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Abstract
We show that four-dimensional black holes become stable below certain mass when the Einstein-Hilbert action is supple-

mented with higher-curvature terms. We prove this to be the case for an infinite family of ghost-free theories involving terms
of arbitrarily high order in curvature. The new black holes, which are non-hairy generalizations of Schwarzschild’s solution,
present a universal thermodynamic behavior for general values of the higher-order couplings. In particular, the temperature of
black holes is bounded from above and they have infinite lifetimes. When the semiclassical approximation breaks down, the
resulting object still has a large entropy, in stark contrast with the Schwarzschild case. Based on [1].

Introduction
As proven by Hawking [2], a black hole with surface gravity κ emits thermal radiation with a temperature
TH = κ/(2π). In the prototypical case of a Schwarzschild black hole of initial mass M0, the temperature
increases as the black hole radiates, as a consequence of its negative specific heat. After a finite time of order
∼M3

0/M
4
P , where MP is the Planck mass, the black hole evaporates down to an order-MP object of order-one

entropy. This suggests a violent ending for the evaporation process, and gives rise to the information para-
dox. However, in the final stages the curvature becomes very high, and the presence of higher-order curvature
corrections in the gravitational field equations could drastically change the picture.

Higher-order corrections
We consider the Einstein-Hilbert action extended with higher-curvature terms:
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where G = 1/M2
P is the Newton constant, Mc is some new energy scale, λn are dimensionless couplings and

n is the order in curvature of each invariant R(n). These invariants are defined by the property that the theory
above allows for solutions of the form

ds2 = −f (r)dt2 + f (r)−1dr2 + r2dΩ2
(2) , (2)

i.e., with gttgrr = −1. Apart from simplifying the problem of finding solutions, this property implies that the
spectrum of the theories is Einstein-like on flat/de Sitter/anti de Sitter backgrounds [3]. The first densities read
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We start at n = 3 because there is no quadratic theory with the properties we are searching.

Black holes
The theories (1) allow for solutions of the form (2) where f (r) satisfies the following second-order differential
equation
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This equation has a unique solution representing an asymptotically flat black hole. We plot f (r) in figure 1 for
several values of the scale Mc.
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Figure 1: Metric function f (r) for Schwarzschild’s solution (red) and for the new higher-order black holes (blue), with λ3 = λ4 =
λ5 = λ6 = 1, λn>6 = 0 and GMMc = 0.5 , 0.2 , 0.1 respectively, (from left to right).

Thermodynamics
The thermodynamics of these black holes can be studied analytically. Near the horizon r = rh we perform
the expansion f (r) = 4πT (r− rh) +O((r− rh)2), where T is the black hole temperature. Solving (3) for the
first two orders in (r − rh) gives rise to the following relations:
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These equations fix rh and T in terms of the black hole mass M . Making use of Wald’s formula [4], it is
possible to compute the entropy of the black holes, which yields
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where χ is defined as
∑∞
n=3

2λnχ
n−1

(n−1)
≡ 1. These relations exactly satisfy the 1st law of thermodynamics

dM = TdS. (7)

In figure 2 we show the temperature T (M) and the specific heat C(T ) = dM
dT . The temperature becomes

maximum for M ∼ M2
P/Mc and below this mass the specific heat becomes positive C > 0, so these small

black holes are stable. The behavior is very similar for any choice of the couplings λn 6= 0.
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Figure 2: Left: Black hole temperature as a function of the mass for Schwarzschild’s solution (red) and for the higher-order black
holes with λ3 = λ4 = λ5 = λ6 = 1, λn>6 = 0. Right: Specific heat. The lower branch, with C < 0, corresponds to BHs with
large mass while the upper one represents small BHs, which have C > 0. The transition happens for M ∼ M 2

P/Mc. Below this
mass, higher-order black holes become stable. The shape of these curves is qualitatively the same for any other choice of couplings
(except λn = 0 for all n).

For small masses, M �M2
P/Mc, the expressions for rh(M), S(M) and T (M) are approximately given by
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where ζ ≡
∑∞
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n−3

n . In this regime, the solutions satisfy the Smarr relation
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This relation, which describes the thermodynamics of these stable black holes, holds for all theories as long
as any λn 6= 0, so the only exception is Einstein gravity.

Black hole evaporation
Let us explore the evaporation process of these black holes in the small mass regime. The rate of mass-loss of
a black hole in the vacuum can be computed using the Stefan-Boltzmann law, dM(t)

dt = −4πr2
hσ · T

4 where
σ = π2/60. Using (8), we can easily integrate this expression for M �M2

P/Mc. The result is
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Hence, the mass never vanishes and the black holes have an infinite lifetime!
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Figure 3: Time evolution of the mass due to Hawking evaporation. Schwarzschild black holes “explode” after a finite time, while
higher-order black holes never evaporate completely.

After a time ∆t ∼ M
7/2
P /M

9/2
c the mass becomes M ∼

√
MPMc and the semiclassical description breaks

down. The entropy at that moment is S ∼ MP/Mc. If we choose Mc << MP, the time to reach the semiclas-
sical breakdown becomes huge (even for a microscopic black hole) and the final entropy is large, S >> 1, in
contrast with the Schwarzschild’s case. This shows that the last stages of the evaporation process are seriously
affected by higher-order corrections.

Conclusions
•We have constructed a new family of higher-order gravities in four dimensions which allow to study gener-

alizations of Schwarzschild solution
• The new black holes have a universal thermodynamic behavior and they become stable below certain mass.

For small masses the thermodynamics is universally characterized by the relation M = 2/3TS.
• These black holes have infinite lifetimes. They do not explode and the temperature vanishes when the mass

goes to zero. This could have consequences for the information problem.
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