Heavy resonances at 100TeV

Clement Helsens CERN-EP Michele Selvaggi CERN-EP

Following work started by summer students Rachel Smith UIUC and Ine Arts UA

Disclaimer

- Not discussing much the physic models
- Neither designing state of the art analyses
- But rather study the performance of the FCC-hh detector
- Goal of the study:
 - Discovery reach for heavy objects
 - Find ways to Discriminate QCD, ttbar and dibosons
 - To be validated with Calorimeter performances in full simulation
- No pileup assumed! (for such heavy object the effect is not large)
 - But again the effect of pileup (on,off time) on jet reconstruction and performance will be study in full simulation

FCC-hh Analysis Framework

- GridPack producer (adapted from CMS)
 - Makes MG5_aMC@NLO GridPacks (i.e standalone code that produces LHE files)
- LHE Producer
 - Produce LHE files on LSF/condor queues
 - About a 1.5 billion events produced
 - http://fcc-physics-events.web.cern.ch/fcc-physics-events/LHEevents.php
- FCCSW
 - Runs Pythia8 parton shower+hadronisation and Delphes with FCC detector
- Analysis
 - Python framework produces flat ROOT trees
- FlatTreeAnalyzer
 - Python framework for optimising analysis cut flows and producing
- Limit setting
 - Atlas inspired tool for limits and significance
- More info <u>here</u> https://indico.cern.ch/event/650465/contributions/2665116/attachments/ 1494904/2325547/Delphes_variations_clement.pdf

C. Helsens, Heavy Resonances 17/01/18 @100TeV

Samples

- Signals produced with Pythia8
- Background with MG5 LO 10Million of each
 - K-factor of 2 assumed for all of them
 - Di-lepton ee and mumu separately with mll>10TeV
 - Di-jet with mjj>5TeV
 - Di-boson mvv>5TeV
 - V+jets with mvj>5TeV
 - Ttbar with mtt>5TeV
- Investigating NLO at the moment for the report

Z'->11

- SSM Z' from Pythia8 cross-sections as well
- Simple benchmark used to check detector performance
- Helped us to reduce the originally designed muon resolution of 10%@10TeV given the reach
- Analysis selection
 - p_T(l1) and p_T(l2)>6TeV
 - |η|1| and |η|2|<4
 - m_{ll}>12TeV
- 50% uncertainty assumed on the Drell-Yann normalization when setting limits and discovery reach

Z'->ll (30TeV)

ee

mumu

Better mass resolution for electrons...

Z'->ll (40TeV)

mumu

Even better mass resolution for electrons...

C. Helsens, Heavy Resonances 17/01/18 @100TeV

Z'->ll Significance

Z'->ttbar

- Signal with pythia8
- Cross sections from benchmark top-color model
- Important benchmark model for detector performance on sub-structure
- Analysis selection
 - Jet Pt>3TeV, jet eta <3
 - J1,2 SoftDropped mass>100GeV
 - J1,2 Tau32<0.7 0.3<J1,2 Tau21<0.7
 - Use b-tagging
 - Do not explicitly select leptons, but "correct" Mjj for MET
- 20% uncertainty assumed on the ttbar normalization when setting limits and discovery reach

Tracking in dense environment

- define tracker granularity in (eta x phi)
 - worst case scenario represented by pitch size in the first pixel layer:
 - reso = (2-3)*10um/(0.025) ~ 0.001
- inefficiency when two or more tracks hit same pixel
 - keep only highest pT track (arbitrary of course and probably conservative, considering that this is only first pixel layer ...)
- Conservative value of 0.001 used for FCC studies

C. Helsens, Heavy Resonances 17/01/18 @100TeV

Boosted objects

- What is:
 - Optimal jet collection
 - minimal track angular resolution?
- Assessed using :
 - QCD, QCD+weak shower, W and Top jets
 - GenJets, CaloJets, Particle Flow Jets, Track Jets with 2-5-10-20 TeV
- Outcome: use track jets for sub-structure corrected to pf jets
- More information in Michele's talk <u>here</u>

 Performance of reconstructing such boosted objects Will be further checked in full simulation for the report

- Track jets seems to be more robust and better understood at high pT
- Use those corrected by p-flow jet pT

C. Helsens, Heavy Resonances 17/01/18 @100TeV 17/01/18

B-tagging

 b-tagging to match first results from full simulation study without tracks (hit multiplicity jump)

	process	yield (30.0 ab-1)	stat. error	raw
(7) (1)	m_{Z} = 10 TeV	100153.4	134.7	552849
//_\tthor	vv	19580.0	17.9	1204391
$L^{-}(U)$	vj	1587200.9	2311.2	473507
	tt	467335.5	653.4	512472
	QCD	158736169.8	211305.6	566364
Jet pt1.2>3TeV.	signal	100153.441	11.606	
eta<3	background	160810286.131	211319.212	

RECO: Delphes-3.4.2

Jet1 mass (SD cor) [GeV]

	process	yield (30.0 ab-1)	stat. error	raw
	m_{Z} = 10 TeV	26806.2	69.7	147971
/_>tthor	vv	2.5	0.2	153
	vi	2018.6	82.6	605
	tt	130927.3	345.8	143590
	QCD	2788968.1	28000.5	9945
+iet2m. tau21.		26806 243	9 249	
Jee=111, ee=1,	Signat	20800.243	0.340	
tau32	background	2921916.38	28002.739	

RECO: Delphes-3.4.2

yield (30.0 ab-1)	stat. error	raw
22706.6	64.1	125341
0.4	0.1	25
315.7	32.6	94
111158.0	318.6	121897
475357.2	11559.7	1695
22706.62	8.009	
586831.337	11564.174	
	22706.6 0.4 315.7 111158.0 475357.2 22706.62 586831.337	22706.6 64.1 0.4 0.1 315.7 32.6 111158.0 318.6 475357.2 11559.7 22706.62 8.009 586831.337 11564.174

RECO: Delphes-3.4.2

	process	yield (30.0 ab-1)	stat. error	raw
Z'->ttbar	<pre>m_{Z} = 10 TeV</pre>	9937.1 0.0 10.1 49747.5 24146.9	42.4 0.0 5.8 213.2 2603.8	54853 2 3 54548 86
+both leading pT tagged	signal background	9937.102 73904.557	6.514 2612.545	

C. Helsens, Heavy Resonances @100TeV

17/01/18

17/01/18

@ 100TeV

30

mass [TeV]

Di-boson resonance

- Signal with pythia8
- Cross sections from Pythia8
- Important benchmark model for detector performance on sub-structure
- Analysis selection (Fully hadronic)
 - Jet Pt>3TeV, jet eta <3
 - J1,2 SoftDropped 100<mass<50GeV
 - J1,2 Tau21<0.6
 - Jet 1,2 flow 1-5>0.85
 - Jet 1,2 flow 2-5<0.05
- Norm uncertainties
 - ttbar 20% QCD 50%, VV 20%, VJ 40%

$$\operatorname{Flow}_{n,5} = \sum_{k} \frac{|p_T^k|}{|p_T^{\text{jet}}|}$$

$$\frac{n-1}{5}R \le \Delta R(k, \text{jet}) < \frac{n}{5}R$$

0.2

0

0.4

0.6

0.8

1

Jet1 $\tau_{2,1}$

0.2

0

0.4

0.6

0.8

Jet2 $\tau_{2,1}$

Di-boson res

Jet 1,2 flow 1,5>0.85 Jet 1,2 flow 2,5<0.05

process	yield (30.0 ab-1)	stat. error	raw
m_{RSG} = 10 TeV	16597.8	35.7	215788
vv	8215.7	11.6	505109
vj	88711.4	543.1	26840
tt	9429.7	92.8	10340
QCD	1355315.5	19511.5	4829
signal	16597.76	5.977	
background	1461672.234	19519.329	

RECO: Delphes-3.4.2

C. Helsens, Heavy Resonances 17/01/18 @100TeV

ttbar 20% QCD 50%, VV 20%, VJ 40%

Di-boson res

Pessimistic results Need further optimizations!!!

Limit versus mass

C. Helsens, Heavy Resonances 17/01/18 @100TeV 17/01/18

Summary

- Z'->||
 - background free analysis
 - Discovery reach ~40TeV with full dataset
- Z'->ttbar
 - Leading uncertainties are ttbar modeling, not considered here
 - Need a better handling of multi-jet
 - Sub-structure performance to be checked with full sim
 - Could implement a proper chi-2 to find neutrino pz solution
 - Could properly divide in channels
 - Simple MVA
- Di-boson
 - Need a better handling of multi-jet
 - Sub-structure performance to be checked with full sim
 - Could properly divide in channels
 - Simple MVA