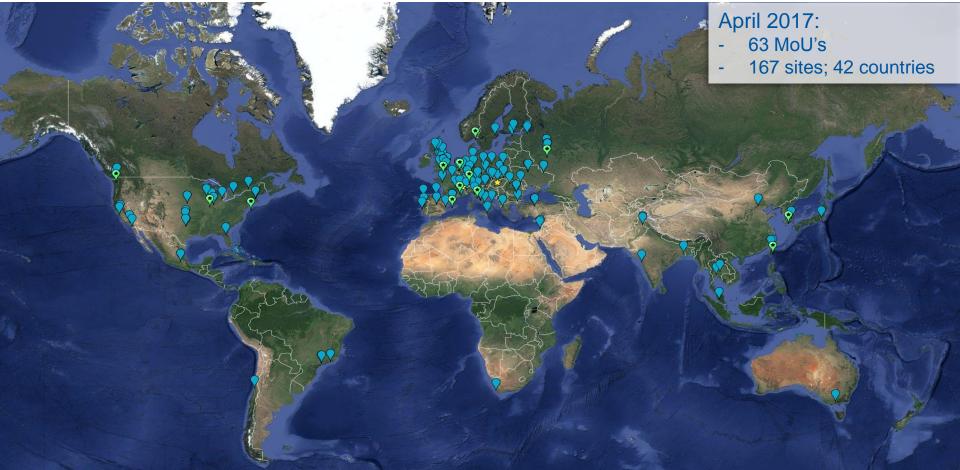
WLCG Status Report

Ian Bird Computing RRB CERN, 25th April 2017



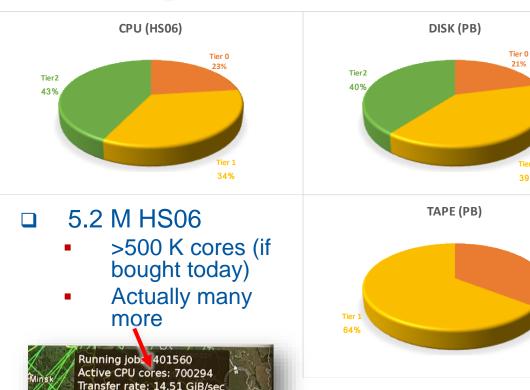
C-RRB: 25 April 2017

Ian Bird

1

WLCG Collaboration

WLCG Funding & Expenditure


LHC Futur	e Computing	Funding and	Expenditure I	Estimates	
(all figures in	MCHF), data extracte	d 12th April 2017			
]	2016	2017	2018	2019	2020
	2010	2017	2010	2017	2020
Funding					
From CERN Budget *					
- Personnel	17.9	19.2	19.7	19.0	19.5
- Materials **	21.6	19.5	21.0	19.6	18.6
Total Fundin	ig 39.5	38.6	40.6	38.6	38.1
Expenditure					
- Personnel ***	19.0	18.9	19.3	18.8	18.7
- Materials	22.8	21.8	17.3	19.1	15.9
	11.0	10 -	26.5	25.0	
Total Planned Expendit	ure 41.8	40.7	36.7	37.8	34.6
Balance Personne	-1.2	0.2	0.3	0.3	0.8
Balance Material	s -1.1	-2.3	3.6	0.5	2.7
* Internal budget 2017					
** Includes carry-forward/carry-back, EUR/CHF exchange rate penalty applied sin	ce 2015 and negative CV	I for 2017 and beyond			
*** Excluding Data Centre Operators					

Personnel: balanced situation Materials planning based on currently understood parameters:

- Assumes 2018 requirements as discussed today;
 - LS2: 2019 2020
 - Cost extrapolations based on recent experience
- Includes cost of additional purchases for 2017 at end of 2016
- Foresee 2nd network hub costs; internal network upgrades; tape infrastructure updates
- Positive balance in 2020 is preparation for ramp up to Run 3

Pledged resources 2017

Rostov

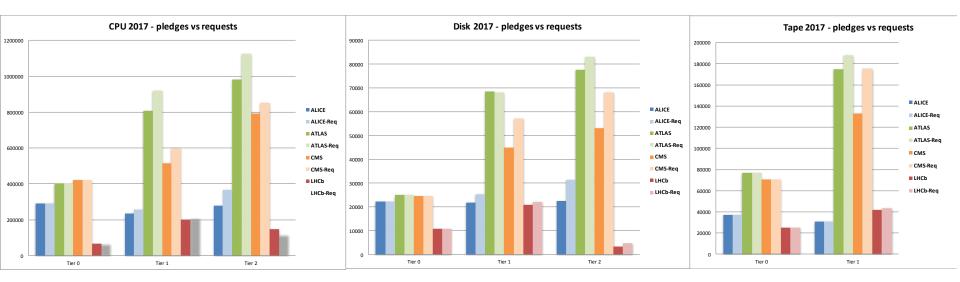
KHARKUV-KIPT-LUG2-UA-ISMA

ARC UA-BITP

UA ICYB

985 PB Storage

- 395 PB disk
- 590 PB tape


Tier 1

39%

Tier 0

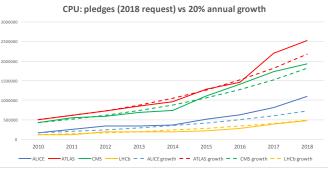
36%

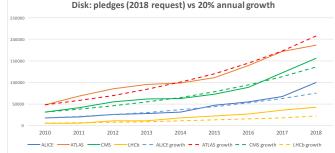
2017 Pledge situation

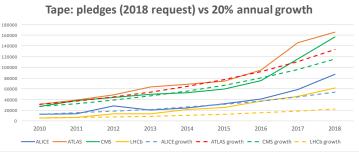
Not all is deployed yet for 2017 – a few delays Full resources expected by June

Mitigation measures reviewed by LHCC

- In February the LHCC reviewed the measures taken by the experiments to mitigate the shortfall in resources relative to the exceptional LHC performance
- □ Concluded that: (CERN-LHCC-2017-004)
 - "The LHCC congratulates the LCG and experiments on the successful implementation of mitigation measures to cope with the increased data load."
 - "The LHCC notes that the margins to reduce the resource usage in the short term without impact on physics have been exhausted."

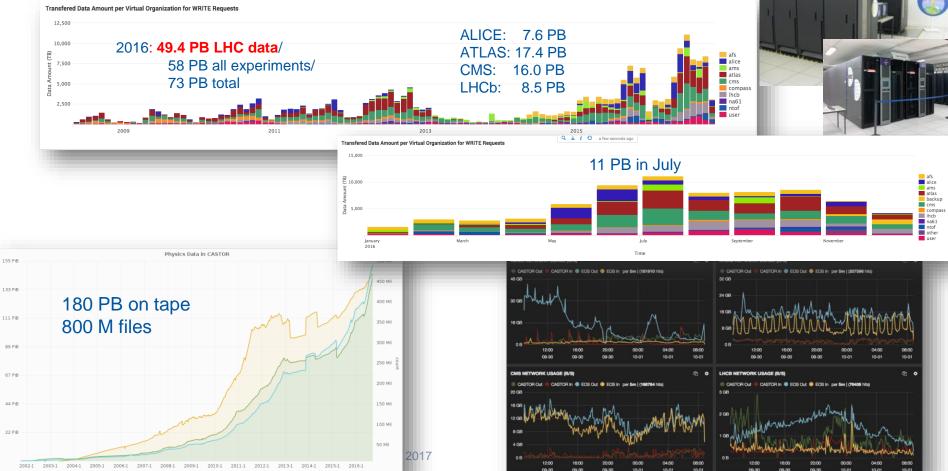



Comments on flat budgets

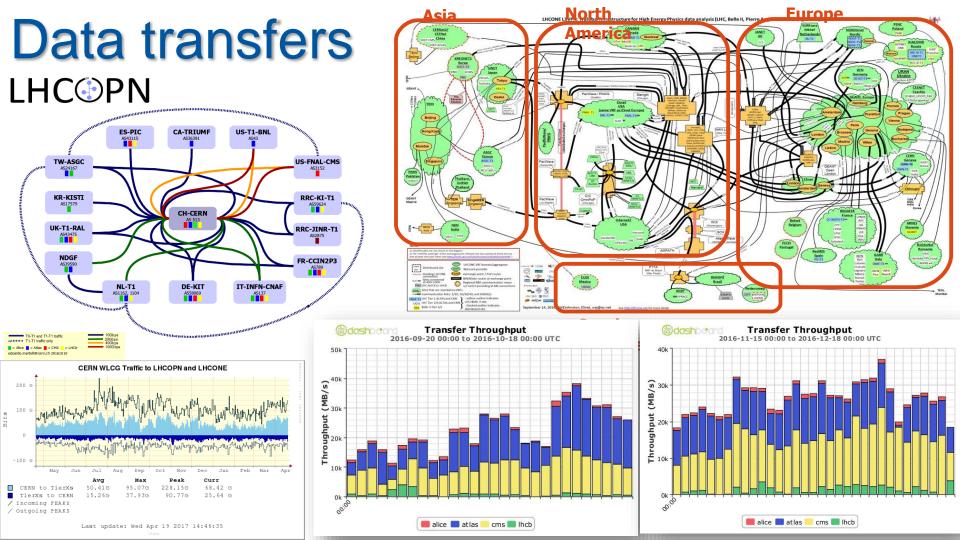


WLCG

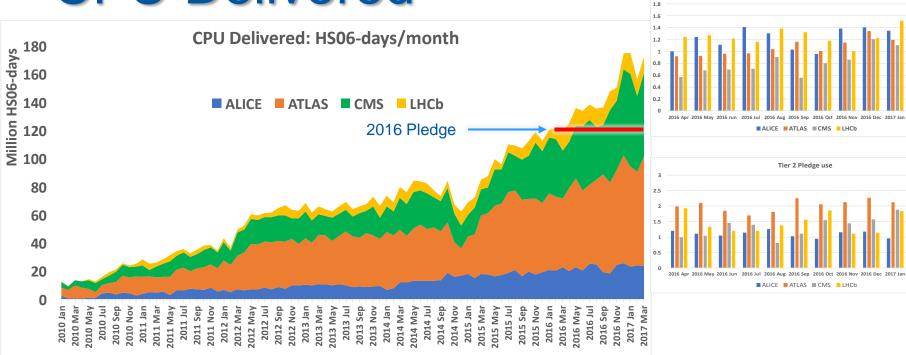
ERN



Extrapolations from 2010:


- Ignore no investment in 2013,14
- Deviations from "flat budget" are generally not enormous, and are corrected
- Jump in 2017 LHC performance
- Tape needs still increase
- We need to clarify what is meant by flat budgets:
 - We assume: constant budget/investment even in long shutdown years
 - This did not happen in LS1

Data in 2016 - updated



лж

- fileSize Current: 141.4 PiB - sizeOnTape Current: 152.1 PiB - fileCount Current: 467.9 Mil

CPU Delivered

New peak: ~180 M HS06-days/month ~ 600 k cores continuous

C-RRB: 25 April 2017

Tier 0/1 Pledge use

CERN (Tier 0) Facilities

	last_value
Number of Cores in Meyrin	168,824
Number of Drives in Mayrin	86,077
Number of 10G NIC in Meyrin	11,233
Number of 1G NIC in Meyrin	23,452
 Number of Processors in Meyrin 	26,927
Number of Servers in Meyrin	14,265
 Total Disk Space in Meyrin (TB) 	167,061
 Total Memory Capacity in Meyrin (TB) 	725

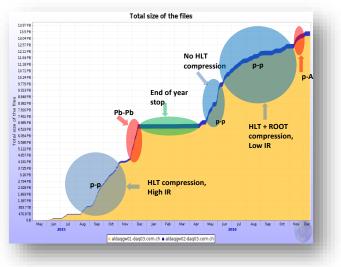
		Total T	raffic to/from Wigner		
100 0	200 6		Ann		
				- Wart	
-300 6 2mg/mg/4	¹ −100 G −200 G	un -	man and a man	and the second second	~~~~
-200 G 02	-300 G Thu 12:		Fri 00:00		
Traffic from WIGNE	E Traffic from WI				
T-SYSTEMS	_	Avg	Max	Last	Peak
GEANT-1	T-SYSTEMS	33.65G	66.115	22.10G	
GEANT-2	GEANT-1	36.850	66.755	22.68G	
/ TOTAL	GEANT-2 / TOTAL	33.78G 104.28G	63.98G 193.63G	21.376 66.156	195.76G
Traffic from CERN	to Traffic from CE	RN to WIGNER			
		Avg	Max	Last	Peak
T-SYSTEMS	T-SYSTEMS	56.93G	96.720	31.756	
GEANT-1	GEANT-1	57.260	97.77G	34.526	
GEANT-2	GEANT-2	57.016	97.540	33.776	
/ TOTAL	/ TOTAL	171.206	290.246	100.046	292.096
	3	Last update:	Fri Feb 17 2017 1	0:02:00	

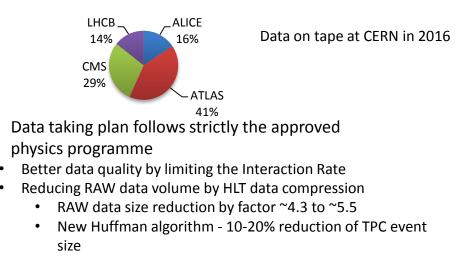
WIGNER DATA CENTRE last_value Number of Cores in Wigner 56,000 Number of Drives in Wianer 29,694 2.981 Number of 10G NIC in Wigner 6.579 Numer of 1G NIC in Wigner Number of Processors in Wigner Number of Servers in Wigner 3,504 97,315 Total Disk Space in Wigner (TB) Total Memory Capacity in Wigner (TB) 221

2017:

MEYRIN DATA CENTRI

- 225k cores \rightarrow 325k
- 150 PB raw → 250 PB

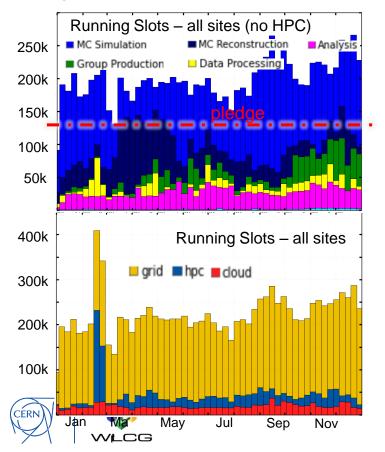

2017-18/19


- Upgrade internal networking capacity
- Refresh tape
 infrastructure

Т

Experiment updates

ALICE: Run 2 progress and processing status

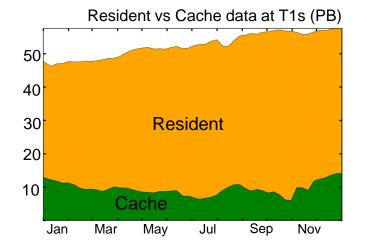

- Data processing new high-precision calibration schema developed and certified
 - Up to 130K concurrent jobs, 80% overall CPU/wall efficiency
 - HLT providing 5% of the CPU resources
 - 2015 Pb-Pb and 2016 p-Pb data fully processed, p-p data processing at 90%
 - 2015 p-p data at 60%, processing will be completed by June 2017
- Analysis
 - Unprecedented level of analysis activity, up to 3PB data analyzed daily
- Simulation
 - Validation and performance improvements of Geant4 and its use for specific simulation campaigns

ALICE: Concerns

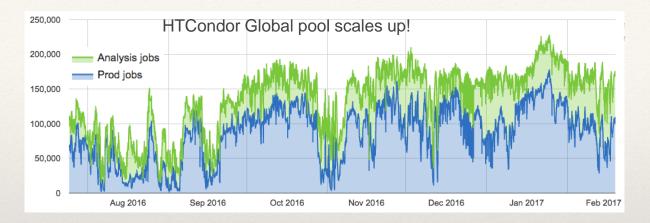
- Requirements
 - Growth within acceptable rate since 2014, all requests approved
- Pledges and delivered
 - Systematic under-pledges and under-delivery at T2s over several years
 - This artificially skews our 2018 requirements/pledges ratio
- Radical measures already taken
 - Reducing replicas, now at absolute minimum (no replicas for any file but AODs)
- Recommendations of CRSG *not followed*, resulting in deficit of disk storage
 - A negative message will further erode the resources delivery
- 2018 will be particularly data intensive pp and PbPb runs with high multiplicity central triggers
- To successfully process and analyze the data we need our requirements to be fulfilled

Tier ^	Pledge Type 🗘	AL	ICE 🗘	Req	uired 🗘	Balance
Tier 0	CPU (HEP-SPEC06)	292	2,000	2	92,000	0%
Tier 0	Disk (Tbytes)	22,400		22,400		0%
Tier 0	Tape (Tbytes)	36,900		36,900		0%
Tier 1	CPU (HEP-SPEC06)	235,481		256,000		-8%
Tier 1	Disk (Tbytes)	21,808		25,400		-14%
Tier 1	Tape (Tbytes)	30,611		30,900		-1%
Tier 2	CPU (HEP-SPEC06)	277,660		366,000		-24%
Tier 2	Disk (Tbytes)	22,537		7 31,400		-28%
	Data occ	upvina	T0/T1/T2 \$	Storage		
	Event Size [MB]		# of cop	bies on	# of versions	# of copies on tape
			minimal	typica		
RAW	3 (pp) 11 (Pb-Pb)				1	2 (one at T0 + one at one of the T1s)
ESD	10 to 30% of RAW, deper on type of collision syster luminosity		1	1	1-3	
AOD	10 to 15% of RAW, deper on type of collision syster luminosity		1	2.6 2	1-4 per ESD version	
MC ESD	0.37 (pp) 2.7 (Pb-Pb)		1	1	1	
MC AOD	30% of MC ESD		1	2.6 2	2	

Considerable effort invested to mitigate the resource needs: 2018 requests below "flat budget" growth w.r.t 2017 requests

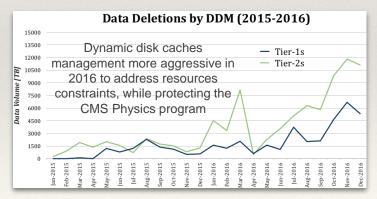


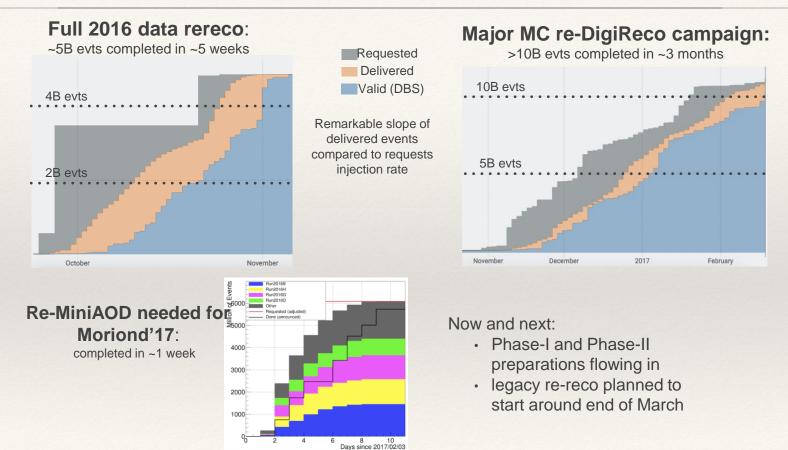
ATLAS


Full and constant use of WLCG pledged resources and benefit of extra 50% opportunistic CPU capacity

Investment in software and computing tools to integrate non Grid resources is showing considerable profit: 15% of CPU capacity from Cloud and HPC

Lifetime model and dynamic data management facilitate space optimization

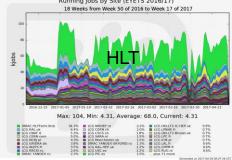

CMS - resources management [1/2]


Very high usage of resources in 2016. On average CMS used:

103% of the T1 CPU pledges

- 129% of the T2 CPU pledges
 - 96% and 134% as compared to the CMS requirements, respectively

CMS - activities [2/2]


CMS-LHCC - CERN - 21 February 2017

D. Bonacorsi, L. Sexton-Kennedy

LHCb Resource Optimizations

2016 mitigation actions to cope with increased resource needs included reduction of disk replicas (3 to 2), parking of ~ 1/3 of TURBO data on tape and purging of ~1 PB of disk resident data via popularity

During EYETS very good usage of HLT farm for offline computing. At peak times ~ doubling computing resources

Further application optimizations for 2017 data taking in place via code vectorization in close connection to the experiment's Run3 upgrade activities

Evolution & planning

Concerns over tape ...

DATA CENTRE SOFTWARE SECURITY TRANSFORMATION DEVOPS BUSINESS PERSONAL TECH Data Centre Storage	SCIENCE EMERGENT TECH BOOTNOTES
Did Oracle just sign tape's death warrant? Depends what 'no comment' means	Oracle Lto
Big Red keeps schum over the status of StreamLine	17-19 May 2017 CONTINUOUS LIFECYCLE DEUDER CONTINUOUS CONTINUOUS DEUDERY AND CONTINUOUS EVOR, CONTINUOUS DEUDERY AND CONTINUOUS DEUDERY AND CONTINUOUS DEUDERY AND CONTINUOUS DEUDERY AND CONTINUOUS DEUDERY CONTINUOUS DEUDERY AND CONTINUOUS DEUDERY AND CONTINUOUS DEUDERY CONTINUOUS DEUDERY AND CONTINUOUS DEUDERY AND CONTINUOUS DEUDERY AND
1 Feb 2017 at 10:44, Chris Mellor	Talk of tech innovation is bullsh*t. Shut up and get the work done – says Linus Torvalds
El Reg was tipped off that Oracle's StorageTek (StreamLine) tape library product range was going to be end-of-lifed.	Global IPv4 address drought: Seriously, we're done now. We're done

WLCG

Oracle will no longer produce "enterprise" class drives/media

- Focus on LTO
- Not a huge impact on most Tier 1s
- Use LTO, IBM

. . .

- Some plan LTO migration
- Has cost implication for CERN (~40 PB cut from costed plan);
 - mitigate with IBM, and introduction of LTO (investment)
- However, long term concern is that IBM now dominates the tape market

Community White Paper

- Mentioned at previous RRB
- Goal to have a Community White Paper (CWP) on overall strategy & roadmap for software/computing for HL-LHC
 - Deliverable of an NSF-funded pre-project
 - Also takes account of Belle-II, ILC, neutrinos, etc.
- □ To be delivered by summer 2017
- □ Kick-off workshop held in San Diego 23-26 Jan
- □ Final workshop planned for end of June
- Will be used as input for the LHCC report later this year, developing roadmap towards TDR for HL-LHC computing in 2020

CWP kick-off workshop

- □ UC San Diego (Jan 23-26)
- □ ~110 people, 80% US, 20% other
 - All LHC experiments represented
 - Participation from industry and CS
 - Wider HEP audience included experts in trigger, reconstruction, ML, etc
- One day of plenary & panel discussions; ~2 days of parallel working group meetings

Plenary discussions

- First day of presentations giving the context for working group discussions:
 - Physics and Computing Challenges of the HL-LHC
 - Situation for Linear Collider, LIGO, FNAL program, Chinese efforts
 - Status of Cloud Technology
 - Situation in (US) funding agencies
 - Licenses and Citation for Software
- □ Multiple discussion panels on
 - Compute architectures, platforms and software performance
 - Data centres and facilities technologies (clouds, networks, storage)
 - Machine Learning in HEP

Working groups active

- □ Working groups defining scope, challenges, questions, workplan:
 - Computing Models, Facilities, Distributed Computing
 - Detector Simulation
 - Event Reconstruction and Triggering
 - Data Access and Management
 - Data Analytics and Machine Learning
 - Event Processing Frameworks
 - Workflow and Resource Management
 - Data Analysis and Interpretation
 - Data and Software Preservation
 - Software Development, Deployment and Validation/Verification
 - Role and Future of ROOT
 - Visualization
- All documents are visible at: <u>http://hepsoftwarefoundation.org/cwp/cwp-working-groups.html</u>

Follow up

- Very productive workshop large engagement of the community
- Working groups have plans for completing the documents
 - Meetings co-located at various community events
- □ Final CWP workshop to be held in June

HL-LHC Computing TDR

- Agreed with LHCC to produce TDR for HL-LHC computing in 2020
- In 2017 we will provide a document describing the roadmap to the TDR
 - Using the CWP as input
 - Describing potential new computing models
 - Defining prototyping and R&D work that will be needed
- The TDR will not be the end technology evolution in 6-7 years will be significant, cannot afford not to follow it
- □ NB. Very different situation from the original TDR
 - we have a working and well-understood system that must continue to operate and evolve into the HL-LHC computing programme

Conclusions

- Run 2 in 2016 delivered 50 PB of new data, following exceptional performance of the LHC
 - Continued to set new performance records in all areas
- WLCG infrastructure continued to be even more active in the EYETS
- 2017/18 look to be challenging in terms of resource availability, esp if LHC meets expected luminosities, availability
- Activity (& engagement) is ramping up to look at evolution of the computing models for the future

