Higgs couplings @FCC-hh

Michele Selvaggi (CERN) MLM (CERN)

2nd FCC Physics Workshop 2017 - 16/01/20128 - CERN

Why measuring Higgs @FCC-hh?

LHC

- Higgs precision measurements are guaranteed deliverables, because we know the Higgs exists...
- Potential deviations on Higgs couplings might indicate presence of new physics
- FCC-hh provides complementary measurements to FCC-ee:
 - rare decays (BR(μμ), BR(Zγ), ratios, ..) measurements will be statistically limited at FCC-ee
 - top Yukawa and Higgs selfcoupling
- Opportunity for testing new analysis strategies (measuring ratios of BRs/couplings)

FCC-ee

in %	FCC-ee 240 GeV	+FCC-ee 350 GeV	
g нz	0.21	0.21	
9 нw	1.25	0.43	
9 нь	1.25	0.64	
9 нс	1.49	1.04	
9 Hg	1.59	1.18	
9 н _т	1.34	0.81	
Янμ	8.85	8.79	
9 нү	2.37	2.12	
Гн	2.61	1.55	

Higgs production at FCC-hh

	$N_{100} = \sigma_{100 \text{ TeV}} \times 20 \text{ ab}^{-1}$ $N_8 = \sigma_{8 \text{ TeV}} \times 20 \text{ fb}^{-1}$ $N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$	Factor:	1/100	I/I0 redu	iction in stat. unc.
			Ť	Ť	
	$t\bar{t}H$	7.6×10^{8}	3×10^5	420	y Ē
₫ H	ZH	2.2×10^8	3×10^4	85	20000000
	WH	1.0×10 3.2×10^8	$\begin{array}{c} 3 \times 10 \\ 2 \times 10^4 \end{array}$	65	\xrightarrow{g} \xrightarrow{H} -
	$gg \rightarrow VBE$	$H = 10 \times 10^{\circ}$ 1.6 × 10 ⁹	4×10^{-1} 5×10^{4}	110	0000000
W/Z		N_{100}	N_{100}/N_8	N_{100}/N_{14}	t
g		0.5 p0	51 po	55	q q
0000000	$ttH(N^2LO)$	0.5 pb	34 nh	55	
$t \rightarrow -$	VH (N ² LO)	2.3 pb	27 pb	11	$W/Z \rightarrow H$
	VBF (N ² LO)	3.8 pb	69 pb	16	
	ggH (N ³ LO)	49 pb	803 pb	16	q' q'
		σ(13 TeV)	σ(100 Te	V) σ(100)/σ	5 (13)

- Large statistics will allow to isolate cleaner samples in regions with:
 - higher S/B
 - smaller impact of systematics

Outline

- Will discuss prospects for Higgs coupling measurements at FCC-hh, by looking at following processes (all decays with exception on ttH):
 - $ttH \rightarrow bb$ boosted
 - Н→үү,
 - H→ZZ→4I
 - H→μμ
- All signal and background samples have been generated via the following chain (using the FCCSW):
 - MG5aMC@NLO + Pythia8
 - LO (MLM) matched samples (up to 1/2/3 jets) and global K-factor applied to account for N^{2/3}LO corrections
 - full list of signal prod. modes simulated (ggH with finite m_{top})
 - Delphes-3.4.2 with baseline FCC-hh detector
 - Full list of samples can be found here:

(thanks to Clement Helsens) http://fcc-physics-events.web.cern.ch/fcc-physics-events/LHEevents.php

Top Yukawa

- Several possibile channels to measure top yukawa
 - ttH \rightarrow bb, boosted [arXiv:1507.08169]
 - ttH \rightarrow WW, ZZ \rightarrow multileptons (in progress)
 - ttH $\rightarrow \gamma\gamma$ (in progress)
- ttH and ttZ have very similar production dynamics, with highly correlated systematics:
- σ(ttH)/σ(ttZ) can be predicted with < 1% precision across a large kinematic range

Top Yukawa

- Measure top Yukawa by measuring $\sigma(ttH)/\sigma(ttZ)$
- Highest sensitivity determined by semi-leptonic boosted topology t_{lep} t_{had} H_{had}

tt+jets from side bands (m_j > 160 GeV)

Fit and extract $N_{H\,/}\,N_{Z\,to}\approx I\,\%$ accuracy

 $\delta y_t (\text{stat + syst }_{TH}) \sim 1\%$

Higgs decay studies

- Will show prospects for S/B and precision on the signal strength $\delta\mu/\mu$ in the following channels $(H \rightarrow \gamma\gamma, H \rightarrow 4I, H \rightarrow \mu\mu)$ for various scenarios.
- Consider the following categories of uncertainties:
 - $\delta_{\text{stat}} = \text{statistical}$
 - δ_{prod} = production + luminosity systematics
 - $\delta_{eff}(p_T) = object reconstruction (trigger+isolation+identification) systematics$
 - $\delta_B = 0$, background (assume to have ∞ statistics from control regions)

Higgs decay studies

- Given how uncertainties scale with p_T, makes sense to explore sensitivity at large p_T(H) (also qq induced backgrounds falls more steeply)
- Propagate systematics based on average p_T of Higgs decay product
 - ex: $H \rightarrow \mu \mu$, with $p_T(H) > 50 \text{ GeV}$
 - $p_T(\mu_1) \sim 100 \text{ GeV} \rightarrow \delta_{eff}^{(\mu)} \approx 0.25\%$
 - $p_T(\mu_2) \sim 50 \text{ GeV} \rightarrow \delta_{\text{eff}}^{(\mu)} \approx 0.50\%$
- Assume (un-)correlated uncertainties for (different) same final state objects
- Following scenarios are considered:
 - δ_{stat}
 δ_{stat}, δ_{eff}
 → stat. only (I)
 → stat. + eff. unc. (II)
 - δ_{stat} , δ_{eff} , $\delta_{\text{prod}} = 1\% \rightarrow \text{stat.} + \text{eff. unc.} + \text{prod (III)}$

 $H \rightarrow \mu \mu$

• Very small BR(H $\rightarrow \mu\mu$) ~ 2.18e-04, \rightarrow %-level precision out of reach at FCC-ee

Analysis cuts

- $p_T(\mu) > 20 \text{ GeV}$, $|\eta(\mu)| < 4.0$
- $|m_{\mu\mu} m_H| < 2.5 \text{ GeV}$

 $\delta \mu / \mu \approx 1$ % stat. precision can be achieved up to $p_T(H) = 200 \text{ GeV}$

 $H \rightarrow \gamma \gamma$

Backgrounds:

- irreducible: QCD yy production
- reducible. : γ + jets (ignored for now)

<u>Analysis cuts</u>

- $p_T(y) > 30 \text{ GeV}, |\eta(y)| < 4.0$
- variable pT(H)min
- $|m_{\chi\chi} m_H| < 2.5 \text{ GeV}$

 $H \rightarrow \gamma \gamma$ - Expected sensitivity

• $\delta \mu / \mu \approx O(I)$ % precision can be achieved up to p_T(H) = I TeV, assuming no systematics

 $H \rightarrow ZZ^* \rightarrow 4I$

 $_{P}T(H) > 200 \text{ GeV}$

Analysis cuts:

- 40. < m_{Z1} < 120.
- 12. < m_{Z2} < 120.
- $p_T(l) > 10 \text{ GeV}, |\eta(\gamma)| < 4.0$
- 120 < m₄₁ < 127.5 GeV

 \rightarrow asymmetric cut due to FSR tail

basically background free at high pT !

$H \rightarrow ZZ^* \rightarrow 4\mu$ - Expected sensitivity

- $\delta \mu / \mu \approx 1$ % precision can be achieved up to $p_T(H) = 500$
- At low pT systematics will limit there measurement

- Statistics are so large (even for the rare decays) is most cases that the systematics (or lumi) wall (2-3% ?) for absolute measurement will be hit well before the full 20-30 ab⁻¹ @100 TeV
- In order to cancel systematics (from production, luminosity, etc..) a possibility is to measure ratios of BRs:
 - BR($\mu\mu$)/BR(4I) or BR($\mu\mu$)/BR($\gamma\gamma$)
 - BR(Zy)/BR(4I) or BR(Zy)/BR(yy)
 - → stat only (sub)-percent precision can be reached (provided absolute measurement given by Higgs factories)

 $BR(H \rightarrow \mu\mu)/BR(H \rightarrow 4\mu)$

I % precision (including systematics) within reach

$BR(H \rightarrow \gamma \gamma)/BR(H \rightarrow 2\mu 2e)$

- assumes 100% between e, γ systematics
- I % precision (including systematics) within reach

 $BR(H \rightarrow \gamma \gamma)/BR(H \rightarrow \mu \mu)$

I % precision (including systematics) within reach

Conclusions & outlook

- The FCC-hh machine will produce > 10¹⁰ Higgs bosons
- Such large statistics open up a whole new range of possibilities
- First look at some Higgs decay channels was presented using fast detector simulation and simple cut and count analysis
- Measuring ratios of couplings (or equivalently BRs), allows to cancel systematics (1% precision on "rare" couplings within reach after absolute HZZ measurement in e+e-)