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Future Circular Collider (FCC) Study

International FCC 

collaboration (CERN as 

host lab) to study: 

• pp-collider (FCC-hh)       

 main emphasis, defining 

infrastructure requirements 
•

• ~100 km tunnel 

infrastructure  in Geneva 

area, site specific

• e+e- collider (FCC-ee),                

as potential first step

• HE-LHC with FCC-hh

technology

• p-e (FCC-he) option, IP 

integration, e- from ERL

~16 T  100 TeV pp in 100 km

HE-LHC



FCC-ee:
• Exploration of 10 to 100 TeV energy scale via couplings with precision measurements

• ~20-50 fold improved precision on many EW quantities (equiv. to factor 5-7 in mass)         
(mZ, mW, mtop , sin2 w

eff , Rb , QED (mz) s (mz mW m), Higgs and top quark couplings) 

Machine design for highest possible luminosities at Z, WW, ZH and ttbar working points

FCC-hh:
• Highest center of mass energy for direct production up to 20 - 30 TeV

• Huge production rates for single and multiple production of SM bosons (H,W,Z) and quarks

Machine design for 100 TeV c.m. energy & integrated luminosity ~ 20ab-1 within 25 years

HE-LHC:
• Doubling LHC collision energy with FCC-hh 16 T magnet technology

• c.m. energy = 27 TeV ~ 14 TeV x 16 T/8.33T, target luminosity ≥ 4 x HL-LHC

Machine design within constraints from LHC CE and based on HL-LHC and FCC technologies 

FCC study:  physics and performance targets



parameter Z WW H (ZH) ttbar

beam energy [GeV] 45 80 120 175 182.5

beam current [mA] 1390 147 29 6.4 5.4

no. bunches/beam 16640 1300 328 40 33

bunch intensity  [1011] 1.7 2.3 1.8 3.2 3.35

SR energy loss / turn [GeV] 0.036 0.34 1.72 7.8 9.2

total RF voltage [GV] 0.1 0.75 2.0 8.8 10.3

long. damping time [turns] 1273 236 70 23 20

horizontal beta* [m] 0.15 0.2 0.3 1 1

vertical beta* [mm] 0.8 1 1 1.6 1.6

horiz. geometric emittance [nm] 0.27 0.84 0.63 1.34 1.46

vert. geom. emittance [pm] 1.0 1.7 1.3 2.7 2.9

bunch length with SR / BS [mm] 3.5 / 12.1 3.0 / 7.5 3.15 / 5.3 2.75 / 3.82 2.76 / 3.78

luminosity [1034 cm-2s-1] >200 >32 >7 >1.7 >1.5

beam lifetime rad Bhabha / BS [min] 68 / >200 49 / 24 38 / 18 37 / 24 36 / 25

FCC-ee collider parameters 



lepton collider luminosities



working point luminosity/IP
[1034 cm-2s-1]

total luminosity (2 IPs)/ 
yr

physics goal run time 
[years]

Z first 2 years 100 26 ab-1/year 150 ab-1 4

Z later 200 52 ab-1/year

W 32 8.3 ab-1/year 10 ab-1 1

H 7.0 1.8 ab-1/year 5 ab-1 3

machine modification for RF installation & rearrangement: 1 year

top 1st year (350 GeV) 0.8 0.2 ab-1/year 0.2 ab-1 1

top later (365 GeV) 1.5 0.38 ab-1/year 1.5 ab-1 4

total program duration: 14 years - including machine modifications

phase 1 (Z, W, H): 8 years,    phase 2 (top): 6 years  

FCC-ee operation model



FCC-ee RF staging scenario

three sets of RF cavities to cover all options for FCC-ee & booster:

• installation sequence comparable to LEP ( ≈ 30 CM/shutdown)

• high intensity (Z, FCC-hh): 400 MHz mono-cell cav, ~1 MW source

• higher energy (W, H, t): 400 MHz four-cell cavities (4/cryomodule)

• ttbar machine complement: 800 MHz five-cell cavities (4/cryom.)

• LEP record: ~ 32 

CM in one 

shutdown

• Possibly 1 year 

of long shutdown 

between ZH and 

ttbar operation.

• spread 800 MHz 

RF power & 

booster 

installation over 

the preceding 

shutdowns



Beam Polarization and Energy Calibration

• Priority from Physics : E/E ~O(10-6) around Z pole and WW thresholdZ,W mass&width
• Exploit natural transverse beam polarization present at Z and W, unique to e+e- circular coll’s. 

 Required hardware (polarimeter, wigglers, depolarizer) is defined & integrated
 Running mode with 1% non-colliding bunches and wigglers defined

• Work in progress:  errors from betatron motion in non-planar orbits, transverse impedance, RF 
asymmetries, optimum depolarizer set-up vs Qs at W, etc

 On track to match goal of 100 (300) keV errors on ECM  at Z (WW) energies. 

Alain Blondel Physics at the FCCs  8

FCC-ee simulation of
resonant depolarization

260 seconds sweep of depolarizer frequency1/15/2018

LEP



FCC-ee dual aperture main magnets
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ongoing



FCC-eh: 60 GeV e- from 
Energy Recovery Linac (ERL) 

5.5 x 24m2

BINP, CERN, Daresbury/Liverpool, Jlab, Orsay +.. 

400 MeV, 3 turns, 
20 mA, 802 MHz

Intensity 100 x ELI: technology, beam dynamics, physics

CDR 
J Phys G [arXiv:1705. 08783] 

optimized for high current operation

RF cavity development & FCC-eh ERL

5-cell 800 MHz cavity, JLAB prototype for 
FCC-ee (top mode) & FCC-eh; also single-cell 
cavities for all FCC’s 

JLAB, October 25, 2017 

F. Marhauser et al

PERLE@Orsay ERL test facility

M. Klein



parameter FCC-hh HE-LHC (HL) LHC

collision energy cms [TeV] 100 27 14

dipole field [T] 16 16 8.3

circumference [km] 100 27 27

beam current [A] 0.5 1.12 (1.12) 0.58

bunch intensity  [1011] 1 (0.5) 2.2 (2.2) 1.15

bunch spacing  [ns] 25 (12.5) 25 (12.5) 25

norm. emittance gex,y [mm] 2.2 (1.1) 2.5 (1.25) (2.5) 3.75

IP b*
x,y [m] 1.1 0.3 0.25 (0.15) 0.55

luminosity/IP [1034 cm-2s-1] 5 30 28 (5) 1

peak #events / bunch Xing 170 1000 (500) 800 (400) (135) 27

stored energy / beam [GJ] 8.4 1.4 (0.7) 0.36

SR power / beam [kW] 2400 100 (7.3) 3.6

transv. emit. damping time [h] 1.1 3.6 25.8

initial proton burn off time [h] 17.0 3.4 3.0 (15) 40

Hadron collider parameters (pp)



• Circumference 97.8 km

• Injections upstream 
side of  experiments

• Avoids mixing of 
extraction region and 
high-radiation 
collimation areas

• Beam dynamics studies 
confirm design goals

• Focus on optimization 
of collimation system 
and extraction system

• Two high-luminosity 
experiments (A & G)

• Two other experiments 
combined with injection (L & B)

• Two collimation insertions
• Betatron cleaning (J)
• Momentum cleaning (F)

• Extraction insertion (D)
• Clean insertion with RF (H)

• Compatible with LHC or SPS as 
injector

FCC-hh layout and optics



FCC-hh detector – new reference design

6 T, 12 m bore solenoid, 10 Tm 

dipoles, shielding coil

• 65 GJ stored energy

• 28 m diameter

• >30 m shaft

• multi billion project

4 T, 10 m bore solenoid, 4 T forward 

solenoids, no shielding coil

• 14 GJ stored energy

• rotational symmetry for tracking!

• 20 m diameter (~ ATLAS)

• 15 m shaft

• ~1 billion project

→

latest l* = 40 m



FCC-hh cryogenic beam vacuum system

FCC-hh beam-screen test set-up at ANKA/Germany: 

beam tests since June 2017, for prototype #1,

confirming vacuum design simulations

2.5 GeV ANKA/KIT 

storage ring

Synchrotron radiation (~ 30 W/m/beam (@16 T field) (cf. LHC <0.2W/m) ~ 5 MW total load in arcs 

• Absorption of synchrotron radiation at ~50 K for cryogenic efficiency (5 MW 100 MW cryoplant)

• Provision of beam vacuum, suppression of photo-electrons, electron cloud effect, impedance, etc.

ANKA e- photon spectrum
= FCC –hh spectrum



• Procurement of state-of-the-art conductor:
 Bruker-OST– European/US

• Conductor development with regional industry:
 CERN/KEK – Japanese contribution. Japanese industry

(JASTEC, Furukawa, SH Copper) and laboratories (Tohoku Univ. and NIMS). 
 CERN/Bochvar High-technology Research Inst.  – Russian contribution. 

Russian industry (TVEL) and laboratories
 CERN/KAT – Korean industrial contribution

• Characterization of conductor & research with universities:
 Technical Univ. Vienna, Geneva University, University of Twente
 Applied Superconductivity Centre at Florida State University

Worldwide FCC Nb3Sn program

Main development goals:
• Jc increase (16T, 4.2K) > 1500 A/mm2 i.e. 50% increase wrt HL-LHC wire

• Potentials for large-scale production and cost reduction



16 T dipole design activities and options

Cos-theta

Blocks 

Common coils

Short model magnets (1.5 m lengths) will be built from 2017 - 2022

Swiss contribution 

Canted

Cos-theta

H2020 

INFN 

CEA 

CIEMAT 

PSI 

LBNL 

FNAL 



16 T magnet R&D schedule

total

duration of 

magnet 

program:

~20 years

Long models and 

prototypes

Scale 

up
Series production

(1100 tons/y) Superconductor

Long 

models

2023-27

Prototypes

2026-31

Series production

2035-41 
(1200 magnets/y)

Magnets

Hub 1

Cold 

tests

Hub 2

Hub 3

Series 

tests
(1200 magnets/y)

Qualification

Pre

Series

2031-35

Short 

models

2018-23

Euro-

CirCol

Design

would follow HL-LHC Nb3Sn program with long models at industry from 2023/24



FCC tunnel integration 

FCC-ee FCC-hh
5.5 m diameter



FCC integration and safety concept

Working hypothesis for safety concept:

• Longitudinal compartments separated by 

automated fire doors, with individual control of 

ventilation and smoke/He extraction.

• Similar to XFEL solution and CLIC concept

arc

compartment

smoke/He 

extraction
Compartment

with fire door

every 440 m

fresh air duct



HE-LHC integration aspects

Working hypothesis for HE LHC design: 

No major CE modifications on tunnel and caverns

• Similar geometry and layout as LHC machine and experiments

• Maximum magnet cryostat external diameter compatible 
with LHC tunnel ~1200 mm

• Classical cryostat design gives ~1500 mm diameter!

Strategy: develop optimized 16 T magnet, 
compatible with both HE LHC and FCC-hh
requirements:

• Allow stray-field and/or cryostat as return-yoke

• Optimization of inter-beam distance (compact)

 Smaller diameter also relevant for FCC-hh cost

LHC tunnel diameter 3.8 m



16 T cryo-dipole integration approach

cold mass 40t 

total mass 62t

F
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ld
 [

T
]

0 700

Distance from yoke [mm]

Fringe field – x axis [T]

0.06 T at cryostat edge 600 mm radius

Cosine-theta
(baseline)

Block-type coils

Common-coils

2015 2017

800 mm  600 mm

Description ID in mm OD in mm
Iron yoke - 600
Aluminium shrinking cylinder 600 740
Stainless steel He tight shell 740 760
Al radiation shield 934 940
Vacuum vessel (magnetic steel) 1120 1220

Design evolution
• Coil optimization and margin 18  14%
• Inter-beam distance 250  204 mm
• Stray-field < 0.1 T at cryostat



HE-LHC cryogenic layout

 

Point 1

Point2

Point 3

Point 4

Point 5

Point 6

Point 7

Point 8
Sector refrigeration plant

  3.3 km

Higher heat load and integration limitations 
(Cryo-line diameter) requires installation of 
8 additional 1.8 K refrigeration units wrt. LHC
- 2.3 kW @ 1.8 K (~ LHC size) 
- P elect: ~500 kW per unit

8 new higher-power 4.5 K cryoplants
- 28 kW @ 4.5 K (including 2.3 kW @ 1.8 K) 
- P elect: ~6500 kW per cryoplant

(cf. 4200 kW for LHC cryoplant)

Half-sector cooling instead of full sector (as for LHC)
to limit cross section of cryogenic distribution line



HE-LHC IR optics & triplet shielding

triplet lengths: HE-LHC: 56 m (13.5 TeV)

HL-LHC: 41. 8m, present LHC: 30.4 m

ca. 11 m space for crab cavities

collision optics with b*=0.25 m

l* = 23 m,
TAS 1.8 m long 
(as for HL-LHC,
different radius)

• Triplet quadrupoles with 2 cm inside tungsten 
shielding

• For 10 ab-1 total luminosity: 30-40 MGy peak 
radiation (peak at Q3 can be reduced with shielding)

Work on collimation insertions ongoing



HE-LHC Injection studies

HL-LHC FCC-hh 3.3 TeV HE-LHC 450 GeV HE-LHC 1.3 TeV

Horizontal beam size (6s) in arcs (QF) at injection

Dynamic aperture studies with systematic field errors of compact dipole

b3 component already corrected in each dipole 

≤ 10 s≤ 3s
Various studies ongoing:
• Arc optics: aperture vs. top energy
• Magnet design optimization
• Impedance/stability at injection
• Performance (intensity) vs. injection energy 



HE-LHeC and FCC-he ep collisions



CE tunnel implementation study 

Optimisation criteria:
• tunneling rock type,      
• shaft depth 

accessibility 
• surface points, etc.
Tunneling:
• Molasse 90%, 
• Limestone 5%, 
• Moraines 5%
Implementation: 
• 90-100 km fits well 

geological situation 
in Geneva basin

• Shallow variant,    30 
m below lake-bed

• Connected with LHC 
or SPS



CE schedule study 

• CE & schedule studies with 

consultants

• first sectors available after 

4.5 to 5 years for Technical 

Infrastructure installation

• total CE duration ~7 years
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Technical Schedule for each the 3 Options

20 22 24 26 28 30 32 34 38 40

Civil Engineering FCC-hh ring

Dipole short models

16 T dipole indust. prototypes

16 T dipoles preseries

16 T series productionS
C
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CE FCC-ee ring + injector
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Strategy Update 2026 – assumed project decision

Installation HE-LHC

LHC Modification

42

Technical Design Phase

36

Installation + test FCC-ee

Installation + test FCC-hh

CE TL to LHC        

LHC Removal

Dipole long models

Injector

schedule constrained by 16 T magnets & CE

→ earliest possible physics starting dates

• FCC-hh: 2043

• FCC-ee: 2039

• HE-LHC: 2040 (with HL-LHC stop LS5 / 2034)

16 T magnets

FCC-hh

FCC-ee

HE-LHC



FCC Collaboration & Industry Relations

25
Companies

32
Countries

113
Institutes

EC
H2020



Scope:

FCC-hh collider

• Optics Design (arc and IR)

• Cryogenic beam vacuum system 

design including beam tests at 

ANKA

• 16 T dipole design, construction 

folder for demonstrator magnets

EU H2020 Design Study EuroCirCol

European Union Horizon 2020 

program

• Support for FCC-hh study 

• 3 MEURO co-funding

• Started June 2015, ends in May 2019



• SC wires at low temperatures for magnets (Nb3Sn, MgB2, HTS)

• Superconducting thin films for RF and beam screen (Nb3Sn, Tl)

• Electrohydraulic forming for RF structures

• Turbocompressor for Nelium refrigeration

• Magnet cooling architectures

13 Beneficiaries

12 Partners

EASITrain Marie Curie Training Network

I-CUBE

European Advanced Superconductivity Innovation and Training Network

 selected for funding by EC in May 2017, started 1 October 2017

Horizon 2020 program

Funding for 15 Early Stage 

Researchers over 3 years & 

training



Conceptual Design Report

CDR summary volumes will be available by end 2018, 

as input for European Strategy Update 2019/20



• FCC-ee:
• Accelerator conceptual design is ready for CDR 

• Complete concept for phased collider operation and RF staging developed 

• Civil engineering, tunnel implementation and integrations studies completed for CDR

• FCC-hh:
• Accelerator conceptual design is ready for CDR 

• Complete concept for FCC-hh beam handling & machine protection developed

• Civil engineering, tunnel implementation and integrations studies completed for CDR

• HE-LHC 
• Accelerator conceptual design converging towards baseline for CDR

• Challenging optimization due to CE boundary conditions (integration, lengths straights,…)

• Injector studies to clarify feasibility of injection from 450 GeV SPS; trade off between energy reach & injection energy

• Key technologies:
• Nb3Sn based 16 T magnets, broad international development program in place 

• Successful tests of beam-screen vacuum system at ANKA/KIT Karlsruhe

• Fabricated prototype SC cavities (Nb/Cu) for FCC-hh/FCC-ee/FCC-eh; also dual-aperture magnet prototypes for FCC-ee

• International FCC collaboration is growing steadily, focusing now on  CDR preparation as 
input for European Strategy Update

Summary




