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Transverse dibosons in the final state



Anomalous TGC

I In SM interactions of the vector bosons are fixed by the gauge
symmetry

ig W+µνW−µ W 3
ν + ig W 3µνW+

µ W−ν

I Two possible deformations are allowed at the level of six derivatives

igcθδg1,Z ZνW
+µνW−µ + h.c .+ ig(cθ δκZ Zµν + sθδκγA

µν)W+
µ W−ν

and

λZ
ig

m2
W

W+µ2
µ1

W−µ3
µ2

W 3µ1
µ3

These interactions are bounded at LEP-2 at % level
λZ ∈ [−0.059, 0.017], δg1,Z ∈ [−0.054, 0.021], δκZ ∈ [−0.074, 0.051]



Testing anomalous TGC @LHC

I At LHC these couplings are constrained mainly from the qq → VV
process.

V

V

V

V

I We want to exploit large collision energy of LHC to put stricter
bounds.



Anomalous TGC energy scaling

All of the aTGC interactions appear at the level of the dimension six
operators.

I It is useful to think about TGC in terms of the EFT operators before
EWSB.

OHB = ig ′(DµH)†DνHBµν ,OHW = ig(DµH)†σaDνHW a
µν

O3W = g
3!εabcW

a ν
µ W b ρ

ν W c,µ
ρ

λZ =
m2

W

Λ2
c3W , δg1,Z =

m2
Z

Λ2
cHW , δκZ =

m2
W

Λ2

(
cHW − tan2 θcHB

)
(not a unique map)

I We can use the Goldstone boson equivalence theorem to estimate
the leading energy scaling of the new contributions.



Energy growth of the BSM amplitudes

We start with dimension six operators

OHB = ig ′(DµH)†DνHBµν ,OHW = ig(DµH)†σaDνHW a
µν

O3W = g
3!
εabcW

a ν
µ W b ρ

ν W c,µ
ρ

Goldstone equivalence theorem relates H ⇒WL,ZL

OHB ⊃ ∂WL∂ZT∂WL + vWT∂ZT∂WL + v2WT∂ZTWT + . . .

OHW ⊃ ∂VL∂VT∂VL + vVT∂VT∂VL + v2VT∂VTVT + . . .

O3W ⊃ ∂VT∂VT∂VT + . . .

Leading energy scaling can be estimated by noting that the light quarks couple
mostly to transverse gauge bosons:

M
(
qq̄ →W−L W+

L

)
∼ E2/Λ2 cHB + E2/Λ2 cHW ∼ E2/m2

W δg1,Z + E2/m2
W δκZ

M
(
qq̄ → ZLW

+
L

)
∼ E2/Λ2 cHW = E2/m2

Z δg1,Z ,

M (qq̄ → VTVT ) ∼ E2/Λ2 c3W = E2/m2
W λZ

We have an additional E 2 compared to the SM amplitudes, as
expected from dimensional analysis



SM and BSM amplitudes

If the BSM is described by the dimension six operators than , for the
qq → VTVT process the leading interference term is suppressed due to
the helicity selection rules:

ASM ABSM

qq̄ → LL ∝ 1 ∝ E 2/M2

qq̄ → ±∓ ∝ 1 ∝ 1
qq̄ → ±± ∝ M2/E 2 ∝ E 2/M2

No interference between SM and BSM in the presence of the transverse
vector bosons, for 2→ 2 processes 1607.05236 AA,R.Contino,C.Machado,F.Riva

4∑
i

hi |SM = 0,
4∑
i

hi |BSMdim 6 = 2, 4



SM and BSM amplitudes with more details

Helicity selction rule for O3W

Lorentz symmetry and the dimensional analysis fixes three point

amplitudes to satisfy:
∑

h = 1− [g ] = 3

for dimension 6 operators (Cachazo,Benincasa) ⇒ fields coming from
WµνWνλWλµ

have always the same helicity.

O3W

±

±

±



Why the interference term is important?

I Generically in the presence of new physics

L = LSM + L6 + L8 + · · · , LD =
∑

i c
(D)
i O

(D)
i , c

(D)
i ∼ 1

ΛD−4

σ ∼ SM2 +
SM × BSM6

Λ2
+

BSM2
6

Λ4
+

SM × BSM8

Λ4
+ ...

I leading term in 1
Λ2 comes from the interference between SM and

BSM

I Both |BSM8| and |BSM6|2 are suppressed by the Λ4 scale. Is it
consistent to truncate the expansion at the dimension six level?

I The analysis is consistent if only

Max

[
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Λ2
,
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6

Λ4

]
� SM × BSM8

Λ4



Importance of interference (qq → VTVT )

σ6 ∼
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Then the dimension six truncation is valid if only
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)
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)
If we will be able to overcome the interference suppression the condition
relaxes to

max

(
c3W
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3W

E 4
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)
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(
c8
E 4

Λ4
, c2

8

E 8
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)
is this important?

Depends on power-counting i.e. types of UV completions we are studying.
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Typical size of c3W

In the weakly coupled theories O3W appears at one loop level c3W ∼ g2

16π2

⇒ too small to be discovered at LHC independently of weather the
interference suppression is present or not (SUSY, Composite Higgs...)

Remedios power counting (Liu, Riva,Rattazzi,Pomarol) - c3W ∼ g∗
g , c8 ∼ g∗

g , no
improvement in EFT validity reach.

We are getting sensitivity to the sign of the Wilson coefficient,
otherwise hidden from the measurements!
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Overcoming the non-interference obstruction: 1st method
Dixon, Shadmi 94

I The non-interference selection rule applies only for the 2→ 2
processes at tree level. There are violations at NLO!

V +

V +

I Effects are (αs

4π ) suppressed, what about real emission?



Overcoming the non-interference obstruction: 1st method
Dixon, Shadmi 94

I The non-interference selection rule applies only for the 2→ 2
processes at tree level. There are violations at NLO!

g±,∓

VT±

VT±

VT±

VT±

g∓
BSM

g±,∓

VT±

VT±

VT±

VT±

g∓
BSM

I (W )3 vertex always emits same helicity W bosons, however the
helicity of the gluon is not restricted!

I For SM amplitudes gluons are carrying away the needed opposite
helicity.

We can use a tag for jet to suppress the background as well, no need to
pay αs

4π for the signal to background ratio.



qq → VV + j

I Indeed the interference growth once
an additional hard jet is required.

I There are no soft and colinear
singularities in the SM amplitude

A(qq̄ → VT±VT±g∓).

since it cannot be generated from
2→ 2 by splitting quark(anti-quark)
line into q(q̄)→ q(q̄)g .

No Jet

Jet with pjT>100GeV

Jet with pjT>mwz/10

Jet with pjT>mwz/5
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Jet needs to be hard otherwise the signal will be hidden inside the SM
background which grows quickly in the soft and colinerar regimes.



Overcoming the interference obstruction: 2nd method
Duncan,Kane,Repko 85

I Non-interference result is obtained for the 2→ 2 processes , in
reality we are looking at 2→ 4 process since both W,Z decay.

I Let us consider for simplicity 2→ 3 process in the narrow width
approximation, then the interference with of the amplitudes with
opposite intermediate Z helicities will be:
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+
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−

V
+

q

q
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l
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l

l

π
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MSM
qq̄→WT+ZT−

(
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qq̄→WT+ZT+

)∗
MZT−→l− l̄+

M∗
ZT+→l− l̄+

⇒
dσint(qq̄→W+l− l̄+)

dφZ
∝MZT−→l− l̄+

M∗
ZT+→l− l̄+

∝ cos(2φZ )



π
2s
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Z )
ΓZmZ

MSM
qq̄→WT+ZT−

(
MBSM

qq̄→WT+ZT+

)∗
MZT−→l− l̄+

M∗
ZT+→l− l̄+

⇒
dσint(qq̄→W+l− l̄+)

dφZ
∝MZT−→l− l̄+

M∗
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The interference is non-zero but modulated with azimuthal angle
of the Z decay products plane. As expected from the 2→ 2 results
the integrated interference is zero again.
( similar ideas for Wγ final state 1708.07823)



Azimuthal angle modulation

θ
φZ

φW

ν

p

p

W Z
l l+

l-

dσint(qq̄ →WZ → 4ψ)

dφZ dφW
∝ cos(2φZ ) + cos(2φW )

I The modulation in azimuthal angles will always happen if there are
virtual states with the different polarizations

I for the λZ deformation, no need to bin in both angles, we can just
look at the decays of one gauge boson.



Azimuthal angle modulation
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dσint(qq̄ →WZ → 4ψ)
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∝ cos(2φZ ) + cos(2φW )

I The modulation in azimuthal angles will always happen if there are
virtual states with the different polarizations

I for the λZ deformation, no need to bin in both angles, we can just
look at the decays of one gauge boson.



Ambiguities in angles ( Panico,Riva, Wulzer 1708.07823)

I In experiment we measure only the charges of the leptons, not their
helicities

I Angualr modulation is fixed by the helicities of the decay products,
so we have an ambiguity in determining the plane of the Z decay φZ .

φZ → φZ + π mod 2π

I irrelevant for the O3W operator since the modulation is

∝ cos 2φZ



W decay?( Panico,Riva, Wulzer 1708.07823)

I So far we have focused only on the Z
decay plane, what about W decay
plane?

I We need to reconstruct the neutrino
momentum.

I Two-fold ambiguity leads to the
degeneracy

φW → π − φW mod 2π



φW → π − φW mod 2π φZ → φZ + π mod 2π

Both O3W and Õ3W can be measured in spite of these ambiguities

g

3!
εabcW

a ν
µ W b ρ

ν W c,µ
ρ ∝ cos 2φ1 + cos 2φ2,

g

3!
εabcW̃ a

µνW
b,νρW c,µ

ρ ∝ sin 2φ1 + sin 2φ2

These ambiguities make harder to observe the interference between (+−)
and LL final states( δgZ

1 coupling).

( Panico,Riva, Wulzer 1708.07823)



Bounding EFT consistently

I Suppose EFT expansion breaks down
at the scale Λ.

I Obviously EFT analysis is consistent if
only the energy of events is below
E < Λ

I What to do if the energy of event is
not fully reconstructed? (often the
case when we have neutrinos in the
final state)

Λ

E

Possible solution

Calcualte theory prediction only in the phase space region where EFT
description is valid if the the NP contribution is always positive the
obtained constraints will be always conservative (proposed for DM in
1502.04701).Not the case if the interference is large.



Leakage

I For 3lν final state the events are
binned in

mT
WZ =

√
(EW

T + EZ
T )2 − (pWx + pZx )2 − (pWy + pZy )2

I we can find approximate map between
the transverse and invariant masses

Leakage =
Ni (mVW > Q)

Ni
× 100%

5%
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mWZ
T [GeV]

Q
[G
eV

]

then once we know the precision of the measurements we can find
corresponding value of the cut-off.

Becomes innacurate (in unlikely situation) if there is a narrow new
physics peak, so that the majority of the events will have the invariant
mass ∼ Mpeak



Analysis only O3W

I We look only at pp →W±Z → lllν final state

I All of the events are binned in mT
WZ mass

[200, 300, 400, 600, 600, 700, 800, 900, 1000, 1200, 1500, 2000] GeV

I We perfomr the binning in pT of the aditional jet
pTj = [0, 100], [100, 300], [300, 500], [500,∞] GeV

I Z decay azimuthal angle is binned in four categories
φZ ∈ [0, π/4, π/2/, 3π/4, π]



Results

Lumi. 300 fb−1 Lumi. 3000 fb−1

Q [TeV]

95% CL 68% CL 95% CL 68% CL

Excl. [-1.06,1.11] [-0.59,0.61] [-0.44,0.45] [-0.23,0.23]

1
Excl., linear [-1.50,1.49] [-0.76,0.76] [-0.48,0.48] [-0.24,0.24]

Incl. [-1.29,1.27] [-0.77,0.76] [-0.69,0.67] [-0.40,0.39]

Incl., linear [-4.27,4.27] [-2.17,2.17] [-1.37,1.37] [-0.70,0.70]

Excl. [-0.69,0.78] [-0.39,0.45] [-0.31,0.35] [-0.17,0.18]

1.5
Excl., linear [-1.22,1.19] [-0.61,0.61] [-0.39,0.39] [-0.20,0.20]

Incl. [-0.79,0.85] [-0.46,0.52] [-0.41,0.47] [-0.24,0.29]

Incl., linear [-3.97,3.92] [-2.01,2.00] [-1.27,1.26] [-0.64,0.64]

Excl. [-0.47,0.54] [-0.27,0.31] [-0.22,0.26] [-0.12,0.14]

2
Excl., linear [-1.03,0.99] [-0.52,0.51] [-0.33,0.32] [-0.17,0.17]

Incl. [-0.52,0.57] [-0.30,0.34] [-0.27,0.31] [-0.15,0.19]

Incl., linear [-3.55,3.41] [-1.79,1.75] [-1.12,1.11] [-0.57,0.57]

λZ ∈ [−0.0014, 0.0016] ([−0.0029, 0.0034])

Sensitivity to linear terms is strongly improved!



Results
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We are sensitive to the sign of the Wilson coefficient, can resolve possible
degeneracies in the fit!



RφZ
=

NφZ∈[π/4,3π/4] − NφZ∈[0,π/4]∪[3π/4,π]

NφZ∈[π/4,3π/4] + NφZ∈[0,π/4]∪[3π/4,π]

RφZ asymmetry is particularly sensitive to the interference!



O3W and Õ3W at 3ab−1 ( with Barducci, Elias-Miro,Panico,Riva,Venturini,Wulzer)

★
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Binning in φZ strongly improves the possibility to differentiate between
the CP even and CP odd operators



O3W and Õ3W at FCC, preliminary results

★
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LEP HL-LHC ILC ×10−4 CEPC×10−4 FCC×10−4

[-0.059,0.017] [-0.0014,0.0016] ±5.1× 10−4 ±3.3 [-2.5,2.2]

ILC & CEPC from 1507.02238, 1306.6352



Differential distributions improve the sentivity to the
New Physics.

In particular for the O3W , Õ3W operator the improvement is not only
quantitative but qualitative.

I We can measure the sign of the Wilson coefficients

I Differentiate between the CP even and CP odd operators

Applicaitons for the other processes?

I δgZ
1 ?

I VV → VV ?


