Electroweak Corrections at (Very) High Energies

Bryan Webber

Work in collaboration with Christian Bauer and Nicolas Ferland, LBNL

1703.08562 = JHEP 08(2017)036, 1712.07147

Motivation

- Electroweak corrections becoming essential
 - Fixed order adequate at present energies
 - Enhanced higher orders important for FCC
- SM may be valid up to much higher energies
 - Implications for cosmology and astrophysics
- Need full simulations of VHE interactions: parton shower event generators for full SM
 - First step: event generators need PDFs

Outline

- Electroweak effects at high energies
 - Non-cancelling large (double) logarithms
- SM parton distributions
 - DGLAP and double-log evolution
 - L-R and isospin asymmetries
 - Electron PDFs (preliminary)
- Lepton pair production
 - Matching to fixed order
- Conclusions and prospects

Electroweak Effects at High Energies

Electroweak effects: e⁺e⁻

- For massless bosons, IR divergences in each graph, cancel in inclusive sum over SU(2) multiplets
- For massive bosons, divergences become log(m_w²/s), generally two per power of α_w

Electroweak effects: e⁺e⁻

- α_w log²(m_w²/s) from each graph, cancel in inclusive sum over SU(2) multiplets
- But we don't have vv or ev colliders, so cancellation is incomplete

Electroweak effects: qq

- α_w log²(m_w²/s) from each graph, cancel in inclusive sum over SU(2) multiplets
- In pp, u-quark PDF ≠ d-quark PDF, so cancellation is incomplete

Parton Distribution Functions

The standard definition of an x-weighted parton distribution is given by the partrix element of a bi-local operator, separated along the lightconer [For fermions, one finds the standard by the standard by

$$\inf_{i \in \mathbb{N}} f_i(x) = \int \frac{dy}{2\pi} e^{-i2x\bar{n}\cdot p\,y} \langle p | \bar{\psi}^{(i)}(y) \,\vec{\eta} \,\psi^{(i)}(-y) | p \rangle \tag{Consider, for all of the set of$$

$$P_{i} f_{V}(x) = \frac{2}{\bar{n} \cdot p} \int \frac{dy}{2\pi} e^{-i 2x \bar{n} \cdot p \cdot y} \bar{n}_{\mu} \bar{n}^{\nu} \langle p | V^{\mu\lambda}(y) V_{\lambda\nu}(-y) | p \rangle \Big|_{\text{spin avg.}} \int \frac{dy}{2\pi} e^{-i 2x \bar{n} \cdot p \cdot y} \bar{n}_{\mu} \bar{n}^{\nu} \langle p | V^{\mu\lambda}(y) V_{\lambda\nu}(-y) | p \rangle \Big|_{\text{spin avg.}}$$
(6)

To include all gauge interactions of the standard model, one fields to include separation of the standard model, one fields to include separate points for left- and right-hand one needs to take the symmetry break of a count. For the W^{\pm} and W^{-} boson we simply include separate points for each of a count. For the W^{\pm} and W^{-} boson we simply include for the point of the field of the symmetry of the W^{\pm} and W^{-} boson we simply include for the point of the field of the field of the second of the field of the symmetry of the W^{\pm} and W^{-} boson we simply include for the point of the field of the second of the sec

$$\int_{BW}^{V(\lambda)} = \bar{n} \frac{1}{2} p \left(\int_{\overline{n}}^{2} 2\pi \int_{\overline{n}}^{2} \frac{ay}{2\pi} e^{-i 2x \overline{n} \frac{\mu}{p} \frac{y}{p}} \bar{n}_{\mu} \overline{n}^{\nu} \langle p | B^{\mu \lambda}(y) W^{3}_{\lambda \nu}(-y) | p \rangle \right) |_{\text{spin avg.}} + \text{h.c.}$$
(3) is unbroken, we consider a single PDF to describe the gluon field. For t

Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the Z_{i} the photon and then $C(2) \otimes U(1)$ symmetry, on the other hand, one needs to take the symmetry breaking in Bryan West at every a transformation of the PDF for the B, the W^3 and their writed state C_{i} the photon of the PDF for the B and their writed state C_{i} the photon of the PDF for the B and their writed state C_{i} the photon of the PDF for the B and their writed state C_{i} the W^{i} and W^{i}_{i} boson we simply include separate PDFs for each of the the the symmetry breaking in the photon of the photon of the photon of the W^{i}_{i} boson we simply include separate PDFs for each of the the the symmetry breaking in the photon of the pho

PDF Evolution

 $q d/dq f = P_{ff} \otimes f$

q d/dq f =
$$P_{fV} \otimes V$$

 $q d/dq f = P_{fH} \otimes H$

Reals have loops from one side to the other

Virtuals have loops on same side

SU(3) Evolution (DGLAP)

Consider evolution of u quark PDF

 $t\frac{\mathrm{d}}{\mathrm{d}t}\frac{\mathrm{d}}{\mathrm{d}t}f_{q}(x,t) = \frac{\alpha C_{F}}{\alpha \mathcal{Q}_{F}} \int_{0}^{z} \frac{\mathrm{d}z}{\mathrm{d}t} P_{qq}(z) \left[f_{q}(x/z,t) - f_{q}(x,t)\right] + \dots$ $t\frac{\mathrm{d}}{\mathrm{d}t}\frac{\mathrm{d}z}{\mathrm{d}q} f_{qq}(f_{u},t), q) = \frac{\alpha C_{F}}{\pi \pi} \int_{0}^{z} \int_{0}^{z} \frac{\mathrm{d}z}{\mathrm{d}t} P_{qq}(z) \left[f_{q}(x/z,t) - f_{q}(x,t)\right] + \dots$

SU(2) Evolution

z=1 doesn't cancel double-log evolution

M Ciafaloni, P Ciafaloni, D Comelli, hep-ph/9809321,0001142,0111109,0505047

Electroweak logarithms

- Electroweak logs get large at high energy
- Virtual corrections exponentiate as Sudakov factor

$$\Delta_i(s) \sim \exp\left[-C_i \frac{\alpha_w}{\pi} \log^2\left(\frac{s}{m_W^2}\right)\right]$$

Th<u>e</u> vi , required the Sudakov, Ga $\mathcal{O}q \mathcal{I}_{g;3}$ where u_L and d_L stand for left handed jup and down-type fermions and as U(1) or quarks as una to the second secon E = For 2t g = WThand W = b d sons we have R $z \,\mathrm{d} z \, P^R_{VH,G}(z)$ SU(2): $f_{H,G} \otimes [f_{H+}]$ where we have used in the second line that for each generation there are a (one needs to couply particles and antiparticles separately) The particles and antiparticles separately The particles and antiparticles and antiparticles are the particles and antiparticles are the particles ar SU(3): 2 right-handed down type quarks C_F left-handed lept p_R and f_g right-handed with type $q_{M,2}$ and f_g right-handed lept p_R and f_g right-handed with the reference of $M_{M,2}$ and f_g right-handed lept p_R right p_R and f_g right handed p_R right p_R Yukawa: 2.7 T = 1ET. (3.55)(2) Tinteractions are more complicated since the emission of A Mixed (2,36) flavor of the emitting particle R This combined in the equation for the W Transformer of the W ogarithmic dependent astiling 1s over all lenote any ar onstants are (where all s evolution equal Bryan Webber, EW Corrections

- Left-handed quarks have isospin and hypercharge, so they can generate f_{BW}
- This means in broken basis we have $f\gamma$, f_Z and $f_{\gamma Z}$

Isospin (T) + CP PDFs

$$f_{q_L}^{0+} = \frac{1}{4} \left(f_{u_L} + f_{d_L} + f_{\bar{u}_L} + f_{\bar{d}_L} \right), \quad f_{q_L}^{0-} = \frac{1}{4} \left(f_{u_L} + f_{d_L} - f_{\bar{u}_L} - f_{\bar{d}_L} \right),$$

$$f_{q_L}^{1+} = \frac{1}{4} \left(f_{u_L} - f_{d_L} + f_{\bar{u}_L} - f_{\bar{d}_L} \right), \quad f_{q_L}^{1-} = \frac{1}{4} \left(f_{u_L} - f_{d_L} - f_{\bar{u}_L} + f_{\bar{d}_L} \right),$$

$$f_W^{0+} = \frac{1}{3} \left(f_{W^+} + f_{W^-} + f_{W^3} \right), \quad f_W^{1-} = \frac{1}{2} \left(f_{W^+} - f_{W^-} \right), \quad f_W^{2+} = \frac{1}{6} \left(f_{W^+} + f_{W^-} - 2f_{W^3} \right)$$

• Double logs only appear int
$$f_u(x,t) + f_d(x,t)$$

Bryan Webber, EW Corrections at HE

2nd FCC Workshop, Jan 2018

Counting PDFs

$\{T, CP\}$	fields	
$\{0, +\}$	$2n_g \times q_R, n_g \times \ell_R, n_g \times q_L, n_g \times \ell_L, g, W, B, H$	19
$\{0, -\}$	$2n_g \times q_R, n_g \times \ell_R, n_g \times q_L, n_g \times \ell_L, H$	16
$\{1, +\}$	$n_g \times q_L, n_g \times \ell_L, BW, H$	8
$\{1, -\}$	$n_g \times q_L, n_g \times \ell_L, W, H$	8 1
$\{2,+\}$	W	
		52

- 52 SM PDFs for unpolarised proton (36 distinct)
- Only those with same {T,CP} can mix
- Only {0,+} contribute to momentum
- Momentum conserved for each interaction

SMevol Implementation

- Input at 10 GeV: CT14qed partons with LUXqed photon
 - Photon PDFs consistent, LUX much more precise
 CT14: Schmidt, Pumplin, Stump, Yuan, 1509.02905
 LUX: Manohar, Nason, Salam, Zanderighi, 1607.04266, 1708.01256
- SU(3)xU(1)_{em} LO evolution (inc. leptons) up to 100 GeV
 - Provides LO PDFs to match to LO SM evolution beyond
- SU(3)xSU(2)xU(1) LO evolution from 100 to 10⁸ GeV
 - Also evolution due to Yukawa interaction of top quark
 - Neglect all power-suppressed effects

SMevol: Bauer, Ferland, BW, 1703.08562

Matching at 100 GeV

$$\begin{pmatrix} f_{\gamma} \\ f_{Z} \\ f_{\gamma Z} \end{pmatrix} = \begin{pmatrix} c_{W}^{2} & s_{W}^{2} & c_{W}s_{W} \\ s_{W}^{2} & c_{W}^{2} & -c_{W}s_{W} \\ -2c_{W}s_{W} & 2c_{W}s_{W} & c_{W}^{2} - s_{W}^{2} \end{pmatrix} \begin{pmatrix} f_{B} \\ f_{W_{3}} \\ f_{BW} \end{pmatrix}$$

- At q=100 GeV: $f_{\gamma} \neq 0$, $f_{Z}=f_{\gamma Z}=0$, hence $f_{B} = c_{W}^{2}f_{\gamma}, \quad f_{W_{3}} = s_{W}^{2}f_{\gamma}, \quad f_{BW} = 2c_{W}s_{W}f_{\gamma}$
- Project back on f_{γ} , f_Z and $f_{\gamma Z}$ at higher scales
- $f_W=f_H=0$ at $q \le 100$ GeV

•
$$f_t=0$$
 at $q \le m_t(m_t)=163$ GeV

Quarks relative to QCD

Bosons relative to gluon

Leptons relative to gluon

Masses neglected
 → all generations equal

Asymmetries (f_i-f_j)/(f_i+f_j)

Electron PDFs (preliminary)

- Electron+photon (Weizsacker-Williams) at I GeV
 - SU(3)xU(1)_{em} evolution up to 100 GeV
 - Then unbroken SU(3)xSU(2)LxU(1)Y
 - No beam-beam effects

100 TeV pp Collider

Lepton Pair Production

Lepton Pair Production

Matching to Fixed Order

Matching to $O(\alpha)$ EW

C Bauer, N Ferland, BW, 1712.07147

$$\begin{split} q \frac{\partial}{\partial q} f_i^{\mathrm{SM}}(x,q) &= \sum_I \frac{\alpha_I(q)}{\pi} \left[P_{i,I}^V(q) f_i^{\mathrm{SM}}(x,q) + \sum_j C_{ij,I} \int_x^{z_{\max}^{ij,I}(q)} dz P_{ij,I}^R(z) f_j^{\mathrm{SM}}(x/z,q) \right] \\ \bullet \quad \text{Define} \quad f_i^{\mathrm{SM}}(x,q) &= f_i^{\mathrm{noEW}}(x,q) + g_i(x,q) + \mathcal{O}(\alpha^2) \\ \bullet \quad \text{Then} \\ q \frac{\partial}{\partial q} g_i(x,q) &= \frac{\alpha_3(q)}{\pi} \left[P_{i,3}^V(q) g_i(x,q) + \sum_j C_{ij,3} \int_x^1 dz P_{ij,3}^R(z) g_j(x/z,q) \right] \\ &+ \sum_{I \in 1, 2, M} \frac{\alpha_I(q)}{\pi} \left[P_{i,I}^V(q) f_i^{\mathrm{noEW}}(x,q) + \sum_j C_{ij,I} \int_x^{z_{\max}^{ij,I}(q)} dz P_{ij,I}^R(z) f_j^{\mathrm{noEW}}(x/z,q) \right] \end{split}$$

Bryan Webber, EW Corrections at HE

31

Matching to $O(\alpha)$ EW

$$f_i^{\rm SM}(x,q) = f_i^{\rm noEW}(x,q) + g_i(x,q) + \mathcal{O}(\alpha^2)$$

$$\sigma_{ij}^{\text{noEW}} = f_i^{\text{noEW}} \otimes \hat{\sigma}_{ij} \otimes f_j^{\text{noEW}}, \quad \sigma_{ij}^{\text{SM}} = f_i^{\text{SM}} \otimes \hat{\sigma}_{ij} \otimes f_j^{\text{SM}}$$

$$\sigma_{ij}^{[\mathrm{SM}]_{\alpha}} = \sigma_{ij}^{\mathrm{noEW}} + f_i^{\mathrm{noEW}} \otimes \hat{\sigma}_{ij} \otimes g_j + g_i \otimes \hat{\sigma}_{ij} \otimes f_j^{\mathrm{noEW}}$$

• Define
$$\sigma_{ij}^{[\mathrm{SM}]_{\alpha}^{\mathrm{mod}}} = \sigma_{ij}^{[\mathrm{SM}]_{\alpha}}$$
 when $\sigma_{ij}^{[\mathrm{SM}]_{\alpha}} \neq 0$, else $\sigma_{ij}^{[\mathrm{SM}]_{\alpha}^{\mathrm{mod}}} = g_i \otimes \hat{\sigma}_{ij} \otimes g_j$ (e.g. WW fusion)

• Then
$$\sigma_{ij}^{\text{SM}} - \sigma_{ij}^{[\text{SM}]^{\text{mod}}_{\alpha}}$$
 is resummation of HO logs

Results for matching

Conclusions and Prospects

- Rich SM structure inside the proton
 - 52 parton distributions (36 distinct)
- Symmetries restored double-logarithmically, distinct left and right-handed PDFs
 - Onset of large effects around 10 TeV
 - Significant for ~100 TeV collider
 - Ready for matching to FO
- Next step: complete SM event generator
 - Electroweak jets, ISR, MET, …

PDFs and Parton Luminosity

• Factorization

$$\sigma_{pp\to X}(s) = \sum_{i,j} \int_0^1 \frac{\mathrm{d}x_1}{x_1} \frac{\mathrm{d}x_2}{x_2} f_i(x_1, q) f_j(x_2, q) \hat{\sigma}_{ij\to X}(x_1 x_2 s, q)$$

• Momentum sum rule

$$\sum_{i} \int_0^1 \mathrm{d}x \, f_i(x,q) = 1$$

• Luminosity

$$\frac{\mathrm{d}\mathcal{L}_{ij}}{\mathrm{d}M^2} = \int_0^1 \frac{\mathrm{d}x_1}{x_1} \frac{\mathrm{d}x_2}{x_2} f_i(x_1, M) f_j(x_2, M) \,\delta(M^2 - x_1 x_2 s)$$

$$\sigma_{pp\to X}(s) = \sum_{i,j} \int_0^s \mathrm{d}M^2 \frac{\mathrm{d}\mathcal{L}_{ij}}{\mathrm{d}M^2} \hat{\sigma}_{ij\to X}(M^2, M)$$

Luminosities at 100 TeV

Bryan Webber, EW Corrections at HE

2nd FCC Workshop, Jan 2018

Lepton Pair Production

Lepton Pair Production

Higgs PDFs

Higgs relative to gluon

Lepton Pair Production at I PeV

