Higgs self-coupling @FCC-hh

<u>Michele Selvaggi</u> (CERN), Giacomo Ortona (LLR)

2nd FCC Physics Workshop 2017 - 16/01/20128 - CERN

Why measure HH?

• Measure HH gives access to the magnitude of the Higgs self-interaction:

$$V = \lambda v^2 H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4$$

• Shape of the Higgs potential is determined by the self coupling value (EWPT)

HH@ FCC-hh: production

- negative interference between box and triangle
- high m_{hh} region suppressed by off-shell propagator in triangle (and dominated by box)

 \rightarrow sensitivity to the self-coupling is determined by low m_{hh} region

HH@ FCC-hh: decay modes

HH@ FCC-hh: decay modes

are discussed here ...

Baseline

- Detailed analysis performed in 2016 (summarised in the Yellow Report [1606.09408])
 - cut-based analysis
 - reported sensitivity on λ after 30 ab⁻¹ at 100 TeV
 - studied impact of detector performance, systematics, background normalisation

	$\Delta_S = 0.00$	$\Delta_S = 0.01$	$\Delta_S = 0.015$	$\Delta_S = 0.02$	$\Delta_S = 0.025$
$r_B = 0.5$	2.7%	3.4%	4.1%	4.9%	5.8%
$r_B = 1.0$	3.4%	3.9%	4.6%	5.3%	6.1%
$r_B = 1.5$	3.9%	4.4%	5.0%	5.7%	6.4%
$r_B = 2.0$	4.4%	4.8%	5.4%	6.0%	6.8%
$r_B = 3.0$	5.2%	5.6%	6.0%	6.6%	7.3%

To be updated:

- up-to-date parton shower/underlying event modelling (Pythia8 vs Pythia6)
- more recent FCC-hh detector description (4T vs 6T, smaller detector size)
- QCD background generation using 5f scheme (jjjγ, jjγγ)
- Up-to-date k-factors for backgrounds (ttH) and signal (λ -dependent)

Production

- Higher order in QCD helps λ -dependent K-factor sensitivity (not only the rate) \rightarrow included here!
- Total rate still taken to be given by NNLL+NNLO in EFT (although known to be overshooting by 20%), but missing the following (should compensate?):
 - higher orders other channel (NⁿLO, n>2)
 - VBF-HH/ttHH

Selection [1606.09408]

- exploit correlations of means if the signal, ex: $m_{\chi\chi}$ vs m_{bb}
- build template model in 2D on λ using splines (morphing)
- perform 2D Likelihood fit on the signal strength and coupling modifier:

$$\mu = \sigma_{obs} / \sigma_{SM} \qquad \qquad \kappa_{\lambda} = \lambda_{obs} / \lambda_{SM}$$

Precision on the signal strength

nominal background yields:

$$\delta\mu(\text{stat}) \approx 2.5 \%$$

 $\delta\mu(\text{stat + syst}) \approx 4 \%$

varying (0.5x-2x) background yields:

$$\delta\mu(\text{stat})\approx2$$
 - 4 %

Precision on the self-coupling

nominal background yields:

 $\delta \kappa_{\lambda}(\text{stat}) \approx 3.5 \%$ $\delta \kappa_{\lambda}(\text{stat} + \text{syst}) \approx 6 \%$ varying (0.5x-2x) background yields:

$$\delta \kappa_{\lambda}(\text{stat}) \approx 3 - 5 \%$$

4b - boosted

PRELIMINARY!

Approach

- Exploit large branching ratio $BR(H \rightarrow bb)^2 \approx 0.3$
- Requiring a **boosted HH system recoiling against jet(s)**, contains the invariant mass to small values \rightarrow maintain sensitivity to the self-coupling
- In practice low mass region (m_{HH} \approx 200 GeV) is unresolvable:

 $m_{HH} \ge p_T * 2R_{jet}$ and $R_{jet} \ge 2m_H/p_T$

 \Rightarrow m_{HH} \gtrsim 3-4 m_H

Signal and backgrounds

Backgrounds

- QCD: (double gluon to b-bar splitting recoiling against jet)
 - $p p \rightarrow 4b + j$ (or simply $p p \rightarrow j g g$)

```
\sigma^{_{4b+j}} (pT(j) > 500 GeV) ~ 57 pb (10<sup>9</sup> @ 30ab<sup>-1</sup>)
```

• ttbar, ZH ...

Signal

• $pp \rightarrow hh + j$

 σ^{hh+j} (pT(j) > 500 GeV) ~ 4 fb (10⁵ @ 30ab⁻¹)

If aim for % level precision, need S,B \ge 10⁴ after cuts: , i.e. a factor of 10⁵ in background rejection \rightarrow very hard !! \rightarrow explore lower pT(hh) range as well

Selection strategy

- <u>Boost</u> the di-Higgs system:
 - p_T(h₁h₂) > 400 GeV
- <u>Preselection</u>: Require $\gtrsim 2$ b-tagged fatjets R = 0.3
 - $PT(h_1) > 300 \text{ GeV and } |\eta_1| < 3.0$
 - $PT(h_2) > 200 \text{ GeV and } |\eta_2| < 3.0$

Analysis strategy

- <u>Boost</u> the di-Higgs system:
 - pT(h1h2) > 400 GeV
- <u>Preselection</u>: Require $\gtrsim 2$ b-tagged fatjets R = 0.8:
 - $p_T(h_1) > 300 \text{ GeV and } |\eta_1| < 3.0$
 - $p_T(h_2) > 200 \text{ GeV and } |\eta_2| < 3.0$
- <u>Higgs tagging</u>:
 - $100 < m_{SD}(h_1) < 130$ and $\tau_{2,1} (h_1) < 0.4$
 - $100 < m_{SD}(h_2) < 130$ and $\tau_{2,1}(h_2) < 0.4$

Analysis strategy

- <u>Boost</u> the di-Higgs system:
 - pT(h1h2) > 400 GeV
- <u>Preselection</u>: Require $\gtrsim 2$ b-tagged fatjets R = 0.8:
 - $p_T(h_1) > 300 \text{ GeV and } |\eta_1| < 3.0$
 - $p_T(h_2) > 200 \text{ GeV and } |\eta_2| < 3.0$
- <u>Higgs tagging</u>:
 - $100 < m_{SD}(h_1) < 130 \text{ and } \tau_{2,1} (h_1) < 0.4$
 - $100 < m_{SD}(h_2) < 130$ and $\tau_{2,1}(h_2) < 0.4$

\Rightarrow fit the m_{HH} spectrum

Expected sensitivity

varying (0.5x-2x) background yields:

$$\delta\mu(\text{stat})\approx$$
 10 - 20 %

 $\delta \kappa_{\lambda}(\text{stat}) \approx 15 - 30 \%$

Conclusions & outlook

- HH→bbyy analysis has been performed with more recent detector description and new MC samples
 - small differences have been observed but overall comparable performance on sensitivity $\delta \kappa_{\lambda}(\text{stat}) \approx 3.5 \%$
- HH recoil displays lower performance due to huge QCD background
 - sensitivity found $\delta \kappa_{\lambda}$ (stat) $\approx 20\%$
 - can definitely be further improved by using state-of-the art boosted techniques (here simple m_{SD} and $\tau_{2,1}$ cuts), optimising cone size, p_T range, etc ...
- In either case, the following can help:
 - including other production channels (ttHH,VBF-HH)
 - using machine learning techniques at the preselection level
 - also higher order in QCD seem to increase sensitivity