# Top-bottom interference effects in Higgs plus jet production at the LHC

Chris Wever (Karlsruhe Institute of Technology)

J. Lindert, K. Melnikov, L. Tancredi, CW [arXiv: 1703.03886]

#### Introduction

- Higgs transverse momentum (pTH) distribution may be used for probing BSM models
- Also may put strong constraints on light-quark Yukawa couplings at moderate pTH ~ 50 GeV [Bishara et al '16]
- Study Higgs plus jet differential cross section at LHC, which proceeds largely through quark loops

$$d\sigma = d\sigma_{tt} + d\sigma_{tb} + d\sigma_{bb}, \quad d\sigma_{ij} \sim \mathcal{O}(y_i y_j)$$

- ullet d $\sigma_{tt}$  is leading contribution. Receives large NLO QCD corrections relative to LO ~ 40%
- ullet LO top-bottom interference  $\,\mathrm{d}\sigma_{tb}\,$  ~ 5% of LO  $\,\mathrm{d}\sigma_{tt}$
- NLO correction to  $d\sigma_{tb}$  may be relevant for reaching percentage accuracy in diff cross section
- Top-bottom interference contains large Sudakov-like logs  $~lpha_s^2 (lpha_s \log^2(p_\perp^2/m_b^2))^n$



[Caola et al '15]

#### Calculation

2

Real (2 to 3) and virtual (2 to 2) contributions need to be combined

Virtuals

$$d\sigma_{tb}^{\text{virt}} \sim \text{Re}\left[A_t^{\text{LO}} A_b^{\text{LO}*} + \frac{\alpha_s}{2\pi} (A_t^{\text{NLO}} A_b^{\text{LO}*} + A_t^{\text{LO}} A_b^{\text{NLO}*})\right]$$

- At LO ~ I-loop process, exact mass dependence known and kept
- At NLO two-loop amplitudes required

$$gg \to Hg \qquad qg \to Hq \qquad q\bar{q} \to Hg$$

$$qg \rightarrow Hq$$

$$q\bar{q} \rightarrow Hg$$





- Exact mass dependence in two-loop Feynman integrals currently out of reach
- [planar diagrams: Henn et al '16]
- Two-loop top amplitudes computed in infinite top mass limit (HEFT model)
- Two-loop bottom amplitudes computed expanded in bottom mass

[Melnikov, Tancredi, CW '16-'17]

**Reals** 
$$gg \rightarrow Hgg, qg \rightarrow Hqg, q\bar{q} \rightarrow Hgg, \cdots$$

Reals computed with Openloops and help of Collier

[Cascioli et al '12, Denner et al '03-'17]

Exact top and bottom mass dependence

# Numerical setup

3

- LHC 13 TeV
- PDF set and associated strong coupling constant: NNPDF3.0\_lo for LO and NNPDF3.0\_nlo for NLO
- Central scale is dynamical:

$$\mu_r = \mu_f = \mu_0 = H_T/2, \quad H_T = \sqrt{m_H^2 + p_\perp^2} + \sum_j p_{\perp,j}$$
 $m_H = 125 \,\text{GeV}, \quad m_t = 173.2 \,\text{GeV}$ 

#### Theory uncertainties considered

Scale variation:

$$\mu = \{1/2, 2\} * \mu_0$$

We consider also two bottom mass renormalization schemes

$$m_b^{\rm OS} = 4.75 \, {\rm GeV}$$
  $m_b^{\rm \overline{MS}}(\mu = 100) = 3.07 \, {\rm GeV}$ 

#### Higgs transverse momentum distribution

4



- Top-bottom interference at pTH=30 GeV: -6% @ LO and -7% @ NLO
- Relative corrections to top-bottom interference ~ relative corrections to top-top ~ large 40%
- Large mass renormalization-scheme ambiguity
- At small pTH the ambiguity is reduced by a factor of two at NLO; less pronounced at larger pTH

## Total Higgs plus jet cross section

Total cross section as function of threshold on jet pT





$$\sigma_{tb}/\sigma_{tt}(p_{T,j} > 20, 30, 40, 50)_{LO} = -3.2, -1.2, +0.1, 1.1\%$$
  
 $\sigma_{tb}/\sigma_{tt}(p_{T,j} > 20, 30, 40, 50)_{NLO} = -3.1, -1.1, +0.3, 1.3\%$ 

- Total NLO top-bottom interference contributes [-3%, 3%] of NLO top-top contribution
- Strong dependence on jet pT cut

6

- NLO QCD corrections to top-bottom interference first time computed
- Two-loop integrals computed at first order in bottom mass expansion
- Virtuals combined with reals from Openloops
- Whenever possible, exact bottom mass dependence kept (including in reals)
- Relative NLO corrections to LO top-bottom interference similar to top-top NLO corrections ~
   40% for Higgs pTH and rapidity distributions
- On-shell vs MSbar bottom mass: large renormalization scheme ambiguity. Reduced at small pTH  $\sim$  20-40 GeV, but unchanged at larger pTH  $\sim$  60-100 GeV
- Total NLO top-bottom interference contributes [-3%, 3%] of NLO top-top contribution, with strong dependence on jet pT cut

#### Outlook

Combine various contributions to get best H+j prediction:

- Low pTH-resummation
- NNLO HEFT corrections
- NLO top-bottom interference

# Backup slides

#### Higgs pseudo-rapidity distribution

7



- Relative corrections to top-bottom interference ~ relative corrections to top-top
- At central rapidity (dominated by large pTH) mass scheme ambiguity similar between LO and NLO
- At larger absolute rapidity (dominated by small pTH) the mass scheme variation band is smaller for NLO

# Higgs rapidity distribution



# Channel contribution: tt

9



gg fusion channel dominates

10



gg fusion channel dominates

### LO contributions

П



12



- Two contributions enter with opposite signs
- V2 is dominant at low pTH ~ 20-50 GeV which reduces mass scheme ambiguity
- At large pTHVI~V2 and VI represents LO bottom mass scheme ambiguity