Abelian tensor hierarchy and Chern-Simons actions in 4D N=1 conformal supergravity Ryo Yokokura (Keio U.) 2017. 6. 21 PASCOS 2017 @ IFT UAM-CSIC based on RY, JHEP1612 (2016) 092 [arXiv:1609.01111]

Abstract

We consider a general framework of shift symmetric tensor gauge theories in 4D N=1 supergravity by using conformal superspace formalism. The Chern-Simons actions of tensors are expressed in a manifestly supersymmetric way.

1 Introduction

Shift symmetric tensor gauge theory in 4D N=1 SUGRA?

Gauged shift symmetry and p-form gauge fields

• Related to cancellation of U(1) gauge anomaly $\delta \phi_0 = q \theta_0$ $\delta A_1 = d \theta_0$

4 ATH in conformal superspace Natural extension of global SUSY case 4.1 Gauge transf. laws & field strengths

• Generalized to p-form: Abelian tensor hierarchy (ATH)

[de Wit & Samtleben (2005)] $\delta B_{p-1} = k\lambda_{p-1} \qquad \delta C_p = d\lambda_{p-1}$

Chern-Simons actions

 Constructed by wedge products of gauge fields and field strengths $\phi_0 F_2 \wedge F_2 \qquad B_2 \wedge F_2 \qquad \phi_0 dC_3$ • Application: shift symmetric axion mass $-rac{1}{2}(dC_3)^2 + g\phi_0 dC_3$ [Kaloper & Sorbo (2009)]

4D N=1 Supergravity (SUGRA)

- Beyond SM, Einstein gravity, string effective theory
- **Construction of Chern-Simons actions of ATH in SUGRA**
- ATH: express gauge transf. laws, field strengths and actions in SUGRA
- SUGRA: use conformal superspace formalism to reduce SUGRA complexity

2 Abelian tensor hierarchy in 4D global SUSY Shift symmetric Abelian tensor gauge theory **2.1 Bosonic case** [de Wit & Samtleben (2005)]

Gauge transf. laws & field strengths shifted

Field strongths

2-form
$$\delta B_2 = d\lambda_1$$

shift $A_1 = d\theta_0 + q\lambda_1$ $F_2 = dA_1 - qB_2$

Shift deformation extended

Bosonic gauge fields and field strengths are expressed by superfields: $B_{ab} = \frac{1}{2i} ((\sigma_{ab})_{\alpha}{}^{\beta} \nabla^{\alpha} \Sigma_{\beta} - (\bar{\sigma}_{ab})^{\dot{\alpha}}{}_{\dot{\beta}} \bar{\nabla}_{\dot{\alpha}} \bar{\Sigma}^{\dot{\beta}}) | \qquad H_{abc} = \frac{1}{8} \epsilon_{abcd} (\bar{\sigma}^d)^{\dot{\alpha}\beta} [\nabla_{\beta}, \bar{\nabla}_{\dot{\alpha}}] L |$ $A_a = -\frac{1}{4} (\bar{\sigma}_a)^{\dot{\alpha}\alpha} [\nabla_\alpha, \bar{\nabla}_{\dot{\alpha}}] V | \qquad F_{ab} = \frac{1}{2i} ((\sigma_{ab})_\alpha{}^\beta \nabla^\alpha W_\beta - (\bar{\sigma}_{ab})^{\dot{\alpha}}{}_{\dot{\beta}} \bar{\nabla}_{\dot{\alpha}} \bar{W}^{\dot{\beta}}) |$

4.2 Chern-Simons action

Constructed by gauge fields and field strengths

$$S_{\rm CS} = \int d^4x d^4\theta E \alpha LV + \operatorname{Re}\left(i \int d^4x d^2\theta \mathcal{E} \alpha \Sigma^{\alpha} W_{\alpha}\right)$$

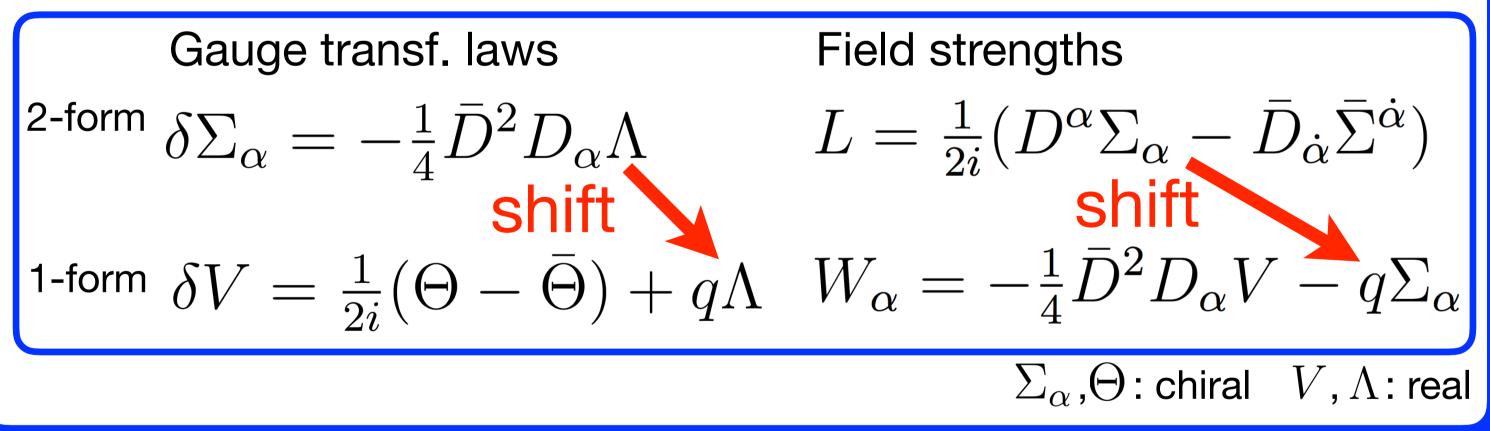
 $i \ni \alpha A_1 \wedge H_3 + \alpha B_2 \wedge F_2$ α : real constant, E: superspace density, E: chiral density

q : constant

2.2 4D N=1 global SUSY case

[Becker et al. (2016)]

SUSY manifest: superfields & spinor derivatives



3 Conformal superspace

[Butter (2010)]

Reduce SUGRA complexity & SUSY manifest

 $\{\nabla_{\alpha}, \nabla_{\beta}\} = \{\bar{\nabla}_{\dot{\alpha}}, \bar{\nabla}_{\dot{\beta}}\} = 0, \quad \{\nabla_{\alpha}, \bar{\nabla}_{\dot{\beta}}\} = -2i\nabla_{\alpha\dot{\beta}}$

 ∇_{α} : superconformally covariant spinor derivative

4.3 Superconformal & shift invariances of the CS action

Superconformal invariance

Satisfied by the Weyl weights of the superfields (for scale invariance)

e.g. Counting the Weyl weight of LV term

 $d^4x d^4 heta Elpha LV_{\textbf{-2}+\textbf{2}0}$

Shift invariance

Weyl weights of superfields $H_{abc} = \frac{1}{8} \epsilon_{abcd} (\bar{\sigma}^d)^{\dot{\alpha}\beta} [\nabla_\beta, \bar{\nabla}_{\dot{\alpha}}] L | \qquad E \leftarrow d^4 x d^4 \theta$ $+3 \qquad 1/2 \quad 1/2 +2 \qquad -2 \qquad -4 \qquad +2$ $A_a = -\frac{1}{4} (\bar{\sigma}_a)^{\dot{\alpha}\alpha} [\nabla_\alpha, \bar{\nabla}_{\dot{\alpha}}] V |$

Satisfied by the relation between the coefficients Invariance is the same as bosonic case:

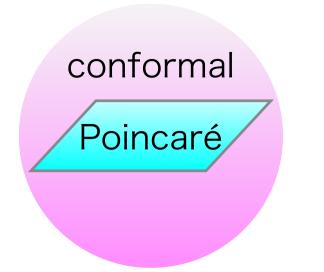
 $\delta(\alpha B_2 \wedge F_2 + \alpha A_1 \wedge H_3) = \alpha d\lambda_1 \wedge F_2 + \alpha q\lambda_1 \wedge H_3$

5 Summary

- ATH is introduced into 4D N=1 SUGRA by using conformal superspace.
- Gauge transf. laws and field strengths are expressed

Conformal SUGRA [Kaku & Townsend (1978)]

- Gauge theory of superconformal symmetry
- Larger symmetry than Poincaré SUGRA
- Gravitational complexity reduced



in terms of the superfields.

- Shift invariant CS actions are constructed.
- Future work: application to phenmomenology

e.g. inflation, anomaly cancellation in 4D,...

Appendix ATH in conformal superspace (all rank tensor & multicomponent case)

form	type	prepotentials	gauge parameters
0-form	chiral	Φ^{I_0}	Θ^{I_1}
1-form	real	V^{I_1}	Θ^{I_2}
2-form	chiral	$\Sigma^{I_2}_{lpha}$	$\Theta^{I_3}_{lpha}$
3-form	real	X^{I_3}	Θ^{I_4}
4-form	chiral	Γ^{I_4}	_

form	gauge transf. laws	field strengths
0-form	$\delta \Phi^{I_0} = (q^{(0)} \cdot \Theta)^{I_0}$	$\Psi_a^{I_0} = \frac{1}{2i} (\Phi^{I_0} - \bar{\Phi}^{I_0}) - (q^{(0)} \cdot V)^{I_0}$
1-form	$\delta V^{I_1} = \frac{1}{2i} (\Theta^{I_1} - \bar{\Theta}^{I_1}) + (q^{(1)} \cdot \Theta)^{I_1}$	$W_{\alpha}^{I_{1}} = -\frac{1}{4}\bar{\nabla}^{2}\nabla_{\alpha}V^{I_{1}} - (q^{(2)}\cdot\Sigma_{\alpha})^{I_{1}}$
2-form	$\delta \Sigma_{\alpha}^{I_2} = -\frac{1}{4} \bar{\nabla}^2 \nabla_{\alpha} \Theta^{I_2} + (q^{(2)} \cdot \Theta_{\alpha})^{I_2}$	$L^{I_{2}} = \frac{1}{2i} (\nabla^{\alpha} \Sigma^{I_{2}} - \bar{\nabla}_{\dot{\alpha}} \bar{\Sigma}^{I_{2} \dot{\alpha}}) - (q^{(2)} \cdot X)^{I_{2}}$
3-form	$\delta X^{I_3} = \frac{1}{2i} (\nabla^{\alpha} \Theta^{I_3} - \bar{\nabla}_{\dot{\alpha}} \bar{\Theta}^{I_3 \dot{\alpha}}) + (q^{(3)} \cdot \Theta)^{I_3}$	$Y^{I_3} = -\frac{1}{4}\bar{\nabla}^2 X^{I_3} - (q^{(3)}\cdot\Gamma)^{I_3}$
4-form	$\delta\Gamma^{I_4} = -rac{1}{4}ar{ abla}^2 \Theta^{I_4}$	

form	bosonic gauge fields
0-form	$\phi^{I_0} = rac{1}{2} (\Phi^{I_0} + ar{\Phi}^{I_0}) $
1-form	$A_a^{I_1} = -\frac{1}{4} (\bar{\sigma}_a)^{\dot{\alpha}\alpha} [\nabla_\alpha, \bar{\nabla}_{\dot{\alpha}}] V^{I_1} $
2-form	$B_{ab}^{I_2} = \frac{1}{2i} ((\sigma_{ab})_{\alpha}{}^{\beta} \nabla^{\alpha} \Sigma_{\beta}^{I_2} - (\bar{\sigma}_{ab})^{\dot{\alpha}}{}_{\dot{\beta}} \bar{\nabla}_{\dot{\alpha}} \bar{\Sigma}^{I_2 \dot{\beta}}) $
3-form	$C^{I_3}_{abc} = \frac{1}{8} \epsilon_{abcd} (\bar{\sigma}^d)^{\dot{\alpha}\alpha} [\nabla_\alpha, \bar{\nabla}_{\dot{\alpha}}] X^{I_3} $
4-form	$D_{abcd}^{I_4} = \frac{i}{8} \epsilon_{abcd} (\nabla^2 \Gamma^{I_4} - \bar{\nabla}^2 \bar{\Gamma}^{I_4}) $

 $q^{(p)}: I_{p+1} \to I_p$: matrix for internal d.o.f. satisfying $q^{(p)} \cdot q^{(p+1)} = 0$ (gauge invariance of field strengths)