is a more stringent test than what is presented here. Our goal in this paper is to reproduce the
comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.

II. THE EFT OF LSS

In the EFT of LSS one sets to solve perturbatively the following equations:

@⌧� + @i[(1 + �)vi] = @iu
i ,

@⌧v
i + Hvi + @i�+ vj@jv

i = � 1

a⇢
@j⌧

ij , (1)

4� =
3

2
H2⌦m� .

These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:

⌧✓ ⌘ �@i


1

a⇢
@j⌧

j

�
= ⌧det✓ + ⌧ stoch✓ . (2)

The deterministic part of the stresses ⌧det✓ can be modelled perturbatively. In the EFT we write schematically

⌧det✓ = ⌧det✓ [@i@j �̄]. (3)

The deterministic part of the stresses is a local function of the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second derivatives of the gravitational potential (higher spatial deriva-
tives and time derivatives can also appear). We have introduced �̄ = �/(3/2H2⌦m) so that @i@j �̄ is dimensionless
and 4�̄ = �. For the stochastic part, all we can do is model the statistical properties of ⌧ stoch✓ .

In the EFT of LSS ⌧det✓ is modeled as a power series in @i@j �̄ and its spatial and time derivatives. In addition
to the equivalence principle, mass and momentum conservation restrict the form of both ⌧det✓ and of the statistical
properties of ⌧ stoch✓ . In particular in Fourier space ⌧det✓ (k) needs to go to zero at least as k2 faster than the density
when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by

⌧det✓

��
LO

= �d24�(1) = �d244�̄(1) , (4)

where �(1) is the linear solution of perturbation theory. In this formulation, because ⌧det✓ acts as a source in the
equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
the relative sizes of the corrections in the di↵erent two point functions involving � and ✓.
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In the EFT of LSS ⌧det✓ is modeled as a power series in @i@j �̄ and its spatial and time derivatives. In addition
to the equivalence principle, mass and momentum conservation restrict the form of both ⌧det✓ and of the statistical
properties of ⌧ stoch✓ . In particular in Fourier space ⌧det✓ (k) needs to go to zero at least as k2 faster than the density
when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by
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equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
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2
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FIG. 1. Diagrams for the tree level, one- and two-loop expressions of the SPT power spectrum.

The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
order counterterms are needed. This introduces three additional parameters for the spatial structure of ⌧det✓ . One can
write:

⌧det✓

��
NLO

= �d24[�(1) + �(2)] � e14�2(1) � e24(sij(1)s
ij
(1)) � e3@is

ij
(1)@j�(1), (5)

with

sij =

✓
@i@j � 1

3
�(K)
ij 4

◆
�̄. (6)

In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,

� = �(1) + �(2) + �(3) + �(4) + �(5) + · · · (7)

where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.
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of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
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with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,
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where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.

Describe the dynamics on large scales, after 
integrating out the short scale modes. 



EFT of LSS

• Study regime of small corrections
• Characterize terms
• Calculable vs non-calculable (counter terms)
• How many terms to achieve a desired accuracy?
• What is the relation between results for different statistics

EFT terms

• Write all terms consistent with symmetries: Mass & momentum 
conservation, equivalence principle

• Non-locality in time
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• Historical Science. Where do we Stand? We have fossils.
• Precision of CMB, 50 years of CMB. Lead to impressively tight model.
• Universe started hot, so good laboratory dependence on high energy physics.
DM, Baryons, Neutrinos

• Fossils from before the Hot Big Bang, Connection with GR
• Forced to have a theory for the fossils outside hot big bang. Standard
theory is inflation.

• Inflation, what is it? Can we convince ourselves of the various aspects?
• What we know about these seeds. Planck very tough to improve con-
straints.

• Reflect on open questions in Cosmology. Open questions hard to make
progress in. Qualitative vs Quantitative

• Need LSS, need precision. Substantial progress is needed.
• Advertise EFT of LSS
• Open conceptual problems. Random space time, multiverse etc.
• Opportunities, maybe spheres. Local non-G as a motivation?
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1. Introduction

1.1. Some open questions.
Precision vs qualitative open questions: There are many open questions in cos-
mology, many things that will preoccupy us in the coming decades. Some of this
questions require searching for extremely small e↵ects to be extracted statistically
from large quantities of data. For other questions even crude measurements would
lead to progress.
The focus of this lectures is on developing tools for attacking some of the preci-

sion questions. But first let me give some examples.

1.1.1. Dark Energy. We have very good constraints on dark energy. The BAO is
one of our best tools but it requires precision. The goal for the next decade is to
make sub-percent measurements over a wide range of redshifts.

1.1.2. Neutrinos. We are on the verge of detecting neutrino masses cosmologically.
Again the e↵ects are small and on scales close to the non-linear scales.
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1.1.1. Dark Energy. We have very good constraints on dark energy. The BAO is
one of our best tools but it requires precision. The goal for the next decade is to
make sub-percent measurements over a wide range of redshifts.

1.1.2. Neutrinos. We are on the verge of detecting neutrino masses cosmologically.
Again the e↵ects are small and on scales close to the non-linear scales.
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Standard Perturbation Theory

At this scale the 2-loop EFT is good to 1 %

Linear  Theory

6

FIG. 1: SPT power spectrum at linear (black; dotted), 1-loop (red; solid), and 2-loop (blue; dashed) order. The squares with
error bars show the mean and error from our N-body simulations. The four panels show ΛCDM (left) and cCDM (right) at
redshifts 1 (top) and 0 (bottom). Each curve has been divided by the no-wiggle power spectrum of [40] to reduce the dynamic
range. We also indicate the domain of validity of 1-loop SPT according to the heuristic prescription of [41] (∆2 < 0.4), and
according to the criterion P (3) < α PL for α = 0.01, 0.03.

in this direction could be important.

Figure 3 shows the predicted power spectrum for the
remainder of the theories that we consider in this work.
With Figures 1 and 2, these figures give an overview of
the agreement between our N-body simulations and the
perturbation theories for ΛCDM and cCDM. Some of
the trends can be seen easily in these figures, and are
generic across cosmologies and redshifts. For instance 1-
loop SPT, which is the same as 1-loop LPT, always over-
predicts P (k) at high k. Lagrangian resummation theory
on the other hand is much too strongly damped beyond
the first wiggle. Large-N theory more or less traces 1-
loop SPT before turning over, while time-RG theory and
RGPT follow the general trends of the N-body data with-
out fitting any particular feature precisely. (Note that
the nearly perfect agreement between RGPT and sim-

ulations for cCDM at z = 1 is likely spurious, as this
level of agreement is not seen for other cosmologies or at
other redshifts.) RPT and closure give nearly identical
tree-level predictions, and very similar 1-loop predictions
for P (k). Closure theory appears to benefit greatly from
going to 2-loop order, whereas for RPT even at z = 1 it
appears that 2-loop does worse than 1-loop.

While we have run many realizations of each cosmol-
ogy to reduce run-to-run variance, one sees in Figures 1,
2 and 3 that the N-body data are still noisy at low k,
which makes it difficult to make quantitative statements
about the performance of the perturbation theories. To
overcome this we define a ‘reference spectrum’ which in-
terpolates the N-body results at high and intermediate
k with the 1-loop SPT calculation at low k. This elimi-
nates the large scatter from the finite number of modes

1-Loop
2-Loop
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FIG. 13. Low-k measurements of c
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from the final field and the propagator after the two-loop terms have been corrected
for. The dashed line shows the e↵ect of a relative error of the linear growth factor of 2 ⇥ 10�4 that both statistics have been
corrected for.

single-hard double-hard
Eq. x(n) x(�3/2) Eq. x(n) x(�3/2)

P

15

(14) n+1 -1/2 (C8) 2n+4 1

P

24

(15) n+1 -1/2 (C4) 3n+2 -5/2

(C6) 2n-1 -4

P

33�I

(C1) 2n-1 -4 (C2) 3n+2 -5/2

P

33�II

(16) n+1 -1/2 (13) 2(n+1) -2

TABLE I. Table of the two loop limits, references to the equations where they are discussed, the power of the cuto↵ dependence
⇤x for a power law power spectrum P (k) / k

n with general power law slope n and for n = �3/2. For the single hard limit the
slope gives the power of the hard integral ignoring the remaining finite integral, while for the double hard integrals we consider
both momenta in the hard integrals to be of the same order. The choice n = �3/2 is motivated by the slope of our ⇤CDM
power spectrum at k ⇡ 0.1 hMpc�1.

based on the scale dependence of the two-loop corrections shown in Fig. 5. Again, the value of this asymptotic constant
depends strongly on the PMGRID parameter choice, now leading to a �c2s = 0.3 h�2Mpc2 di↵erence between the
two cases. Note however that they agree at higher wavenumbers. Thus, to the extend that our ansatz is trustworthy,
a model what matches at these scales would prefer the PMGRID = 2Np case at lower wavenumbers.

There is also a slight disagreement between the propagator and power spectrum estimates for the favored PMGRID=
2Np case. The power spectrum method of this case would indicate a c2s = 1.05 h�2Mpc2. In Fig. 13 we show both
the propagator and the power spectrum estimator after the finite two loop terms have been subtracted out. Except
for a �c2s ⇡ 0.1 h�2Mpc2 o↵set both estimators are flat and consistent up to k ⇡ 0.15 hMpc�1, where higher order
terms, for instance the two loop counterterms, start to matter.

Appendix C: Limits of the two loop terms

In the main text, we have concentrated our discussion on the terms that we consider relevant for the leading UV
sensitivity and the corresponding counterterms. Let us, for the sake of completeness, discuss the remaining hard limits
in this appendix. An overview of all the single- and double-hard limits of the two loop calculation is given in Tab. I.
In this table we also give the power of the cuto↵ dependence of the remaining integrals if the initial power spectrum
is of power law form P (k) / kn. We evaluate the cuto↵ dependence for n = �3/2, the slope of our power spectrum
at k = 0.1 hMpc�1. For the single-hard limits we immediately see that the terms that we found to dominate the
shell behaviour have the most shallow decay in the UV, and are thus the most sensitive to the change of the power
spectrum at high wavenumbers. For the double hard limits, the limit of P15 is still growing for n = �3/2 but turns
around at for n = �2 at k ⇡ 0.3, so it will still converge based on the high-k slope of our initial power spectrum. Yet,
it is immediately clear why this integral should be absorbed into the counterterm. The subleading k4P UV-sensitivity
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• Historical Science. Where do we Stand? We have fossils.
• Precision of CMB, 50 years of CMB. Lead to impressively tight model.
• Universe started hot, so good laboratory dependence on high energy physics.
DM, Baryons, Neutrinos

• Fossils from before the Hot Big Bang, Connection with GR
• Forced to have a theory for the fossils outside hot big bang. Standard
theory is inflation.

• Inflation, what is it? Can we convince ourselves of the various aspects?
• What we know about these seeds. Planck very tough to improve con-
straints.

• Reflect on open questions in Cosmology. Open questions hard to make
progress in. Qualitative vs Quantitative

• Need LSS, need precision. Substantial progress is needed.
• Advertise EFT of LSS
• Open conceptual problems. Random space time, multiverse etc.
• Opportunities, maybe spheres. Local non-G as a motivation?
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1. Introduction

1.1. Some open questions.
Precision vs qualitative open questions: There are many open questions in cos-
mology, many things that will preoccupy us in the coming decades. Some of this
questions require searching for extremely small e↵ects to be extracted statistically
from large quantities of data. For other questions even crude measurements would
lead to progress.
The focus of this lectures is on developing tools for attacking some of the preci-

sion questions. But first let me give some examples.

1.1.1. Dark Energy. We have very good constraints on dark energy. The BAO is
one of our best tools but it requires precision. The goal for the next decade is to
make sub-percent measurements over a wide range of redshifts.

1.1.2. Neutrinos. We are on the verge of detecting neutrino masses cosmologically.
Again the e↵ects are small and on scales close to the non-linear scales.
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FIG. 10. Ratio of the data to the various PT models at redshifts z = 0, 0.5, 1, 2 from top left to bottom right. We show the
linear theory calculation (green dot-dashed), the one-loop EFT (red solid) and the two-loop calculation (blue dashed). For the
EFT calculation we show results both before (thin) and after IR-resummation (thick). The ratio is evaluated at the simulation
data points and the two sigma errors on these data points are indicated by the gray band.

tion needs to start from third order, i.e., ⌃6.
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The e↵ects of IR resummation are highlighted in Fig. 9. Performing the IR resummation on the bare one-loop
calculation leads to considerable changes to the power spectrum. Below k ⇡ 0.2 hMpc�1, the not IR-resummed
two-loop calculation performs almost as well as the IR-resummed one loop calculation. The IR-resummation of the
two-loop calculation only matters at the percent level for k > 0.2 hMpc�1.

As we have seen above in Fig. 6, the two-loop calculation is tracking part of the BAO wiggles in the power spectrum
residuals after the one-loop result has been removed. Let us now study its performance at higher wavenumbers and
in the power spectrum itself. In Fig. 10 we show the performance of the IR-resummed and not IR-resummed one-
and two-loop EFT calculations with respect to the non-linear power spectrum extracted from the N -body simulation.
Let us first discuss the broadband performance. At redshift z = 0 the one loop calculation extends the range of
validity5 of linear theory from k ⇡ 0.05 hMpc�1 to k ⇡ 0.1 hMpc�1. This is significantly less, than usually considered
for the range of validity of the EFT at redshift z = 0 and arises from the fact that we have fixed the leading order
counterterm in a way that is compatible with the largest available scales. We then use this parameter to calculate
the two loop counterterm. This term, together with the finite part of the regularized two-loop calculation allows us

5 For the sake of definiteness we will commonly consider 1% deviations from the theory as the threshold for the range of validity. Many
applications will require tighter errorbars on large scales to fix the amplitude. On smaller scales we will anyways su↵er from baryonic
e↵ects and significant covariance, such that less restrictive requirements could be employed.
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• Historical Science. Where do we Stand? We have fossils.
• Precision of CMB, 50 years of CMB. Lead to impressively tight model.
• Universe started hot, so good laboratory dependence on high energy physics.
DM, Baryons, Neutrinos

• Fossils from before the Hot Big Bang, Connection with GR
• Forced to have a theory for the fossils outside hot big bang. Standard
theory is inflation.

• Inflation, what is it? Can we convince ourselves of the various aspects?
• What we know about these seeds. Planck very tough to improve con-
straints.

• Reflect on open questions in Cosmology. Open questions hard to make
progress in. Qualitative vs Quantitative

• Need LSS, need precision. Substantial progress is needed.
• Advertise EFT of LSS
• Open conceptual problems. Random space time, multiverse etc.
• Opportunities, maybe spheres. Local non-G as a motivation?
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1. Introduction

1.1. Some open questions.
Precision vs qualitative open questions: There are many open questions in cos-
mology, many things that will preoccupy us in the coming decades. Some of this
questions require searching for extremely small e↵ects to be extracted statistically
from large quantities of data. For other questions even crude measurements would
lead to progress.
The focus of this lectures is on developing tools for attacking some of the preci-

sion questions. But first let me give some examples.

1.1.1. Dark Energy. We have very good constraints on dark energy. The BAO is
one of our best tools but it requires precision. The goal for the next decade is to
make sub-percent measurements over a wide range of redshifts.

1.1.2. Neutrinos. We are on the verge of detecting neutrino masses cosmologically.
Again the e↵ects are small and on scales close to the non-linear scales.

Amplitude determined at k=0.02, 
shape known theoretically
improvement at k=0.3
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NL �(1) �(1 + 2)

�(1 + 2 + 3) �(T1 + T2 + T3) T �(T1 + T2 + T3)

Figure 7. Non linear transformation of the density field in a patch of 300 h�1Mpc length and 15 h�1Mpc
depth.

well correlated the structure in a Zel’dovich realization is with the non linear structure. Overdensities
are washed out and voids are clearly underdense. Adding higher order displacement fields and transfer
functions on the displacement fields has no strong imprint in this picture beyond a slight sharpening
of the overdensities and filaments. The final density transfer function shown in the last panel clearly
has the strongest effect, most remarkably a sharpening of structures in all environments. But even at
this level there are still obvious differences between the best perturbative approach and the non-linear
field.

5 Stochastic Term

In BSZ we identified an irreducible error at the field level that we associated with the stochastic
term of the EFT. In this Section, we are relating the Lagrangian stochastic term to the Eulerian one.
From now on we will consider displacement fields up to a certain order including all transfer functions
and denote them sPT, in particular we will be mostly concerned with the displacement fields up to
third order, i.e., sPT = a1s

(1)
+ a2s

(2)
+ a3s

(3). The total displacement field is then the sum of the
perturbative and the stochastic part s = sPT + sstoch.

Toy model: origin of the transfer function for the density

Let us consider the case where we expand only the stochastic displacement in Eq. (2.4)

(2⇡)

3
�

(D)
(k) + �(k) ⇡

Z
d3

q exp [ik · (q + sPT)]

 
1 + ikisstoch,i � 1

2

kikjsstoch,isstoch,j

� i
3!

kikjklsstoch,isstoch,jsstoch,l

! (5.1)

– 13 –

10-4 0.001 0.010 0.100 1 10
k/k*10-10

10-8

10-6

10-4

0.01

1

Error in Power
Region of interest Agnostic about details

not not 

z=0

z=1

z=2

0.05 0.10 0.50 1.00 5.00
10-5

10-4

0.001

0.01

0.1

1

k @h Mpc-1D

P e
rr
êP NL

TdH1+2+3L
TdH1+2L
dH1+2+3L

dH1L
TdHT1+T2+T3L

0.02 0.05 0.10 0.20 0.50
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

k @h Mpc-1D
PêP

N
L
-
1

Figure 6. Left panel: Ratio of the best possible EFT power spectrum to the non-linear power spectrum as a
function of redshift. We indicate the 1% and 10% accuracy lines and mark the crossing of the 1%-threshold
by vertical lines, whose wavenumbers are given in Tab. 1. Right panel: Ratio of the perturbative model with
and without transfer functions and the non-linear power spectrum at z = 0.

that arise from the mapping from Lagrangian to Eulerian space leading to deviations from the k

4

scaling on surprisingly large scales (k ⇡ 0.03 hMpc�1 at z = 0).
In Fig. 6 we show the ratio of error and non-linear power spectrum Perr/PNL for three redshifts

z = 0, 1, 2 for the T �(T1 + T2 + T3) example to quantify up to which wavenumber the perturbative
calculation can be expected to agree with the N -body result. We quote the wavenumbers at which
the stochastic power crosses the 1% and 10% level in Tab. 1. While one should not focus too much
on the specific values, one should definitely note the steepness of the curves in the left panel of Fig. 6.
This means that at a fixed k away from the non-linear scale, the size of the error changes dramatically
as one goes to higher wavenumbers. This is important, since for data analysis applications, such as
trying to see the small effects of primordial non-Gaussianity in the two- and three point functions [2],
precision will probably be more important than reach.

The right panel of Fig. 6 shows Pmodel/PNL�1 and illustrates again that the biggest improvement
in reach comes from the inclusion of the final transfer function, fixing the problems caused by the
mapping. The comparison between T �(1+2) and T �(1+2+3), which are both effectively equivalent to
one-loop EFT calculations (with higher derivative counterterms) shows the difference that the higher
order terms that are only partially included can make. It is amusing to note that T �(1 + 2 + 3) is
actually slightly worse, so the additional work to include s

(3) did not result in an improvement here.
This is perhaps not surprising given how bad s

(3) is on small scales and the fact that the Lagrangian to
Eulerian mapping makes the large scale density depend on these mistakes. Of course with additional
freedom from more counter terms one should be able to absorb these differences. Finally one may
notice that in terms of reach, T �(T1 + T2 + T3) does not even improve by a factor of two. But reach
is perhaps the wrong metric as the error curves are very steep. Fig. 5 shows that away from the
non-linear scale, the error in T �(T1 + T2 + T3) is smaller than the one in T �(1 + 2) by about one
order of magnitude.

A map of the various density fields discussed in this section is shown in Fig. 7. It clearly shows how
well correlated the structure in a Zel’dovich realization is with the non linear structure. Overdensities

z k1% k10%

0 0.25 hMpc�1
0.46 hMpc�1

1 0.48 hMpc�1
0.98 hMpc�1

2 0.85 hMpc�1
1.72 hMpc�1

Table 1. Wavenumbers, where the stochastic term amounts to a 1% or 10% correction to the non-linear
matter power spectrum.
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where a1, . . . , a4 are numerical coe�cients of order one.6

The last term in Eq. (31) is due to primordial NG. The
leading part of the bispectrum proportional to fNL simply
comes from the linear evolution of the initial bispectrum
function and reads

BNG
123(z) = A4P (k1, z)P (k2, z)S(k1, k2, k3)

⇥ fNL · H
2
0⌦m

D+(z)

T (k3)

T (k1)T (k2)
k1k2k

2
3 + 2 perm. ,

(36)

where the shape S(k1, k2, k3) is given by

Seq.
123

9
=

1

k1k22k
3
3

� 1

3k21k
2
2k

2
3

� 1

2k31k
3
2

+ 5 perm. , (37)

for equilateral NG and

Sloc.
123

3
=

1

k31k
3
2

+
1

k31k
3
3

+
1

k32k
3
3

, (38)

for local NG [22]. The amplitude fNL in two di↵erent
cases is f eq.

NL and f loc.
NL .

So far we have described the model for the one-loop
matter bispectrum. The full calculation of one-loop bis-
pectrum for biased tracers has not been done and is be-
yond the scope of this paper. For the bispectrum, we will
thus use a simple biasing model keeping only the leading
terms in the bias expansion

�g = b1� +
b2
2
�2 + bG

2

G2 . (39)

Here we consider the first term at all orders contribut-
ing to the one loop-bispectrum (i.e. up to fourth order),
whereas the second and third terms are evaluated only at
tree level. This model is incomplete (and inconsistent)
at one-loop, and hence the constraints on NG that we
obtain give lower bounds for the true answer. Including
all relevant terms and marginalizing over the additional
parameters generically weakens the constraints. In our
simple biasing model we include loops only in combina-
tion with linear bias and the corresponding galaxy bis-
pectrum is given by

Bg(k1, k2, k3, z) = b31B
NL
123(z) + b21b2⌃123(z)

+ 2b21bG2

⇥123(z) + sb,1(z) + sb,2(z) [Pg(k1) + 2perm] ,
(40)

with ⌃123(z) = A4P (k1, z)P (k2, z) + 2 perm. and

⇥123(z) = A4

✓
(k1 · k2)2

k21k
2
2

� 1

◆
P (k1, z)P (k2, z)+2 perm.

(41)
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The values of these coe�cients can be found in [20]

a
1

=

58812

32879

, a
2
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, a
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=
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32879
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FIG. 2: Theoretical errors for the linear theory and one-loop
power spectrum (see Eq. (42)) as a function of k. The cosmic
variance is plotted for the redshift bin 1 < z < 2. Three solid
lines are relative suppression of the power spectrum for three
di↵erent M⌫ .

The last two terms in the bispectrum come from stochas-
tic terms (see appendix).

Theoretical error.—The last ingredient that we need is an
estimate for the theoretical error E(k, z). Let us begin
with the power spectrum. As we already said, we roughly
expect the error to be of the form (k/kNL)(3+n)l. To get
the correct scalings and amplitudes we fit the envelope
of the explicit one-loop and two-loop calculations. The
error E(k, z) is given by

Ep(k, z) = b21

✓
D+(z)

D+(0)

◆2l

P (k, z)

(
(k̂/0.31)1.8 l = 1 ,

(k̂/0.23)3.3 l = 2 .

(42)

where k̂ = k/hMpc�1. In Fig. 2 we show the size of these
errors compared to signal for di↵erent neutrino masses.
It is important to stress that our formulas are correct
only for the dark matter power spectrum and that the
errors for the power spectrum of biased tracers might be
larger. We will use Eq. (42) for all our forecasts.
The errors for the bispectrum are harder to estimate.

We will simply assume the same power laws as in the
case of the power spectrum

Eb(k1, k2, k3, z) = Btree(k1, k2, k3, z)

⇥ 3b31

✓
D+(z)

D+(0)

◆2l
(
(k̂t/3/0.31)1.8 l = 1 ,

(k̂t/3/0.23)3.3 l = 2 ,

(43)

Theoretical errors & 
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FIG. 6: One sigma error bar on f eq.
NL as a function of the maximal redshift zmax. Two horizontal lines correspond to f eq.

NL = 40
(the current strongest bound from the CMB) and f eq.

NL = 10. Each panel shows the constraints with and without marginalization
over the EFT and bias parameters. Di↵erent lines correspond to di↵erent combinations of the tree-level and the one-loop power
spectrum and bispectrum. As a reference we also plot a line for the ideal case with no theoretical error and no marginalization.

are the most important for the neutrino mass, one should
have relative errors smaller than 0.1 � 0.5% (depending
on the redshift) which seems quite challenging. Other
parameters, such as b2, bG

2

or Rp, require precision of
1� 10%.

B. Equilateral non-Gaussianities

Let us now consider the constraints on primordial NG
of equilateral shape. Our pNG constraints are solely ob-
tained from the shape dependence of the tree level bis-
pectrum and the power spectrum will be used to break
degeneracies with bias parameters. We will note on ex-
plicit scale dependent bias at the end of this section.

Bispectrum.—In Fig. 6 we plot �(f eq.
NL) as a function of

zmax for di↵erent galaxy abundance scenarios. In the
ideal case, with neither theoretical errors nor marginal-
ization, f eq.

NL ⇠ 1 can be reached at high redshift. This
means that in principle there are enough modes in the
perturbative regime. In practice, the theoretical error
and marginalization degrade the constraints significantly.

Including the theoretical errors only changes �(f eq.
NL)

by a factor of 3 with the one-loop bispectrum and an ad-
ditional factor of 3 with the tree-level bispectrum. Notice
that, as in the case of neutrinos, there is a large di↵erence
between the results from the tree-level and the one-loop
bispectrum. This is due to the fact that including higher
loops increases kmax and reduces the error for k < kmax.

Marginalization degrades the constraints by additional
factor of few. This is not surprising given that the grav-
itational contributions are not very orthogonal to the
equilateral shape. With our simple model for the one-
loop bispectrum of biased tracers, the current Planck

limits can be reached with a survey that would map the
distribution of galaxies up to redshift z ⇠ 1.5. With a
more realistic model which will contain more bias pa-
rameters, the results are expected to get weaker. Going
to higher redshifts, our analysis indicates that reaching
f eq.
NL ⇠ 10 will be very challenging.

Scale dependent bias.— Equilateral NG do not a↵ect only
the bispectrum. They can also contribute to the power
spectrum through a scale dependent bias of the form

�b1(k) ⇡ 9(b1 � 1)f eq.
NL · ⌦m�c

H2
0R

2(z)

D+(z)T (k)
. (49)

(This form can be obtained by taking the squeezed limit
k1 ⌧ k2,3 of (36) as a correction to the power of short
scale modes k2,3 with the characteristic size R(z), the
Lagrangian size of objects observed at redshift z. b1 �
1 and �c = 1.686 typically appear in the simplest halo
models that relate the change in the power to the bias
parameters [30].) We choose the same time dependence
as for the counter terms in the power spectrum: R(z) =
R0D+(z)/D+(0). The power spectrum is modified in the
following way

Pg(k, z) = (b1 +�b1(k))
2P (k, z) , (50)

and one can put constraints on f eq.
NL measuring its shape

carefully. However, the amplitude of �b1(k) is very
small, typically R2H2 ⇠ 10�6. Note that compared to
the similar term in the bispectrum, the e↵ect of the scale
dependent bias at some scale k is R2k2 times smaller. For
perturbative scales Rk < 1, and we expect weaker limits
on f eq.

NL than what we get from the three-point function.
To test this expectation we do a simple forecast using

just the model described by Eq. (50). We do not include
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FIG. 7: One sigma error bar on f loc.
NL as a function of the maximal redshift zmax. Two horizontal lines correspond to f loc.

NL = 5
(the current strongest bound from the CMB) and f loc.

NL = 1 which is an interesting theoretical threshold. Each panel shows
the constraints with and without marginalization over the EFT and bias parameters. Di↵erent lines correspond to di↵erent
combinations of the tree-level and the one-loop bispectrum and corresponding errors. The e↵ects of the marginalization are
minimal, given that the local shape is orthogonal to gravitational contributions. We also plot as a reference a line for the ideal
case of no theoretical error and no marginalization.

the theoretical error and we do not marginalize over b1.
For example, the choice of R0 = 3 h�1Mpc and the same
kmax as before leads to �(f eq.

NL) = 12 at redshift zmax =
1.5. This should be compared to the ideal case from the
bispectrum analysis at Fig. 6. Obviously, the bispectrum
constraints are stronger.

The result strongly depends on the choice of R0. The
constraint on equilateral NG naively scales as �(f eq.

NL) ⇠
R�2

0 . Choosing a larger R0 (which corresponds to larger
haloes) seems to reduce the error significantly. However,
at the same time, the value kmax has to be smaller. In
order to stay in the perturbative regime, we cannot use
the modes with wavelengths shorter than the size of the
halo. Therefore kmax < R�1

0 , and higher R0 leads to
smaller number of modes.

The constraints are further degraded by marginalizing
over other parameters and including the theoretical er-
ror. The scale dependence of �b1(k) is not protected
by symmetries and it is degenerate with loop and higher
derivative corrections. Indeed, for large k the transfer
function scales as T (k) ⇠ k�2 log k. For example, even
a simple extension of the model including the one-loop
contributions proportional to k2

Pg(k, z) = (b1 +�b1(k))
2P (k, z)(1 +R2

pk
2) , (51)

degrades the constraints on f eq.
NL significantly, after

marginalization over b1 and Rp. For example, at red-
shift zmax = 1.5, the constraints are �(f eq.

NL) ⇡ 800 and
�(f eq.

NL) ⇡ 450 for the linear and the one-loop power spec-
trum respectively. The full model for the power spec-
trum, once other parameters are included, leads to even
worse constraints. In order to get results competitive
with the bispectrum analysis, one would have to use

R0 ⇡ 10 h�1Mpc with the same kmax.
Using the scale dependent bias and perfect knowledge

of the power spectrum up to k = 0.2 hMpc�1, [31] fore-
casted constraints of �(f eq.

NL) ⇠ 7 for zmax = 1.5 and
marginalizing over bias parameters. For reasons we ex-
plained here, we believe that this number is optimistic.
Given the importance of the question, this analysis re-
quires further investigation.

C. Local NG

The issues with the theoretical error we discussed so far in
principle apply to local NG too. However, the prospects
of constraining local NG from the LSS are much brighter.
This is possible thanks to a number of nonperturbative
results, based on the equivalence principle, which allow
us to use information even from the nonlinear regime of
LSS. We briefly describe two ways to measure f loc.

NL and
check whether from the bispectrum alone one can reach
the theoretically interesting target of f loc.

NL ⇠ 1.

Bispectrum.— In the presence of the local NG the
squeezed limit bispectrum scales as

B(q, k, k0)|q!0 ⇠ P (q)P (k) · 3f
loc.
NL ⌦m

D+(0)

H2
0

q2
. (52)

This is a result of perturbation theory, but similarly to
the scale dependent bias, this shape of the squeezed limit
of the bispectrum is protected by the equivalence princi-
ple. Including biased tracers or going beyond the nonlin-
ear scale for the short modes cannot generate the char-
acteristic 1/q2 scaling.

Improvement 
seems likely

Improvement 
looks very 
difficult
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General lessons from EFT

• The small scale dynamics that is not captured by perturbation theory 
introduces a small number of free parameters that need to be fitted from 
simulation or data
• We understand the structure of these new terms, their dependence with 
scale is fixed. 
• Calculations come with theoretical error bars. 
• We are not strangers to these type of things, bias, higher dimension 
operators in particle physics. 

Additional things to consider

• Biased tracers, redshift space distortions, bispectrum
• Better comparison with simulations to cross the percent level accuracy
• Where is the information on parameters of interest?

• Non-locality in time
• Prevalence of composite operators 

Interesting conceptual differences to standard QFT set up 



Backward modeling/reconstruction

Filter the non-linear density 
and solve for the linear density

�NL = �PT [�lin] + error
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Figure 6. Left panel: Ratio of the best possible EFT power spectrum to the non-linear power spectrum as a
function of redshift. We indicate the 1% and 10% accuracy lines and mark the crossing of the 1%-threshold
by vertical lines, whose wavenumbers are given in Tab. 1. Right panel: Ratio of the perturbative model with
and without transfer functions and the non-linear power spectrum at z = 0.

that arise from the mapping from Lagrangian to Eulerian space leading to deviations from the k

4

scaling on surprisingly large scales (k ⇡ 0.03 hMpc�1 at z = 0).
In Fig. 6 we show the ratio of error and non-linear power spectrum Perr/PNL for three redshifts

z = 0, 1, 2 for the T �(T1 + T2 + T3) example to quantify up to which wavenumber the perturbative
calculation can be expected to agree with the N -body result. We quote the wavenumbers at which
the stochastic power crosses the 1% and 10% level in Tab. 1. While one should not focus too much
on the specific values, one should definitely note the steepness of the curves in the left panel of Fig. 6.
This means that at a fixed k away from the non-linear scale, the size of the error changes dramatically
as one goes to higher wavenumbers. This is important, since for data analysis applications, such as
trying to see the small effects of primordial non-Gaussianity in the two- and three point functions [2],
precision will probably be more important than reach.

The right panel of Fig. 6 shows Pmodel/PNL�1 and illustrates again that the biggest improvement
in reach comes from the inclusion of the final transfer function, fixing the problems caused by the
mapping. The comparison between T �(1+2) and T �(1+2+3), which are both effectively equivalent to
one-loop EFT calculations (with higher derivative counterterms) shows the difference that the higher
order terms that are only partially included can make. It is amusing to note that T �(1 + 2 + 3) is
actually slightly worse, so the additional work to include s

(3) did not result in an improvement here.
This is perhaps not surprising given how bad s

(3) is on small scales and the fact that the Lagrangian to
Eulerian mapping makes the large scale density depend on these mistakes. Of course with additional
freedom from more counter terms one should be able to absorb these differences. Finally one may
notice that in terms of reach, T �(T1 + T2 + T3) does not even improve by a factor of two. But reach
is perhaps the wrong metric as the error curves are very steep. Fig. 5 shows that away from the
non-linear scale, the error in T �(T1 + T2 + T3) is smaller than the one in T �(1 + 2) by about one
order of magnitude.

A map of the various density fields discussed in this section is shown in Fig. 7. It clearly shows how
well correlated the structure in a Zel’dovich realization is with the non linear structure. Overdensities

z k1% k10%

0 0.25 hMpc�1
0.46 hMpc�1

1 0.48 hMpc�1
0.98 hMpc�1

2 0.85 hMpc�1
1.72 hMpc�1

Table 1. Wavenumbers, where the stochastic term amounts to a 1% or 10% correction to the non-linear
matter power spectrum.

– 12 –



The smoothing of the BAO peak
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FIG. 5. Various theoretical approximations to the acoustic

peak in the correlation function as well as simulation mea-

surements. Solid: linear, dashed: IR-resummed linear, dot-

dashed: IR-resummed 1-loop, and dotted: Zel’dovich.

Zel’dovich correlation function, which is known to give
a relatively accurate description of the BAO spread. We
will next argue that the success of the Zel’dovich approx-
imation is because it can be formulated as (20).

Zel’dovich approximation.— The matter correlation
function can be related to the correlation function of the
relative displacement �s(z) of two points with initial
(Lagrangian) separation z:

1+⇠(x) =

Z
d3k

(2⇡)3
e

ik·x
Z

d3ze�ik·z
D
e

�k·�s(z)
E
. (23)

In the Zel’dovich approximation, �s is replaced by its
linear expression, and the above expectation value is triv-
ially expressed in terms of the variance

A

ij(z) =
⌦
�s

i(z)�s

j(z)
↵

=

Z
d3q

q

i
q

j

q

4
Plin(q) sin

2
⇣
q · z
2

⌘
.

(24)

Let us define Zel’dovich power spectrum as the result of
the inner integral in (23) at k 6= 0:

Pz(k) =

Z
d3ze�ik·z

e

� 1
2A

ij(z)kikj

, (25)

which in the presence of the BAO feature contains an
oscillating component Pw

z (k). This can be approximated
by the product of a non-smoothed piece times a broad-
ening factor, as in (20): Define A

ij
S (z,⇤), and A

ij
L (z,⇤)

by the same integral as in (24), but taken, respectively,
over short modes q > ⇤, and long modes q < ⇤. So we
have

A

ij(z) = A

ij
S (z,⇤) +A

ij
L (z,⇤). (26)

A Zel’dovich power spectrum in the absence of the long
modes Pz,S(k,⇤), where ⇤ ⌧ k, can now be defined by

replacing A

ij ! A

ij
S in (25). This is the analog of the

last factor in (20): it contains the full nonlinear e↵ect of
the short modes in the Zel’dovich approximation, but no
long modes whatsoever.
Consider now the full Pz(k). The integral in (25) is

dominated by z = O(1/k), and, if k is in the support of
P

w
z (k), by z = ±`BAOk̂+O(1/k). The second contribu-

tion is what we called P

w
z (k). Here, Aij

L (z) is first of all
appreciable, and second, it can be approximated to be a
constant given by its value at z = `BAOk̂ to yield

P

w
z (k) ⇡ e

� 1
2A

ij
L (`BAOk̂,⇤)kikj

P

w
z,S(k,⇤)

⇡ e

�⌃2
⇤k2

P

w
z,S(k,⇤).

(27)

The second equality holds up to terms suppressed by
�/`BAO. Replacing ⇤ ! ✏k results in the desired ana-
log of (20).
Hence, the Zel’dovich approximation, despite being a

crude model of short scale dynamics, gives an accurate
description of BAO broadening by taking into account
the leading displacement caused by all longer wavelength
modes on any given scale k.8

BAO reconstruction.— This naturally leads us to the
discussion of BAO reconstruction, and its connection to
the long-short correlations (4) and (12). The BAO re-
construction is a method to reproduce a sharper acoustic
peak by undoing the bulk motion induced by the long

8 Two alternative approximations have been proposed in the liter-
ature (e.g. [9, 10]) to model the broadening e↵ects:

P

w(k) ⇡ e

�⌃2
1k2

P

w
lin(k), (28)

and
P

w(k) ⇡ e

��2
vk

2
P

w
lin(k), (29)

where the velocity dispersion �

2
v is given by the same integral

as in (15) with ⇤ = 1, but without the last square brackets.
The two expressions happen to give similar results for the mat-
ter correlation function, and to be in good agreement with the
result of simulations. However, we think the agreement in our
Universe is accidental. The velocity dispersion is missing the fac-
tor sin2(q · x/2) in the relative displacement, which suppresses
the contribution of the super-long modes. Had there been more
power at large scales, or if keq`BAO ⌧ 1, (29) and (28) would
have di↵ered significantly. On the other hand, equation (28) ap-
proximates the short-long e↵ects by the same expression as that
of the long-short e↵ects. This is not justified by any symmetry
argument, and is an overestimation in the real universe. (28)
would predict too much spreading if there was more power in
small scales.

Only include displacement non-
linearities
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FIG. 4. Top: Correlation coe�cient with the linear ini-
tial conditions, r(k) ⌘ h��0i /

ph��i h�0�0i, as a function of
wavenumber k. Bottom: Power in the di↵erence between ini-
tial and reconstructed fields in units of the power spectrum of
the initial field. This is given by one minus the squared cor-
relation coe�cient with the initial conditions, 1 � r2(k). In
the shaded regions the correlation with the initial conditions
is better than 95%. Reconstruction improves the correlation
with the initial conditions substantially. The curves are com-
puted from a L = 500 h�1Mpc simulation at redshift z = 0.

for standard reconstruction, and k = 0.07 hMpc�1 for
the nonlinear density without reconstruction, in the same
simulation. Based on this correlation coe�cient with the
linear density, our reconstruction thus improves the k-
range by a factor 2 over standard reconstruction, and by
a factor 5 compared to performing no reconstruction. At
redshift z = 0.6 the improvement factors are similar, see
Fig. 13 in the appendix.

Related to this, the lower panel of Fig. 4 shows the
fractional error of the reconstructed density phases. This
is represented by the power spectrum of the di↵erence
between reconstructed density and true linear density,
in units of the linear power spectrum. This fractional
nonlinear error power can be shown to reduce to one

minus the squared correlation with the initial condi-
tions [12].2 Fig. 4 demonstrates that our reconstruc-
tion significantly reduces this nonlinear error and im-
proves the correlation with the initial conditions on all
scales, outperforming the standard method. For our
second-order method, the nonlinear error power relative
to the linear power is 1 � r2 ' (10�6, 10�4, 10�3, 10�2)
at k = (0.02, 0.06, 0.1, 0.2) hMpc�1 at z = 0. At higher
redshift, z = 0.6, the nonlinear error at the same scales is
slightly smaller, so that 1�r2 ' (10�6, 10�4, 10�3, 10�2)
at k = (0.02, 0.1, 0.15, 0.3) hMpc�1 as shown in Fig. 13
in the appendix. At both redshifts the nonlinear error
is very small, so that for most practical purposes we can
regard the reconstructed and initial density as identical
on large scales.
At some point, reconstruction should be limited by

the stochastic displacement term identified in [11], be-
cause it prohibits a deterministic mapping between initial
and final conditions, at least using perturbation theory.
This would imply that one cannot improve over 1� r2 '
(5⇥ 10�5, 5⇥ 10�4, 10�2) at k = (0.06, 0.1, 0.2) hMpc�1

at z = 0, as shown in Fig. 22 of [11]. Our second-order
reconstruction reaches that limit within a factor of about
2. We therefore expect that other reconstruction meth-
ods could improve over our method by at most a factor
2 on large scales.

As motivated in the introduction, using our method to
recover initial conditions over a wide range of scales can
substantially improve many of the science goals of galaxy
surveys by increasing the number of linear Fourier modes
amenable to cosmological analysis. An important caveat
is however that our numerical setup is rather idealistic
because we work with DM particles and ignore galaxy
biasing and redshift space distortions. Both e↵ects will
certainly degrade the performance of reconstruction in
practical applications. We plan to study this in future
work.

As described in Section III, we use the 8-step displace-
ment �(8) for our new reconstruction, but the 1-step dis-
placement �(1) for the standard reconstruction, because
this is what has been used in the literature so far. Fig. 12
in Appendix D explores how the performance depends on
the number of steps used to construct the displacement
field �. We see only little benefit in using more than
eight iteration steps, indicating that the algorithm has
converged after eight steps. Extending the standard re-
construction by applying it to the 8-step displacement
�

(8) improves over using �

(1) on most scales, but it still
performs worse than our second-order reconstruction (see
Appendix B for discussion).

For the correlation coe�cient shown in Fig. 4, the first
order reconstruction does not depend on transfer func-

2 Focusing on the density phase correlation, we have implicitly as-
sumed here that the reconstructed density is rescaled by TF(k) ⌘
h�̂0�0i/h�0�0i as in Eq. 4.6 in [12]. We will discuss the density
amplitude later in Section IVE and Appendix A.

20

FIG. 13. Same as Fig. 4 but at redshift z = 0.6. The new re-
construction is more than 95% correlated with the initial con-
ditions at k  0.48 hMpc�1, or at k  0.53 hMpc�1 if second
order corrections are included in the method. For comparison,
the wavenumber where the correlation with initial conditions
drops below 95% is k = 0.21 hMpc�1 for standard reconstruc-
tion, and k = 0.09 hMpc�1 for the nonlinear density without
reconstruction in our setup.

FIG. 14. Same as Fig. 10 but at redshift z = 0.6.

2. Convergence of simulations

As a basic check for convergence of the FastPM simu-
lations, we ran a simulation with 40 time steps linearly
spaced between a = 0.1 and a = 1, and a second more
accurate simulation with 120 time steps linearly spaced
between a = 0.01 and a = 1. Both simulations used
20483 particles, box size L = 500 h�1Mpc, and we ap-
ply reconstruction to a 1% dark matter subsample at
z = 0.6. The correlation coe�cient of the reconstructed
density with the initial conditions di↵ers by less than
1% between these two simulations, for all reconstruction
methods considered in this paper, and for any number

of iterations steps used in the reconstruction procedure.
This indicates that the simulations have converged in the
sense that the final result is robust against changes of
starting time and number of time steps used to run the
simulations.

Appendix E: Modeling the new reconstruction
method

Given a prescription for reconstruction, we can try to
model the statistics of the reconstructed density, simi-
larly to previous e↵orts [33, 53, 70, 72, 73, 75, 76] model-
ing the density after the standard reconstruction of [17].

1. Undoing shift terms

From the mapping between Lagrangian and Eulerian
space x = q + and mass conservation

⇢̄ d3q = ⇢̄(1 + �) d3x, (E1)

we have that 1 + � = 1/J
q

, where J
q

is the determinant
of the Jacobian matrix

A
ij

⌘ @x
i

@qj
= �K

ij

+  
i,j

(E2)

where �K
ij

is the Kronecker delta (not to be confused with
density contrast). Spatial indices are always raised and
lowered using �K

ij

and its inverse. When convenient we
will use a comma to denote spatial derivatives. We can
obtain the final density directly from J

q

which we have
solved explicitly in terms of q. Using (E1)

�(x) =
⇣ 1

J
q

(q)
� 1

⌘

x=q+ 
(E3)

This expression should be used perturbatively expanding
up to a given order in the displacement field.
J
q

depends only on displacement gradients  
i,j

while
there are non-linear shift terms from the mapping from q

to x = q + that depend on the displacement  
i

itself.
These two sets of terms can have di↵erent sizes. The
shift terms can be large and should be resummed at the
BAO scale if one wants to get a good estimate of the cor-
relation function [16, 75]; even a linear long-wavelength
component of the displacement can move particles over
a large enough distance that truncating a perturbative
expansion of the form f(q +  ) = f(q) +  · rf + · · ·
would lead to large errors. The goal of reconstruction is
to undo the shift terms so that the non-linearities arising
from these shift terms are minimized.

2. Density of particles shifted by �

Given a displacement field �, let us make a coordinate
transformation from the final Eulerian coordinates x to

Cross correlation between 
initial and reconstructed field

Filter the non-linear density 
and solve for the linear density

�NL = �PT [�lin] + error
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FIG. 8. Same as Fig. 6, but for each simulation we estimate the BAO scale in the linear initial conditions and subtract it
o↵. This cancels the cosmic variance caused by linear finite-volume fluctuations of the initial conditions, allowing for a more
accurate comparison of methods. The remaining scatter between simulations corresponds to the BAO uncertainty caused by
nonlinear shift terms (see text for discussion). Our reconstruction reduces this substantially and recovers the linear BAO scale
in each individual simulation with high precision.

FIG. 9. Nonlinear BAO noise contribution �NL sourced by
nonlinear shift terms that wash out the acoustic peak. The
plot shows an estimate of this nonlinear noise divided by the
BAO signal, as a function of the maximum wavenumber used
to fit for the BAO scale in the power spectrum. To cancel
the linear noise contribution, the linear BAO scale of each
simulation is substracted from the measured late-time BAO
scale as in Fig. 8; the rms scatter of that di↵erence between
simulations is given by nonlinear terms that are not present
in the initial conditions. By construction, the linear density
has zero nonlinear noise and is therefore not shown. Recon-
struction reduces the nonlinear noise due to nonlinear shifts
significantly. See Section IVD for discussion.

0.15 hMpc�1 . k . 0.4 hMpc�1 at z ' 0 � 0.6,
where linear theory would not be valid without recon-
struction. Since the precision of many cosmological con-
straints scales steeply with the number of Fourier modes
included in the analysis, this could substantially improve
cosmology constraints from present and future galaxy
surveys. For this to be possible in practice, however,

FIG. 10. Power spectra in our L = 500 h�1Mpc simulation
at z = 0, divided by the linear initial power spectrum linearly
scaled to z = 0. Compared to the nonlinear density without
reconstruction (thick solid line), reconstruction significantly
improves the agreement with the linear power spectrum on
intermediate scales. Our first-order reconstruction, r · �,
has no transfer functions, while the second-order method uses
transfer functions discussed in Appendix A. The spectra are
raw spectra without mitigating CIC kernel or shot noise, both
of which matter at k & 1 hMpc�1. The high-k upturn of the
first-order reconstruction happens because our initial density
has zero shot noise but the late-time density has a small shot
noise, n̄�1 = 1.47h�3Mpc3. This can be avoided by multi-
plying with t̄1(k) given in Eq. (A6), which acts like a Wiener
filter (thin solid line).

one would have to address several complications, in par-
ticular nonlinear halo bias and redshift space distortions
that a↵ect the broad-band shape of the power spectrum.

On small scales, k & 0.3 hMpc�1 at redshift z = 0, the
reconstruction su↵ers from a deficit in power relative to
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tions because any rescaling by a function of k would not
a↵ect the correlation coe�cient. In contrast, the second
order correction does require transfer functions that were
calibrated to simulations as described in Appendix A.
Just as in the case of forward modeling in [11], the shape
of the transfer functions can probably be understood us-
ing the EFT approach, but we leave this for future work.

C. Baryonic Acoustic Oscillations

FIG. 5. Fractional BAO signal in the power spectrum, given
by the fractional di↵erence of simulations initialized with and
without BAO wiggles, h(P̂wiggle � P̂nowiggle)i/hP̂nowigglei. Re-
construction sharpens the BAO wiggles so that they agree
with those in the linear initial conditions. The power spectra
are averaged over ten large-volume simulations at z = 0, using
the same random seed for each wiggle and nowiggle simulation
to cancel most of the cosmic variance [53, 60, 64, 65].

Measurements of the Baryon Acoustic Oscillation
(BAO) scale from the galaxy power spectrum are a prime
example for the application of reconstruction, because it
reverses or avoids large-scale shifts that would otherwise
wash out the BAO wiggles in the observed galaxy power
spectrum, degrading the measurement [17, 33, 62]. As
mentioned above, the standard reconstruction technique
has been successfully applied to several redshift surveys,
improving the precision of the measured BAO scale typ-
ically by a factor ⇠ 2 [35–41], with similar improvements
expected for future surveys. It is therefore exciting to see
if our method can improve BAO measurements further.
To answer this, we use ten large-volume simulations with
L = 1380 h�1Mpc that were produced by Ding et al. [64]
as described in Section III C above.

Fig. 5 shows the fractional BAO signal in the simula-
tions. Our method restores the BAO signal of the linear
density perfectly, reversing the nonlinear damping. This
is not surprising given that the BAO signal is only vis-
ible at k < 0.5 hMpc�1, where the reconstructed den-
sity is more than 90% correlated with the linear density
as we already found in Fig. 4. Standard reconstruction

Mean BAO scale

Field vs lin. theory vs lin. realization

Initial conds. +0.05Mpc [+0.03%] +0.00Mpc [±0.00%]

Final conds. +0.49Mpc [+0.33%] +0.44Mpc [+0.30%]

Standard rec +0.02Mpc [+0.01%] �0.03Mpc [�0.02%]

New O(1) rec +0.05Mpc [+0.03%] ±0.00Mpc [±0.00%]

New O(2) rec +0.06Mpc [+0.04%] +0.02Mpc [+0.01%]

TABLE II. Systematic bias of the BAO scale estimated from
the best-fit BAO scale from the power spectrum of ten large-
volume simulations at z = 0. The BAO scale from the nonlin-
ear density is biased high by 0.3%. Reconstruction eliminates
that bias [33, 34, 50, 71–74]. The residual biases after re-
construction are small and likely consistent with zero because
the estimates are derived from only ten simulations. The left
column shows the sample mean of the best-fit BAO scale rela-
tive to the fiducial theoretical value, hr̂BAOi� rfidBAO; the right
column is relative to the initial condition of each simulation,
hr̂BAO � r̂linBAOi, cancelling cosmic variance.

Rms scatter of BAO scale

Field vs lin. theory vs lin. realization

Initial conds. 0.35Mpc [0.24%] 0Mpc [0%]

Final conds. 0.99Mpc [0.66%] 1.20Mpc [0.81%]

Standard rec 0.63Mpc [0.42%] 0.55Mpc [0.37%]

New O(1) rec 0.44Mpc [0.29%] 0.13Mpc [0.08%]

New O(2) rec 0.37Mpc [0.25%] 0.08Mpc [0.05%]

TABLE III. Left column: Root-mean-square scatter of the
best-fit BAO scale between ten 2.6h�3Gpc3 simulations at
z = 0. This is a Monte-Carlo estimate for the expected sta-
tistical 1� uncertainty when measuring the BAO scale from
the power spectrum in a single 2.6h�3Gpc3 volume. Right

column: Rms scatter of the BAO scale relative to that in the
initial conditions of each simulation, r̂BAO � r̂linBAO, which is
sourced by nonlinear shift terms as discussed in Section IVD.
All numbers are somewhat uncertain because they were esti-
mated from the scatter of only ten simulations.

(green line in Fig. 5) also reduces the nonlinear damp-
ing, but it does not recover the full linear BAO wiggles
at k & 0.2 hMpc�1.
To see if the signal-to-noise of the BAO scale estimated

from the power spectrum is also improved by reconstruc-
tion, we need to characterize the noise of the estimated
BAO scale. This would be straightforward if we knew
the covariance between power spectrum bins after recon-
struction, but that is di�cult to compute reliably. We
therefore choose a simpler Monte-Carlo approach and es-
timate the BAO uncertainty from the scatter of the best-
fit BAO scale between the ten simulations. This provides
a conservative estimate for the uncertainty of the best-fit
BAO scale (see Appendix C, where we also describe our
fitting procedure).
Fig. 6 compares the best-fit BAO scales estimated

from linear initial conditions, nonlinear late-time den-
sity, and reconstructed density in each of the ten simu-

BAO reconstruction
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FIG. 8. Same as Fig. 6, but for each simulation we estimate the BAO scale in the linear initial conditions and subtract it
o↵. This cancels the cosmic variance caused by linear finite-volume fluctuations of the initial conditions, allowing for a more
accurate comparison of methods. The remaining scatter between simulations corresponds to the BAO uncertainty caused by
nonlinear shift terms (see text for discussion). Our reconstruction reduces this substantially and recovers the linear BAO scale
in each individual simulation with high precision.

FIG. 9. Nonlinear BAO noise contribution �NL sourced by
nonlinear shift terms that wash out the acoustic peak. The
plot shows an estimate of this nonlinear noise divided by the
BAO signal, as a function of the maximum wavenumber used
to fit for the BAO scale in the power spectrum. To cancel
the linear noise contribution, the linear BAO scale of each
simulation is substracted from the measured late-time BAO
scale as in Fig. 8; the rms scatter of that di↵erence between
simulations is given by nonlinear terms that are not present
in the initial conditions. By construction, the linear density
has zero nonlinear noise and is therefore not shown. Recon-
struction reduces the nonlinear noise due to nonlinear shifts
significantly. See Section IVD for discussion.

0.15 hMpc�1 . k . 0.4 hMpc�1 at z ' 0 � 0.6,
where linear theory would not be valid without recon-
struction. Since the precision of many cosmological con-
straints scales steeply with the number of Fourier modes
included in the analysis, this could substantially improve
cosmology constraints from present and future galaxy
surveys. For this to be possible in practice, however,

FIG. 10. Power spectra in our L = 500 h�1Mpc simulation
at z = 0, divided by the linear initial power spectrum linearly
scaled to z = 0. Compared to the nonlinear density without
reconstruction (thick solid line), reconstruction significantly
improves the agreement with the linear power spectrum on
intermediate scales. Our first-order reconstruction, r · �,
has no transfer functions, while the second-order method uses
transfer functions discussed in Appendix A. The spectra are
raw spectra without mitigating CIC kernel or shot noise, both
of which matter at k & 1 hMpc�1. The high-k upturn of the
first-order reconstruction happens because our initial density
has zero shot noise but the late-time density has a small shot
noise, n̄�1 = 1.47h�3Mpc3. This can be avoided by multi-
plying with t̄1(k) given in Eq. (A6), which acts like a Wiener
filter (thin solid line).

one would have to address several complications, in par-
ticular nonlinear halo bias and redshift space distortions
that a↵ect the broad-band shape of the power spectrum.

On small scales, k & 0.3 hMpc�1 at redshift z = 0, the
reconstruction su↵ers from a deficit in power relative to
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FIG. 13. Same as Fig. 4 but at redshift z = 0.6. The new re-
construction is more than 95% correlated with the initial con-
ditions at k  0.48 hMpc�1, or at k  0.53 hMpc�1 if second
order corrections are included in the method. For comparison,
the wavenumber where the correlation with initial conditions
drops below 95% is k = 0.21 hMpc�1 for standard reconstruc-
tion, and k = 0.09 hMpc�1 for the nonlinear density without
reconstruction in our setup.

FIG. 14. Same as Fig. 10 but at redshift z = 0.6.

2. Convergence of simulations

As a basic check for convergence of the FastPM simu-
lations, we ran a simulation with 40 time steps linearly
spaced between a = 0.1 and a = 1, and a second more
accurate simulation with 120 time steps linearly spaced
between a = 0.01 and a = 1. Both simulations used
20483 particles, box size L = 500 h�1Mpc, and we ap-
ply reconstruction to a 1% dark matter subsample at
z = 0.6. The correlation coe�cient of the reconstructed
density with the initial conditions di↵ers by less than
1% between these two simulations, for all reconstruction
methods considered in this paper, and for any number

of iterations steps used in the reconstruction procedure.
This indicates that the simulations have converged in the
sense that the final result is robust against changes of
starting time and number of time steps used to run the
simulations.

Appendix E: Modeling the new reconstruction
method

Given a prescription for reconstruction, we can try to
model the statistics of the reconstructed density, simi-
larly to previous e↵orts [33, 53, 70, 72, 73, 75, 76] model-
ing the density after the standard reconstruction of [17].

1. Undoing shift terms

From the mapping between Lagrangian and Eulerian
space x = q + and mass conservation

⇢̄ d3q = ⇢̄(1 + �) d3x, (E1)

we have that 1 + � = 1/J
q

, where J
q

is the determinant
of the Jacobian matrix

A
ij

⌘ @x
i

@qj
= �K

ij

+  
i,j

(E2)

where �K
ij

is the Kronecker delta (not to be confused with
density contrast). Spatial indices are always raised and
lowered using �K

ij

and its inverse. When convenient we
will use a comma to denote spatial derivatives. We can
obtain the final density directly from J

q

which we have
solved explicitly in terms of q. Using (E1)

�(x) =
⇣ 1

J
q

(q)
� 1

⌘

x=q+ 
(E3)

This expression should be used perturbatively expanding
up to a given order in the displacement field.
J
q

depends only on displacement gradients  
i,j

while
there are non-linear shift terms from the mapping from q

to x = q + that depend on the displacement  
i

itself.
These two sets of terms can have di↵erent sizes. The
shift terms can be large and should be resummed at the
BAO scale if one wants to get a good estimate of the cor-
relation function [16, 75]; even a linear long-wavelength
component of the displacement can move particles over
a large enough distance that truncating a perturbative
expansion of the form f(q +  ) = f(q) +  · rf + · · ·
would lead to large errors. The goal of reconstruction is
to undo the shift terms so that the non-linearities arising
from these shift terms are minimized.

2. Density of particles shifted by �

Given a displacement field �, let us make a coordinate
transformation from the final Eulerian coordinates x to
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Figure 6. Left panel: Ratio of the best possible EFT power spectrum to the non-linear power spectrum as a
function of redshift. We indicate the 1% and 10% accuracy lines and mark the crossing of the 1%-threshold
by vertical lines, whose wavenumbers are given in Tab. 1. Right panel: Ratio of the perturbative model with
and without transfer functions and the non-linear power spectrum at z = 0.

that arise from the mapping from Lagrangian to Eulerian space leading to deviations from the k

4

scaling on surprisingly large scales (k ⇡ 0.03 hMpc�1 at z = 0).
In Fig. 6 we show the ratio of error and non-linear power spectrum Perr/PNL for three redshifts

z = 0, 1, 2 for the T �(T1 + T2 + T3) example to quantify up to which wavenumber the perturbative
calculation can be expected to agree with the N -body result. We quote the wavenumbers at which
the stochastic power crosses the 1% and 10% level in Tab. 1. While one should not focus too much
on the specific values, one should definitely note the steepness of the curves in the left panel of Fig. 6.
This means that at a fixed k away from the non-linear scale, the size of the error changes dramatically
as one goes to higher wavenumbers. This is important, since for data analysis applications, such as
trying to see the small effects of primordial non-Gaussianity in the two- and three point functions [2],
precision will probably be more important than reach.

The right panel of Fig. 6 shows Pmodel/PNL�1 and illustrates again that the biggest improvement
in reach comes from the inclusion of the final transfer function, fixing the problems caused by the
mapping. The comparison between T �(1+2) and T �(1+2+3), which are both effectively equivalent to
one-loop EFT calculations (with higher derivative counterterms) shows the difference that the higher
order terms that are only partially included can make. It is amusing to note that T �(1 + 2 + 3) is
actually slightly worse, so the additional work to include s

(3) did not result in an improvement here.
This is perhaps not surprising given how bad s

(3) is on small scales and the fact that the Lagrangian to
Eulerian mapping makes the large scale density depend on these mistakes. Of course with additional
freedom from more counter terms one should be able to absorb these differences. Finally one may
notice that in terms of reach, T �(T1 + T2 + T3) does not even improve by a factor of two. But reach
is perhaps the wrong metric as the error curves are very steep. Fig. 5 shows that away from the
non-linear scale, the error in T �(T1 + T2 + T3) is smaller than the one in T �(1 + 2) by about one
order of magnitude.

A map of the various density fields discussed in this section is shown in Fig. 7. It clearly shows how
well correlated the structure in a Zel’dovich realization is with the non linear structure. Overdensities

z k1% k10%

0 0.25 hMpc�1
0.46 hMpc�1

1 0.48 hMpc�1
0.98 hMpc�1

2 0.85 hMpc�1
1.72 hMpc�1

Table 1. Wavenumbers, where the stochastic term amounts to a 1% or 10% correction to the non-linear
matter power spectrum.
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Many of the questions in cosmology require looking for very small effect. 
Improving constraints using LSS is both experimentally and theoretically 
challenging.  
We have made interesting progress in our understanding of the mildly non-
linear regime but additional work is required. 



The End


