Implication of Higgs Factory Precision Measurements on New Physics Models

Shufang Su • U. of Arizona

2nd FCC Physics Workshop Jan 16, 2018

J. Gu, H. Li, Z. Liu, W. Su, 1709.06103 N. Chen, T. Han, SS, W. Su, Y. Wu, work in progress H. Li, SS, W. Su, work in progress

S. Su

Outline

- Higgs precision measurements
- Global fit framework
- Perturbative models
 - SM with a real singlet extension
 - 2HDM (tree + loop, Higgs + Zpole)
 - MSSM
- Strong dynamics models (skip in this talk, see Jiayin's)
- Complementarity with direct search @ 100 pp
- Conclusion

LHC: 14 TeV, 300 fb⁻¹, 3000 fb⁻¹

$\Delta \mu / \mu$	3	300 fb^{-1}	3000 fb^{-1}		
	All unc.	No theory unc.	All unc.	No theory unc.	
$H \rightarrow \gamma \gamma \text{ (comb.)}$	0.13	0.09	0.09	0.04	
(0j)	0.19	0.12	0.16	0.05	
(1j)	0.27	0.14	0.23	0.05	
(VBF-like)	0.47	0.43	0.22	0.15	
(WH-like)	0.48	0.48	0.19	0.17	
(ZH-like)	0.85	0.85	0.28	0.27	
(<i>ttH</i> -like)	0.38	0.36	0.17	0.12	
$H \rightarrow ZZ \text{ (comb.)}$	0.11	0.07	0.09	0.04	
(VH-like)	0.35	0.34	0.13	0.12	
(<i>ttH</i> -like)	0.49	0.48	0.20	0.16	
(VBF-like)	0.36	0.33	0.21	0.16	
(ggF-like)	0.12	0.07	0.11	0.04	
$H \rightarrow WW$ (comb.)	0.13	0.08	0.11	0.05	
(0j)	0.18	0.09	0.16	0.05	
(1j)	0.30	0.18	0.26	0.10	
(VBF-like)	0.21	0.20	0.15	0.09	
$H \rightarrow Z\gamma$ (incl.)	0.46	0.44	0.30	0.27	
$H \rightarrow b\bar{b} \text{ (comb.)}$	0.26	0.26	0.14	0.12	
(WH-like)	0.57	0.56	0.37	0.36	
(ZH-like)	0.29	0.29	0.14	0.13	
$H \rightarrow \tau \tau \text{ (VBF-like)}$	0.21	0.18	0.19	0.15	
$H \rightarrow \mu\mu \text{ (comb.)}$	0.39	0.38	0.16	0.12	
(incl.)	0.47	0.45	0418	0.14	
(<i>ttH</i> -like)	0.74	0.72	0.27	0.23	

CEPC / FCC / ILC

collider	CEPC	FCC-ee	ILC						
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	$350{ m GeV}$		$500{ m GeV}$			
$\int \mathcal{L} dt$	5 ab^{-1}	10 ab^{-1}	2 ab^{-1}	200	fb^{-1}		4 ab^{-1}		
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h $	$t\bar{t}h$	
$\Delta \sigma / \sigma$	0.51%	0.4%	0.71%	2.1%	_	1.06	-	-	
decay		$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$							
$h \to b\bar{b}$	0.28%	0.2%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%	
$h \to c\bar{c}$	2.2%	1.2%	2.9%	12.7%	16.7%	4.5%	2.2%	-	
$h \rightarrow gg$	1.6%	1.4%	2.5%	9.4%	11.0%	3.9%	1.5%	-	
$h \to WW^*$	1.5%	0.9%	1.1%	8.7%	6.4%	3.3%	0.85%	-	
$h \to \tau^+ \tau^-$	1.2%	0.7%	2.3%	4.5%	24.4%	1.9%	3.2%	_	
$h \rightarrow ZZ^*$	4.3%	3.1%	6.7%	28.3%	21.8%	8.8%	2.9%	_	
$h \rightarrow \gamma \gamma$	9.0%	3.0%	12.0%	43.7%	50.1%	12.0%	6.7%	-	
$h \to \mu^+ \mu^-$	17%	13%	25.5%	97.6%	179.8%	31.1%	25.5%	-	
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	2.2%	3.7%	-	-	-	-	-	

S. Su CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scenarios.

CEPC / FCC / ILC

collider	CEPC	FCC-ee	ILC							
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	$350{ m GeV}$		$500{ m GeV}$				
$\int \mathcal{L} dt$	5 ab^{-1}	10 ab^{-1}	2 ab^{-1}	200	fb^{-1}	4 ab^{-1}				
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h$	Zh	$ u \overline{ u} h $	$t\bar{t}h$		
$\Delta \sigma / \sigma$	0.51%	0.4%	0.71%	2.1%	_	1.06	-	-		
decay			$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$							
$h \to b\bar{b}$	0.28%	0.2%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%		
$h \to c\bar{c}$	2.2%	1.2%	2.9%	12.7%	16.7%	4.5%	2.2%	-		
$h \rightarrow gg$	1.6%	1.4%	2.5%	9.4%	11.0%	3.9%	1.5%	-		
$h \to WW^*$	1.5%	0.9%	1.1%	8.7%	6.4%	3.3%	0.85%	-		
$h \to \tau^+ \tau^-$	1.2%	0.7%	2.3%	4.5%	24.4%	1.9%	3.2%	_		
$h \rightarrow ZZ^*$	4.3%	3.1%	6.7%	28.3%	21.8%	8.8%	2.9%	-		
$h \rightarrow \gamma \gamma$	9.0%	3.0%	12.0%	43.7%	50.1%	12.0%	6.7%	-		
$h \rightarrow \mu^+ \mu^-$	17%	13%	25.5%	97.6%	179.8%	31.1%	25.5%	-		
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	2.2%	3.7%	_	-	-	-	-		

S. Su CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scenarios.

CEPC / FCC / ILC

collider	CEPC	FCC-ee	ILC						
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$250{ m GeV}$	350	GeV	$500\mathrm{GeV}$			
$\int \mathcal{L} dt$	5 ab^{-1}	10 ab^{-1}	2 ab^{-1}	200	200 fb^{-1} 4 ab		4 ab^{-1}		
production	Zh	Zh	Zh	Zh	$ u \overline{ u} h $	Zh	$ u \bar{ u} h$	$t\bar{t}h$	
$\Delta \sigma / \sigma$	0.51%	0.4%	0.71%	2.1%	-	1.06	-	-	
decay			$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$						
$h \to b\bar{b}$	0.28%	0.2%	0.42%	1.67%	1.67%	0.64%	0.25%	9.9%	
$h \to c\bar{c}$	2.2%	1.2%	2.00%	19 70%	16 7%	1 50%	<u>າ າ</u> 07		
h ightarrow gg	1.6%	1.4%	2. 10	<u>0 TeV</u>	pp				
$h \to WW^*$	1.5%	0.9%	1.	• h	vv. hZv	: perc	ent le	vel	
$h \to \tau^+ \tau^-$	1.2%	0.7%	2.3						
$h \rightarrow ZZ^*$	4.3%	3.1%	6.	• h	tt: ~1%				
$h \to \gamma \gamma$	9.0%	3.0%	12.0%	43.7%	50.1%	12.0%	6.7%	-	
$h \to \mu^+ \mu^-$	17%	13%	25.5%	97.6%	179.8%	31.1%	25.5%	-	
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	2.2%	3.7%	_	-	-	-	-	

S. Su CEPC-preCDR, TLEP Design Study Working Group, ILC Operating Scenarios.

Kappa framework and EFT Framework

S. Su

Kappa Framework and EFT Framework

limitations of model-independent approaches

- large level of degeneracy parameter space for specific model much smaller
- correlation matrix often not provided
 over conservative estimation when not include correlation
- assumptions and simplifications may not be valid for a particular model

Perturbative Models

- SM with a real singlet extension
- 2HDM (Type I, II, L, F)
- MSSM

• SM + real scalar singlet

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} S)^2 - \frac{1}{2} m_S^2 S^2 - \Lambda_{SH} S(H^{\dagger} H) - \frac{1}{2} \lambda_{SH} S^2(H^{\dagger} H) - \frac{1}{3!} \Lambda_S S^3 - \frac{1}{4!} \lambda_S S^4$$

• after EWSB, 2 physical Higgse: CP-even Higgses: hsm, singlet S

 \odot Z₂ breaking: mixing between h_{SM} and S

 $h_{125} = \cos\theta \ h_{\rm SM} + \sin\theta \ S$

$$\kappa_i = g_i^{\text{SM+singlet}} / g_i^{SM} = \cos \theta$$

• fit to $\sin \theta$

S. Su

• fit to $\sin \theta$

• fit to c₆ and c_H

Perturbative Models

SM with a real singlet extension

- 2HDM (Type I, II, L, F)
- MSSM

2HDM in one slide

• Two Higgs Doublet Model (CP-conserving)

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ (v_{i} + \phi_{i}^{0} + iG_{i})/\sqrt{2} \end{pmatrix}$$

$$v_{u}^{2} + v_{d}^{2} = v^{2} = (246 \text{GeV})^{2} \\ \tan \beta = v_{u}/v_{d}$$

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}, \quad \begin{array}{l} A = -G_{1} \sin \beta + G_{2} \cos \beta \\ H^{\pm} = -\phi_{1}^{\pm} \sin \beta + \phi_{2}^{\pm} \cos \beta \end{array}$$

after EWSB, 5 physical Higgses CP-even Higgses: h⁰, H⁰ , CP-odd Higgs: A⁰, Charged Higgses: H[±]

• h⁰/H⁰ VV coupling
$$g_{H^0VV} = \frac{m_V^2}{v} \cos(\beta - \alpha), \quad g_{h^0VV} = \frac{m_V^2}{v} \sin(\beta - \alpha).$$

alignment limit: $\cos(\beta - \alpha) = 0$, h⁰ is the SM Higgs with SM couplings. S. Su 15

2HDM parameters

	Φ 1	ф2
Type I	u,d,l	
Type II	u	d,I
lepton-specific	u,d	I
flipped	u,l	d

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$-\sin \alpha / \cos \beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

• parameters (CP-conserving, flavor limit, Z₂ symmetry)

Tree-level 2HDM fit

2HDM, LHC/FCC fit

Tree-level 2HDM fit

2HDM Model Distinction

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	$-\sin \alpha / \cos \beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos lpha / \sin eta$	$\cos lpha / \sin eta$	$-\sin \alpha / \cos \beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

2HDM: Loop in the Alignment Limit

• theoretical constraints

2HDM: Loop in the Alignment Limit

2HDM: Loop in the Alignment Limit

• Type II, varying luminosity

2HDM: Tree + Loop

2HDM: Tree + Loop

Varying λv^2

S. Su N. Chen, T. Han, SS, W. Su, Y. Wu, work in progress 24

2HDM: Tree + Loop

work in progress

Direct Search of Heavy Higgses @ 100 pp

2HDM: non-degenerate

N. Chen, T. Han, SS, W. Su, Y. Wu, work in progress

S. Su

Perturbative Models

• SM with a real singlet extension

- 2HDM (Type I, II, L, F)
- MSSM

MSSM

• Higgs mass

$$M_h^2 = m_h^{2,\text{tree}} + \frac{3}{2} \frac{G_F \sqrt{2}}{\pi^2} \overline{m}_t^4 \left\{ -\ln\left(\frac{\overline{m}_t^2}{M_S^2}\right) + \frac{X_t^2}{M_S^2} \left(1 - \frac{1}{12} \frac{X_t^2}{M_S^2}\right) \right\}$$

~ 3 GeV uncertainties (higher loops, $m_{t,...}$)

gauge and Yukawa couplings

hgg and hyy

$$\binom{H}{h} = \begin{pmatrix} \cos \alpha_{eff} & \sin \alpha_{eff} \\ -\sin \alpha_{eff} & \cos \alpha_{eff} \end{pmatrix} \binom{H^d}{H^u}$$

MSSM parameters: m_A, tanβ, M_S, X_t, μ=500 GeV, other irrelevant

m_A vs. X_t

tanβ=30, μ=500 GeV, m_A=2000 GeV

H. Li, SS, W. Su, work in progress

31

m_A vs. tan β

H. Li, SS, W. Su, work in progress

m_A vs. tan β

Complementary to LHC direct search

m_A vs. M_S

H. Li, SS, W. Su, work in progress

Conclusion

- Higgs factory reach impressive precision
- Kappa-scheme/EFT scheme/model specific fit
- indirect constraints on new physics models
- complementary to Zpole precision program
- complementary to direct search @ 100 TeV pp

S. Su

Conclusion

Conclusion

An exciting journey ahead of us!

Backup Slides

- Minimum composite Higgs Model (MCHM)
- General EFT patterns of strong interacting models with a light Higgs

Composite Higgs in one slide

- ${\ensuremath{\, \bullet }}$ Higgs is the PNGB of the spontaneous breaking of $G{\Rightarrow}H$
- \odot EWSB is induced by vacuum misalignment, parametrized by $\xi {=} v^2 {/} f^2$
- mass of SM fermion generated by mixing with composite states
- light top partners can be searched at the LHC
- minimal composite Higgs Model (MCHM): SO(5)/SO(4)
 - hVV

$$\kappa_V \equiv \frac{g_{hVV}^{\rm CH}}{g_{hVV}^{\rm SM}} = \sqrt{1-\xi}$$

- hff: depends on the fermion representation

$$F_1 \equiv \frac{1-2\xi}{\sqrt{1-\xi}}, \qquad F_2 \equiv \sqrt{1-\xi}$$

MCHM

• Fermion representation

MCHM: ξ=v²/f² < 10⁻³, f > 4 TeV

MCHM Reps.	$5, 10 \\ 14-1-10 \\ 14-10-10 \\ 10-14-10$	10-5-10	5-5-10	5-10-10 5-1-10	14-14-10	14-5-10	5-14-10	
κ_t, κ_g	F_1	F_2	F_1	F_2	F_3	F_4	F_5	
κ_b	F_1	F_1	F_2	F_2	F_1	F_1	F_1	
				CEPC				
$\xi \times 10^3$	2.56	2.36	4.19	3.87	2.78-2.56	2.71 - 2.36	2.36 - 2.04	
f [TeV]	4.86	5.06	3.80	3.95	4.67 - 4.86	4.72 - 5.07	5.07 - 5.45	
				ILC				
$\xi \times 10^3$	2.19	2.02	3.44	3.20	2.31 - 2.19	2.06 - 2.01	1.87 - 1.72	
f [TeV]	5.26	5.48	4.19	4.35	5.12 - 5.26	5.42 - 5.48	5.69 - 5.93	
FCC-ee								
$\xi \times 10^3$	1.80	1.66	3.06	2.74	1.85 - 1.80	1.70 - 1.66	1.66 - 1.41	
f [TeV]	5.79	6.04	4.45	4.70	5.72 - 5.80	5.97 - 6.05	6.05 - 6.56	

MCHM

S. Su

42

- Minimum composite Higgs Model (MCHM)
- General EFT patterns of strong interacting models with a light Higgs

Strong Dynamics in EFT Language

• EFT operators

$$\mathcal{L}_6 = \frac{1}{m_*^2} \sum_i c_i \mathcal{O}_i$$

$$\begin{array}{ll} \hline \mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} | H^{2} |)^{2} & \mathcal{O}_{GG} = g_{s}^{2} | H |^{2} G_{\mu\nu}^{A} G^{A,\mu\nu} \\ \mathcal{O}_{W} = \frac{ig}{2} (H^{\dagger} \sigma^{a} \overrightarrow{D^{\mu}} H) D^{\nu} W_{\mu\nu}^{a} & \mathcal{O}_{Y_{u}} = Y_{u} | H |^{2} \overline{Q}_{L} \widetilde{H} u_{R} \\ \mathcal{O}_{B} = \frac{ig'}{2} (H^{\dagger} \overrightarrow{D^{\mu}} H) \partial^{\nu} B_{\mu\nu} & \mathcal{O}_{Y_{d}} = Y_{d} | H |^{2} \overline{Q}_{L} H d_{R} \\ \mathcal{O}_{HW} = ig (D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W_{\mu\nu}^{a} & \mathcal{O}_{Y_{e}} = Y_{e} | H |^{2} \overline{L}_{L} H e_{R} \\ \mathcal{O}_{HB} = ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} & \mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W_{\mu}^{a \nu} W_{\nu\rho}^{b} W^{c \,\rho\mu} \\ \hline \end{array}$$

	\mathcal{O}_H	\mathcal{O}_W	\mathcal{O}_B	\mathcal{O}_{HW}	\mathcal{O}_{HB}	\mathcal{O}_{BB}	\mathcal{O}_{GG}	\mathcal{O}_{y_u}	\mathcal{O}_{y_d}	\mathcal{O}_{y_e}	\mathcal{O}_{3W}
ALH	g_{*}^{2}	1	1	1	1	1	1	g_*^2	g_*^2	g_*^2	$rac{g^2}{g_*^2}$
GSILH	g_*^2	1	1	1	1	$\frac{y_t^2}{16\pi^2}$	$\frac{y_t^2}{16\pi^2}$	g_{*}^{2}	g_*^2	g_{*}^{2}	$rac{g^2}{g_*^2}$
SILH	g_*^2	1	1	$\frac{g_*^2}{16\pi^2}$	$\frac{g_*^2}{16\pi^2}$	$\frac{y_t^2}{16\pi^2}$	$\frac{y_t^2}{16\pi^2}$	g_{*}^{2}	g_*^2	g_{*}^{2}	$\frac{g^2}{16\pi^2}$

Strong Dynamics in EFT Language

Strong Dynamics in EFT Language

Conclusion

