
Towards common ATLAS/CMS prescription for $gg \rightarrow H$ perturbative uncertainties in kinematic regions

Fabrizio Caola, Dag Gillberg, Andrea Massironi, Pier Monni

Into + goal of today's meeting

- · A long list of Higgs analyses of the current Run 2 dataset (~33 fb⁻¹) are in final stages
 - · Common, consistent approach for theoretical uncertainties for ggF urgently needed
- Theoretical uncertainties enter a measurement at two levels:
 - They affect the estimated **acceptances** used in the measurements
 Typically quite small effect, but might be underestimated if one use a uncertainty scheme with too strong correlation (too simplified, i.e. to few uncertainty sources)
 - They affect the predicted cross section in a data-to-theory comparison (e.g. data/theory = μ or in κ measurement)
- Both ATLAS and CMS are measuring "Stage 1 simplified template cross sections" (STXS), which means the cross section after simultaneous selection criteria applied both to the number of jets and Higgs boson transverse momentum (see next page)
 - Perturbative uncertainties hence needed in particular for these regions
- Goal of today's meeting is to look at two proposed uncertainty schemes and hopefully be able to agree on a common scheme considered good enough to be used for the upcoming analyses
 - Feedback from theorists might result in revisions

Definition of the regions of interest

VBF topology

 $m_{jj} > 400\,{
m GeV}$ $\Delta y_{jj} > 2.8$ $p_{{
m T},H} < 200\,{
m GeV}$ then split using $p_{{
m T},Hjj}$

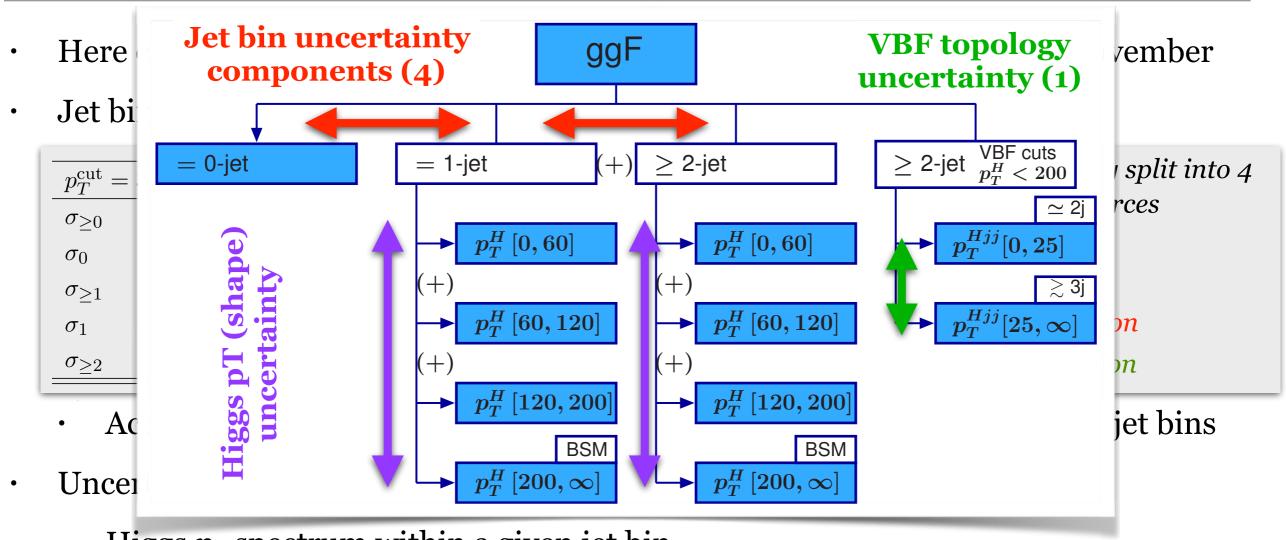
- Jet definition:
 - Higgs decay products ignored
 - Jets built using anti- $k_t R$ = 0.4 from all stable remaining particles (hadron jets)
 - Transverse momentum threshold: $p_T > 30 \text{ GeV}$
 - RIVET implementation: <u>svnweb.cern.ch/cern/wsvn/lhchiggsxs/repository/TemplateXS/</u>

Pragmatic approach for evaluating theory uncertainty

- 1. Start with MC generator believed to have adequate modelling of the kinematics
- 2. Normalize it to the best available cross section (YR4: N³LO)
- 3. Propagate the uncertainties according to an uncertainty scheme using event weights (reweighing). For each uncertainty source:
 - → Apply "+1-standard deviation" shifts depending on event kinematics
 - → one new prediction per uncertainty source (can do the same for -1 sigma)
- 4. For any given observable, take the difference between the shifted and nominal prediction separately for each uncertainty source and add in quadrature to construct the total uncertainty band
- 5. Compare prediction to state-of-the art (analytical) predictions
 - → hope to see state-of-the-art predictions falling within assigned uncertainty band

Same method as discussed in previous WG1 meeting: https://indico.cern.ch/event/581691/

Example code for implementation for this method is available in backup slides


Test of uncertainty scheme using MC events

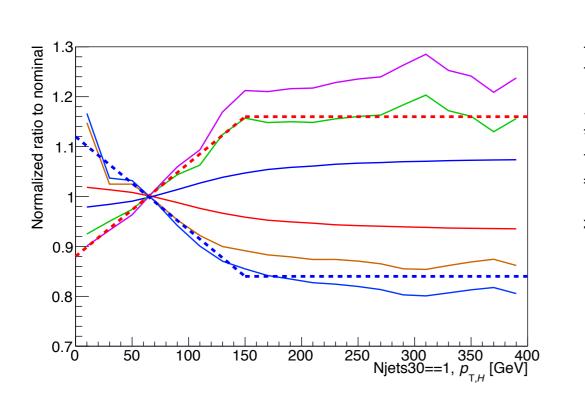
- Here extending the proposed scheme presented in last WG1 meeting in November
- Jet bin uncertainties evaluated according to the BLPTW scheme of YR4:

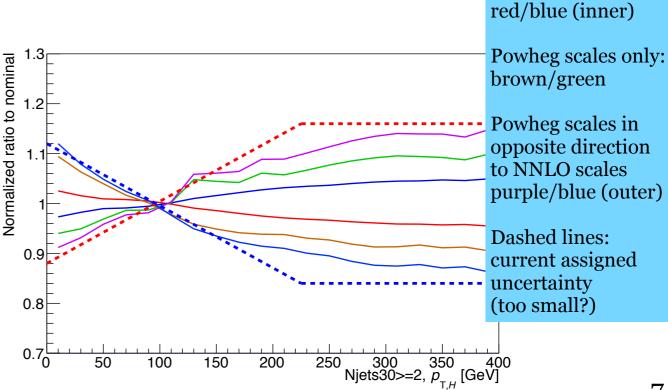
$p_T^{\text{cut}} = 30 \text{ GeV}$	σ/pb	Δ_{μ}	Δ_{arphi}	$\Delta_{ m cut}^{0/1}$	$\Delta_{ m cut}^{1/2}$	total pert. unc.	QCD uncertainty split into 4
$\sigma_{\geq 0}$	47.41 ± 2.40	4.6%	2.0%	-	-	5.1%	independent sources
σ_0	29.51 ± 1.65	3.8%	0.1%	4.1%	-	5.6%	normalization
$\sigma_{\geq 1}$	17.90 ± 1.88	6.0%	5.2%	6.8%	-	10.5%	resummation
σ_1	11.94 ± 1.58	5.5%	4.8%	8.4%	7.2%	13.2%	o⇔1 jet migration
$\sigma_{\geq 2}$	5.96 ± 1.05	7.1%	6.1%	3.6%	14.5%	17.6%	1⇔2 jet migration

- · Accounts for uncertainties and migrations between the =0, =1 and >=2 jet bins
- Uncertainties also needed for:
 - Higgs p_T spectrum within a given jet bin
 - · Quark mass treatment in ggF loop, if significant wrt QCD scale uncertainties
 - VBF region

Test of uncertainty scheme using MC events

- Higgs p_T spectrum within a given jet bin
- · Quark mass treatment in ggF loop, if significant wrt QCD scale uncertainties
- VBF region

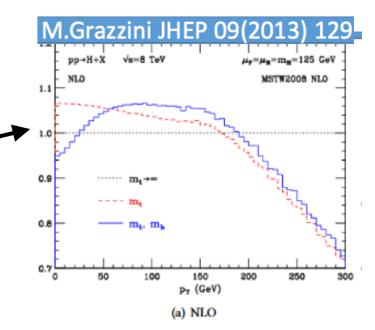

Uncertainty schemes & evaluation

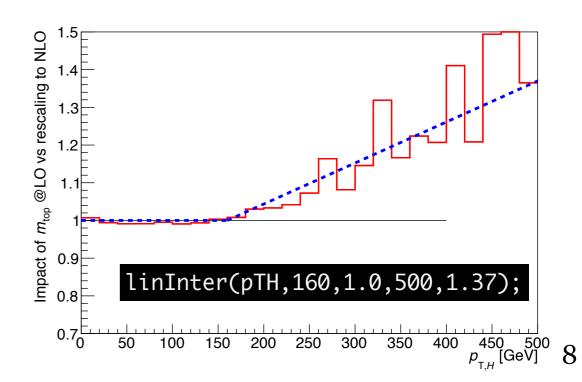

- Two uncertainty schemes are discussed today
 - · One scheme in the following slides, that provide smooth uncertainties as a function of Higgs $p_{
 m T}$
 - · A scheme developed specifically for STXS measurements (see talk by Kerstin)
 - Both schemes use the same jet bin uncertainties, but take different approaches to derive the Higgs p_T dependent uncertainty
 - Numerical values provided in separate slides for discussion (end of meeting)
- Size of perturbative p_{TH} uncertainties evaluated in both cases using scale variations in Powheg NNLOPS which also is the MC used to provide the central-value kinematics (shape of distributions)
- Quark mass variations also studies and evaluated using event weights provided in Powheg NNLOPS
- First pass of VBF uncertainties evaluated using YR3 approach (used in Run-1) Alternative could be to use uncertainties from Gionata (?) with the ST procedure

"WG1 scheme": $p_{T,H}$ uncertainty

- In the "WG1 scheme", The Higgs pT uncertainty is derived within each jet bin from the shape change of the Higgs p_T introduced by QCD scale variations
- Three QCD scales are varied:
 - 1. Scale of the HNNLO input templates (used for NNLO reweibing)
 - 2. Renormalization scale of Powheg
 - 3. Factorization scale of Powheg

· Since jet bin uncertainties already provide a normalization uncertainty in each jet bin, only the shape change is considered




NNLO scale only

"WG1 scheme": quark mass variations

- Can vary quark mass treatment in Powheg NNLOPS
- Default is finite top mass and b masses @NLO (scaled to NLO)
- · Setting the top mass infinite results in change very similar to
- In discussion with Powheg authors, the proposed approach is to compare difference with finite quark masses at LO and NLO but details are not clear

- Current idea
 - One uncertainty source from finite top mass @LO vs @NLO. Affect (very) high p_T region. See plot bottom right. qm_t
 - Second uncertainty from bottom mass treatment, if significant (might be negligible compare to pTH uncertainty): Check b@LO vs @NLO, and with/without b mass in the Sudakov exponent (bminlo)
 - Parametrize these uncertainties as function of Higgs boson p_T

VBF uncertainty

Two options:

- · Use Run-1 approach documented in YR3, that use uncertainties from MCFM parametrized as a function of $\Delta \phi(H,jj)$ which is correlated to the third jet pT, but found better modelled in MCFM (agree better with the MC used by ATLAS/CMS). And extension of the ST procedure is then used to calculate the total QCD uncertainty in the VBF region (even if not directly cutting on this variable).
 - Note: these uncertainties are from 8 TeV. Taken as relative uncertainties, this might still be OK.
 - Running this over truth events gives total QCD uncertainties of: 30.4% and 38%. Subtracting the QCD uncertainties from other sources
- Alternative option:
 - Use uncertainties from Gionata, or other prediction.
 Plug in to analysis using standard ST.
- Other ideas/alternatives?

A first look at numbers (more during discussion part)

• Using ATLAS MC (Powheg NNLOPS) normalized to N3LO @mH = 125.09 GeV

Cross secti	ons and fractiona	l uncerta	inties						
STXS	sig stat	mu	res	mig01	mig12	рТН	qm_b	qm_top	Tot
Incl	48.52 +/- 0.00	+4.6%	+2.2%	+0.0%	-0.0%	-0.1%	-0.2%	+0.0%	+5.1%
FWDH	4.27 +/- 0.01	+4.4%	+1.8%	-0.5%	-0.4%	-0.5%	-0.6%	-1.5%	+5.1%
VBF1	0.27 +/- 0.00	+7.9%	+7.9%	+3.9%	+16.2%	-2.5%	-2.4%	+0.1%	+20.3%
VBF2	0.36 +/- 0.00	+7.9%	+7.9%	+3.9%	+16.2%	-0.9%	-1.1%	+0.2%	+20.1%
0 J	27.25 +/- 0.03	+3.8%	+0.1%	-4.1%	+0.0%	+0.0%	-0.2%	+0.0%	+5.6%
1J_0-60	6.49 + / - 0.01	+5.3%	+4.6%	+8.1%	-6.9%	-4.5%	-4.0%	+0.0%	+14.1%
1J_60	4.50 +/- 0.01	+5.3%	+4.6%	+8.1%	-6.9%	+3.0%	+4.9%	+0.0%	+14.0%
1J_120	0.74 +/- 0.00	+5.3%	+4.6%	+8.1%	-6.9%	+14.0%	+5.0%	+0.5%	+19.6%
1J_200	0.15 +/- 0.00	+5.3%	+4.6%	+8.1%	-6.9%	+16.0%	+5.0%	+10.5%	+23.5%
2J_0-60	1.22 +/- 0.01	+7.9%	+7.9%	+3.9%	+16.2%	-7.4%	-7.2%	+0.0%	+22.5%
2J_60	1.86 +/- 0.01	+7.9%	+7.9%	+3.9%	+16.2%	-1.0%	-0.1%	+0.0%	+20.0%
2J_120	0.99 +/- 0.00	+7.9%	+7.9%	+3.9%	+16.2%	+6.8%	+5.0%	+0.6%	+21.7%
2J_200	0.42 +/- 0.00	+7.9%	+7.9%	+3.9%	+16.2%	+15.5%	+5.0%	+11.8%	+28.3%
=0J	30.12 +/- 0.03	+3.8%	+0.1%	-4.1%	+0.0%	+0.0%	-0.2%	-0.2%	+5.6%
=1J	12.92 +/- 0.02	+5.3%	+4.6%	+8.1%	-6.9%	-0.3%	+0.0%	+0.2%	+12.7%
>=2J	5.47 +/- 0.01	+7.9%	+7.9%	+3.9%	+16.1%	+0.1%	-0.7%	+1.1%	+20.0%
>=1J 60-200	9.09 +/- 0.01	+6.3%	+5.8%	+6.5%	+1.8%	+3.4%	+3.7%	+0.2%	+12.0%
>=1J 120-200	1.96 +/- 0.01	+6.9%	+6.6%	+5.6%	+7.0%	+9.6%	+5.0%	+0.6%	+17.0%
>=1J >200	0.58 +/- 0.00	+7.2%	+7.0%	+5.0%	+10.1%	+15.6%	+5.0%	+11.4%	+25.0%
>=1J >60	9.68 +/- 0.01	+6.3%	+5.9%	+6.4%	+2.3%	+4.2%	+3.8%	+0.8%	+12.4%
>=1J >120	2.54 +/- 0.01	+6.9%	+6.7%	+5.4%	+7.7%	+11.0%	+5.0%	+3.1%	+18.4%
>=1	18.40 +/- 0.02	+6.1%	+5.6%	+6.8%	-0.1%	-0.2%	-0.2%	+0.5%	+10.7%

The 11 ggF STXS bins

A first look at numbers (more during discussion part)

Cross secti	ons and fractional	uncerta	ainties							
STXS	sig stat	mu	res	mig01	mig12	pTH	qm_b	qm_top	VBF	Tot
Incl	48.52 +/- 0.00	+4.6%	+2.2%	-0.0%	-0.0%	-0.1%	-0.2%	+0.2%	-0.0%	+5.1%
FWDH	4.29 +/- 0.05	+4.4%	+1.8%	-0.5%	-0.3%	-0.5%	-0.6%	+0.0%	+0.0%	+4.9%
VBF1	0.26 +/- 0.01	+7.9%	+7.9%	+3.9%	+16.1%	-2.6%	-2.4%	+0.1%	-32.0%	+37.9%
VBF2	0.35 +/- 0.01	+7.9%	+7.9%	+3.9%	+16.1%	-0.7%	-0.9%	+0.2%	+23.5%	+30.8%
ØJ	27.21 +/- 0.13	+3.8%	+0.1%	-4.1%	+0.0%	+0.0%	-0.2%	+0.0%	+0.0%	+5.6%
1J_0-60	6.53 +/- 0.06	+5.2%	+4.5%	+7.9%	-6.8%	-4.5%	-3.9%	+0.0%	+0.0%	+13.9%
1J_60	4.51 +/- 0.05	+5.2%	+4.5%	+7.9%	-6.8%	+3.1%	+4.9%	+0.0%	+0.0%	+13.8%
1J_120	0.72 +/- 0.02	+5.2%	+4.5%	+7.9%	-6.8%	+14.0%	+5.0%	+0.5%	+0.0%	+19.5%
1J_200	0.15 +/- 0.01	+5.2%	+4.5%	+7.9%	-6.8%	+16.0%	+5.0%	+10.6%	+0.0%	+23.5%
2J_0-60	1.23 +/- 0.02	+7.9%	+7.9%	+3.9%	+16.1%	-7.4%	-7.2%	+0.0%	+0.0%	+22.4%
2J_60	1.85 + / - 0.03	+7.9%	+7.9%	+3.9%	+16.1%	-1.0%	-0.1%	+0.0%	+0.0%	+20.0%
2J_120	0.98 +/- 0.02	+7.9%	+7.9%	+3.9%	+16.1%	+6.8%	+5.0%	+0.7%	+0.0%	+21.7%
2J_200	0.43 +/- 0.01	+7.9%	+7.9%	+3.9%	+16.1%	+15.5%	+5.0%	+12.0%	+0.0%	+28.4%
= 0 J	30.09 +/- 0.13	+3.8%	+0.1%	-4.1%	+0.0%	+0.0%	-0.2%	+0.0%	+0.0%	+5.6%
=1 J	12.97 +/- 0.08	+5.2%	+4.5%	+7.9%	-6.8%	-0.3%	+0.0%	+0.2%	+0.0%	+12.5%
>=2J	5.47 +/- 0.05	+7.9%	+7.9%	+3.9%	+16.1%	+0.1%	-0.7%	+1.1%	-0.0%	+20.0%
>=1J 60-200	9.07 +/- 0.06	+6.2%	+5.8%	+6.4%	+1.9%	+3.4%	+3.7%	+0.1%	+0.1%	+11.9%
>=1J 120-200	1.93 + / - 0.03	+6.8%	+6.5%	+5.5%	+7.1%	+9.6%	+5.0%	+0.6%	+0.5%	+17.0%
>=1J >200	0.59 +/- 0.01	+7.2%	+7.0%	+5.0%	+10.1%	+15.6%	+5.0%	+11.5%	-0.0%	+25.1%
>=1J >60	9.66 +/- 0.07	+6.3%	+5.8%	+6.3%	+2.4%	+4.2%	+3.8%	+0.8%	+0.1%	+12.3%
>=1J >120	2.52 +/- 0.03	+6.9%	+6.6%	+5.4%	+7.8%	+11.0%	+5.0%	+3.2%	+0.4%	+18.4%
>=1	18.43 +/- 0.09	+6.0%	+5.5%	+6.7%	-0.0%	-0.2%	-0.2%	+0.4%	-0.0%	+10.6%

The 11 ggF STXS bins

Technical implementation Uncertainty propagation through MC sample

```
// enum for QCD scale uncertainty source
enum ggF qcdUncSource { yield=1, res=2, cut01=3, cut12=4 };
// Event weight for propagation of QCD scale uncertainty
// Input: Number of truth (particle) jets with pT>30 GeV, built excluding the Higgs decay
// Number of sigma variation (+1 for "up", -1 for "down")
double getJetBinUncertaintyWeight(ggF qcdUncSource source, int Njets30, double Nsig=+1.0) {
 // Cross sections in the =0, =1, and >=2 jets of Powheg ggH after reweighing scaled to sigma(N3LO)
  static vector<double> sig({30.26,13.12,5.14});
 // BLPTW absolute uncertainties in pb
  static vector<double> yieldUnc({ 1.12, 0.66, 0.42});
 static vector<double> resUnc ({ 0.03, 0.57, 0.42});
  static vector<double> cut01Unc({-1.22, 1.00, 0.21});
  static vector<double> cut12Unc({ 0,-0.86, 0.86});
 // account for missing EW+quark mass effects by scaling BLPTW total cross section to sigma(N3LO)
  double sf = 48.52/47.4;
  int jetBin = (Njets30 > 1 ? 2 : Njets30);
 if ( source == yield ) return 1.0 + Nsig*yieldUnc[jetBin]/sig[jetBin]*sf;
 if ( source == res ) return 1.0 + Nsig*resUnc[jetBin]/sig[jetBin]*sf;
 if ( source == cut01 ) return 1.0 + Nsig*cut01Unc[jetBin]/sig[jetBin]*sf;
 return 1.0 + Nsig*cut12Unc[jetBin]/sig[jetBin]*sf;
```

This code returns a weight equal to the relative change in cross section. E.g. 1.2 if the uncertainty is +20% (Gaussian assumption). Uncertainty parametrized vs N_{jets} ($p_{\text{T}}>30$ GeV) according to YR4 writeup (STWZ). The code is similar for the JVE prescription.

Technical implementation (2) Uncertainty propagation through MC sample

```
// enum for QCD scale uncertainty source
enum ggF qcdUncSource { yield=1, res=2, cut01=3, cut12=4 };
// Event loop -- this method gets called for each event
void execute() {
  // access the number of jets of the event
  int Njets30 = event.jets30().size();
 // access any observable
  double observable = event.getObservable();
  // access nominal event weight
  double weight nom = event.getNominalWeight();
 // Fill nominal histogram, weighted by nominal event weight
 histogam nominal->Fill(observable, weight nom);
 // Fill histograms shifted by +1 sigma of each QCD uncertainty
 // here yield, resummation, cut01, cut12
 histo QCDyield up -> Fill( observable, weight nom*getJetBinUncertaintyWeight(yield,Njets30,+1.0) );
 histo QCDres up -> Fill( observable, weight nom*getJetBinUncertaintyWeight(res,Njets30,+1.0) );
 histo QCDcut01 up -> Fill( observable, weight nom*getJetBinUncertaintyWeight(cut01,Njets30,+1.0) );
 histo QCDcut12 up -> Fill( observable, weight nom*getJetBinUncertaintyWeight(cut12,Njets30,+1.0) );
```

Uncertainty propagated with event weights, just as for PDF uncertainties. (e.g. PDF4LHC15, Hessian error sets)

Jet bin uncertainties and correlation

- The "main" Higgs (coupling) results are extracted in combined fits using multiple Higgs decay channels and several kinematic regions simultaneously
 - ➡ We don't just need the SM ggF uncertainty in a kinematic region, but also uncertainty correlation between different bins
 - In experimental analyses, this is typically achieved by splitting the total uncertainty into independent (Hessian) components(/sources) treated with an associated nuisance parameter in the fit
- Nice section in YR4 discusses this:
 General treatment of theory uncertainties between kinematic bins
- Two contributions also touch on this topic:
 - · JVE @ N³LO, providing uncertainty for 0↔1 jet migration: 0 and ≥1 jet bins
 - STWZ, BLPTW, providing uncertainties for the 0, 1 and ≥2 jet bins

$p_T^{\text{cut}} = 30 \text{ GeV}$	σ/pb	Δ_{μ}	Δ_{arphi}	$\Delta_{ m cut}^{0/1}$	$\Delta_{ m cut}^{1/2}$	total pert. unc.
$\sigma_{\geq 0}$	47.41 ± 2.40	4.6%	2.0%	-	-	5.1%
σ_0	29.51 ± 1.65	3.8%	0.1%	4.1%	-	5.6%
$\sigma_{\geq 1}$	17.90 ± 1.88	6.0%	5.2%	6.8%	-	10.5%
σ_1	11.94 ± 1.58	5.5%	4.8%	8.4%	7.2%	13.2%
$\sigma_{\geq 2}$	5.96 ± 1.05	7.1%	6.1%	3.6%	14.5%	17.6%

QCD uncertainty split into 4 independent sources

normalization
resummation

0←1 jet migration

1←2 jet migration

Test of uncertainty scheme using MC events

- Following slides present a test of propagating the jet bin uncertainties according to the results presented by BLPTW in YR4
- This can easily be adopted to other uncertainty scheme (such as JVE), but BLPTW was chosen since it was the most complete scheme (there is not one-jet-veto result @ 13 TeV)
- Note that this goes beyond what the uncertainties are designed for
 - They are designed to provide uncertainties for jet bins: 0, 1, 2 jets or any combination thereof
 - Here I test what happens to regions split by other observables (pTH, VBF) when propagating the uncertainties parametrized by the number of jets

$p_T^{\rm cut} = 30 \; {\rm GeV}$	σ/pb	Δ_{μ}	Δ_{arphi}	$\Delta_{ m cut}^{0/1}$	$\Delta_{ m cut}^{1/2}$	total pert. unc.	
$\sigma_{\geq 0}$	47.41 ± 2.40	4.6%	2.0%	-	-	5.1%	
σ_0	29.51 ± 1.65	3.8%	0.1%	4.1%	-	5.6%	
$\sigma_{\geq 1}$	17.90 ± 1.88	6.0%	5.2%	6.8%	-	10.5%	
σ_1	11.94 ± 1.58	5.5%	4.8%	8.4%	7.2%	13.2%	
$\sigma_{\geq 2}$	5.96 ± 1.05	7.1%	6.1%	3.6%	14.5%	17.6%	

QCD uncertainty split into 4 independent sources normalization resummation

0←1 jet migration