10-100 GeV ALPs in diphoton

mostly based on Mariotti Redigolo FS Tobioka 1710.01743 + in progress

Filippo Sala

DESY Hamburg

2ND FCC PHYSICS WORKSHOP, CERN, WED 17 JAN 2018

BSM resonances: where to look?

Looking for peaks in invariant mass distributions is **solid discovery method** at colliders

1

BSM resonances: where to look?

Looking for peaks in invariant mass distributions is **solid discovery method** at colliders

1. Theory bias towards high masses

Why not $M_X < O(100)$ GeV? **2.** "Low-mass already constrained by previous colliders (LEP,...)"

3. "It is very difficult!" Minimal pT cuts, ...

This seminar: demystify 1. 2. and 3., and prospects at LHC and FCC

"10-100 GEV ALPS"

1

FILIPPO SALA (DESY HAMBURG)

"10-100 GEV ALPS"

2ND FCC WORKSHOP

1

They already exist: pions from QCD

They already exist: pions from QCD

"Just because" strong sector: vector-like confinement see e.g. Kilic Okui Sundrum 0906.0577 [add gauge group that confines at \geq TeV, w/new fermions, vector-like to satisfy EW precision tests]

They already exist: pions from QCD

FILIPPO SALA (DESY HAMBURG)

They already exist: pions from QCD

Less natural composite Higgs models:DM & GUTBernard+ 1409.7391give up on little hierarchy and focus onQCD axionRedi Strumia 1208.6013generate EW & DM scalesAntipin+1410.1817

FILIPPO SALA (DESY HAMBURG)

Nelson-Seiberg NPB416 (1994)

- i) SUSY broken in global minimum
- ii) superpotential W "generic" (i.e. contains all terms not forbidden by symmetries)

Lagrangian respects a $U(1)_R$

1. Theory bias towards high masses

Why not $M_X < O(100)$ GeV ? 2. "Low-mass already constrained by previous colliders (LEP,...)"

3. "It is very difficult!" Minimal pT cuts, ...

Why not $M_X < O(100)$ GeV ? **2.** "Low-mass already constrained by previous colliders (LEP,...)"

FILIPPO SALA (DESY HAMBURG)

"10-100 GEV ALPS"

2ND FCC WORKSHOP 4

.

$$\mathcal{L}_{\text{int}} = \frac{a}{4\pi f_a} \left[\alpha_s c_3 G \tilde{G} + \alpha_2 c_2 W \tilde{W} + \alpha_1 c_1 B \tilde{B} \right] + i C_f m_f \frac{a}{f_a} \bar{f} \gamma_5 f + C_h v \left(\frac{\partial_\mu a}{f_a} \right)^2 h + \cdots$$

FILIPPO SALA (DESY HAMBURG)

FILIPPO SALA (DESY HAMBURG)

$$\mathcal{L}_{\text{int}} = \frac{a}{4\pi f_a} \left[\alpha_s c_3 G \tilde{G} + \alpha_2 c_2 W \tilde{W} + \alpha_1 c_1 B \tilde{B} \right] + i C_f m_f \frac{a}{f_a} \bar{f} \gamma_5 f + C_h v \left(\frac{\partial_\mu a}{f_a} \right)^2 h + \cdots$$

FILIPPO SALA (DESY HAMBURG)

$$\mathcal{L}_{\text{int}} = \frac{a}{4\pi f_a} \left[\alpha_s c_3 G \tilde{G} + \alpha_2 c_2 W \tilde{W} + \alpha_1 c_1 B \tilde{B} \right] + i C_f m_f \frac{a}{f_a} \bar{f} \gamma_5 f + C_h v \left(\frac{\partial_\mu a}{f_a} \right)^2 h + \cdots$$

FILIPPO SALA (DESY HAMBURG)

ALP production at the LHC

FILIPPO SALA (DESY HAMBURG)

1. Theory bias towards high masses

Why not $M_X < O(100)$ GeV? 2. "Low-mass already constrained by previous colliders (LEP,...)"

3. "It is very difficult!" Minimal pT cuts, ...

Why not $M_X < O(100)$ GeV ?

3. "It is very difficult!" Minimal pT cuts, ...

FILIPPO SALA (DESY HAMBURG)

"10-100 GEV ALPS"

2ND FCC WORKSHOP 7

Why difficult to go below ~ 100 GeV?

$$M_{\gamma\gamma,jj,...} > \Delta R \sqrt{p_{T_1}^{\min} p_{T_2}^{\min}}$$

Isolation of photon/jet/... $\Delta R\equiv \sqrt{\Delta\eta^2+\Delta\phi^2}$

Minimal cuts on transverse momenta

				$- m_{jj}^{\mathrm{MIN}}$	
CMS	pp ightarrow a ightarrow jj	18.8 fb^{-1}	8 TeV	$500 \mathrm{GeV}$	[38]
ATLAS	pp ightarrow a ightarrow jj	$20.3 { m ~fb}^{-1}$	$8 { m TeV}$	$350~{ m GeV}$	[39]
CMS	pp ightarrow a ightarrow jj	$12.9 { m ~fb}^{-1}$	$13 { m ~TeV}$	$600 {\rm GeV}$	[40]
ATLAS	pp ightarrow a ightarrow jj	$3.4 { m ~fb^{-1}}$	$13 { m ~TeV}$	$450 { m GeV}$	[41]
CMS	pp ightarrow ja ightarrow jjj	$35.9 { m fb}^{-1}$	$13 { m TeV}$	$50 \mathrm{GeV}$	[42]

Done recently by CMS in dijet, tremendous improvement in mass reach!

CMS 1710.00159

FILIPPO SALA (DESY HAMBURG)

				$-m_{jj}^{\text{MIIN}}$	
\mathbf{CMS}	pp ightarrow a ightarrow jj	$18.8 { m ~fb}^{-1}$	$8 { m TeV}$	$500 { m ~GeV}$	[38]
ATLAS	pp ightarrow a ightarrow jj	$20.3 { m ~fb}^{-1}$	$8 { m TeV}$	$350~{ m GeV}$	[39]
\mathbf{CMS}	pp ightarrow a ightarrow jj	$12.9 { m ~fb}^{-1}$	$13 { m TeV}$	$600~{ m GeV}$	[40]
ATLAS	pp ightarrow a ightarrow jj	$3.4 { m ~fb^{-1}}$	$13 { m TeV}$	$450 { m GeV}$	[41]
\mathbf{CMS}	pp ightarrow ja ightarrow jjjj	$35.9~{ m fb}^{-1}$	$13 { m ~TeV}$	$50 \mathrm{GeV}$	[42]

Done recently by CMS in dijet, tremendous improvement in mass reach!

CMS 1710.00159

FILIPPO SALA (DESY HAMBURG)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$p\bar{p} \to a \to \gamma\gamma$ $p\bar{p} \to a \to \gamma\gamma$	$4.2 { m ~fb^{-1}} \\ 5.36 { m ~fb^{-1}}$	1.96 TeV 1.96 TeV	$p_{T_1,T_2} > 21, 20 \text{ GeV}$ $p_{T_1,T_2} > 17, 15 \text{ GeV}$	Δ	$R\gtrsim 0.$.4
ATLAS ATLAS	$pp \rightarrow a \rightarrow \gamma \gamma$ $pp \rightarrow a \rightarrow \gamma \gamma$	$\begin{array}{c} 4.9 \ {\rm fb}^{-1} \\ 20.2 \ {\rm fb}^{-1} \end{array}$	$\begin{array}{c} 7 \ { m TeV} \\ 8 \ { m TeV} \end{array}$	$p_{T_1,T_2} > 25, 22 \text{ GeV}$ $p_{T_1,T_2} > 40, 30 \text{ GeV}$	[8] [9]	9.4 GeV 13.9 GeV	
CMS	$pp ightarrow a ightarrow \gamma\gamma$	$5.0~{ m fb}^{-1}$	$7 { m TeV}$	$p_{T_1,T_2} > 40,25 \text{ GeV}$	[10]	$14.2 \mathrm{GeV}$	
I HC		$m_{\gamma\gamma}^{\mathrm{MIN}}$					

LHC pT cuts in diphoton cross section measurements

but LHC diphoton searches do not reach such low masses

Lower p_T^{\min} ?

Below pT cuts: Background has a structure, so data-driven estimates are difficult

Starting point: inclusive diphoton cross section measurements @ ATLAS7,8 and CMS7

Starting point: inclusive diphoton cross section measurements @ ATLAS7,8 and CMS7

3. Reach with smarter bins (= **2.**, where we reduce ~ 10 GeV bins to mass resolution of ~ 3 GeV)

Starting point: inclusive diphoton cross section measurements @ ATLAS7,8 and CMS7

- **3. Reach** with smarter bins (= **2.**, where we reduce ~ 10 GeV bins to mass resolution of ~ 3 GeV)
- Reach we simulate bkg with <u>same cuts</u> at <u>different energies</u> [Madgraph+Pythia+Delphes]

FILIPPO SALA (DESY HAMBURG)

Impact on ALP parameter space

Allowed cross sections were so large, that our simple bound is by far the strongest one

FILIPPO SALA (DESY HAMBURG)

Impact on ALP parameter space

Allowed cross sections were so large, that our simple bound is by far the strongest one

FILIPPO SALA (DESY HAMBURG)

FCC ee reach computed rescaling LEP limits on ${\rm BR}[Z o \gamma a(jj)]$ and assuming $10^{12}~Z$ bosons

If $a G \tilde{G}$ switched on HL-LHC wins over FCC ee

FILIPPO SALA (DESY HAMBURG)

FCC-ee with no gluon coupling

$$\mathcal{L}_{\text{int}} = \frac{a}{4\pi f_a} \begin{bmatrix} \alpha_s & \tilde{G} + \alpha_2 c_2 W \tilde{W} + \alpha_1 c_1 B \tilde{B} \\ \alpha_1 = \frac{5}{3} \alpha_y \end{bmatrix}$$

FILIPPO SALA (DESY HAMBURG)

Other ways to low-mass resonances?

FILIPPO SALA (DESY HAMBURG)

Summary & Outlook

Back up

More on R-axion

FILIPPO SALA (DESY HAMBURG)

"10-100 GEV ALPS"

2ND FCC WORKSHOP

PGB from SUSY: R-symmetry

N = 1 SUSY always accompanied by a continuous $U(1)_R$ = "R-symmetry"

$$R: \ \theta_{\alpha} \to e^{i\epsilon} \ \theta_{\alpha} \qquad [R,Q] = -Q$$

$$\Phi = \phi + \sqrt{2}\theta \psi + \theta^2 F \qquad \qquad r_{\phi} = r_{\Phi}$$

$$r_{\psi} = r_{\Phi} - 1$$

$$r_{F} = r_{\Phi} - 2$$

Vector auporfieldo are real —> gougineo bayo

Vector superfields are real \Rightarrow gauginos have $r_{\lambda} = 1$

Lagrangian \mathcal{L} R-symmetric $\Rightarrow R(W) = 2$ (\Leftarrow if Kahler canonical)

$$\mathcal{L} \supset \int d^2 \theta W + \text{c.c.}$$

W superpotential

R-charge assignments:

A strongly coupled "UV" completion

The R-axion pheno Lagrangian-I

Komargodski Seiberg 0907.2441

Tool: constrained superfield formalism

$$X = \frac{G^2}{2F_X} + \sqrt{2}\theta G + \theta^2 F_X$$
satisfy the constraints
$$\begin{cases} X^2 = 0 \\ X(R^{\dagger}R - 1) = 0 \\ \sim \text{ analogous to} \\ \text{ ordinary Goldstones } U^{\dagger}U = 1 \quad U = e^{i\pi} \end{cases}$$

Most general effective Lagrangian:

$$\mathcal{L}_{G+a} = \int d^4\theta \left(X^{\dagger}X + f_a^2 \mathcal{R}^{\dagger} \mathcal{R} \right) + \int d^2\theta \left(FX + w_R \mathcal{R}^2 \right) + \text{c.c.}$$

Absent for any other axion

 $r_X = 2$ $r_{\mathcal{R}} = 1$

 $-\frac{w_R}{f_a F^2} \Box a \, \bar{G} i \gamma_5 G$

First pheno prediction (valid for any UV completion!):

R-axion decays to missing energy

Dine Festuccia Komargodski 0910.2527 see also Bellazzini 1605.06111

FILIPPO SALA (DESY HAMBURG)

R-axion pheno overview

$\underline{\mathit{a}\,\mathrm{from}\,\mathrm{decays}\,\mathrm{of}\,\mathrm{h},\Upsilon\,\,\mathrm{and}\,\,\mathrm{B}}$

$$\mathcal{L}_{ha^2} = \frac{\delta^2}{v} (\partial_{\mu} a)^2 h$$

$$\delta = R_H \frac{v}{f_a} \frac{s_{2\beta}}{2}$$

$$BR_{\Upsilon \to \gamma a} \simeq 3 - 5 \times 10^{-5} \left(\frac{\text{TeV}}{f_a}\right)^2 \text{ experiments: BABAR Belle-II}$$

$$BR_{B \to Ka, K^*a} \simeq 3 - 5 \times 10^{-4} \left(\frac{\text{TeV}}{f_a}\right)^2 \text{ LHCb Belle-II}$$

FILIPPO SALA (DESY HAMBURG)

R axion branching ratios

R axion branching ratios

R axion total width

LHC: MET + monojet, MET + diphoton

	$p_T > 250$	$p_T > 500$	$p_T > 700$]
$\sigma_{95} \ 8 \ {\rm TeV}$	90 fb	7.2 fb	3.4 fb	ATLAS 1502.01518
σ_{95} 13 TeV [3.2 fb ⁻¹]	$553~{\rm fb}$	$61~{\rm fb}$	19 fb	ATLAS 1604.07773

gluon gluon resonance w/ and w/o extra jet simulated with Madgraph Rough procedure:

ratio used to rescale $\sigma_{pp \rightarrow a \rightarrow GG}$

Decays of B and Upsilon

 $B \rightarrow K^{(*)}a(\mu\mu)$ LHCb 1508.04094 (+ Belle)

 $\Upsilon \rightarrow \gamma a@Babar$ BABAR 1210.0287 (muons), 1210.5669 (taus), 1108.3549 (hadrons)

Decays of B and Upsilon

 $B \rightarrow K^{(*)}a(\mu\mu)$ LHCb 1508.04094 (+ Belle)

 $\Upsilon \rightarrow \gamma a@Babar$ BABAR 1210.0287 (muons), 1210.5669 (taus), 1108.3549 (hadrons)

More on low-mass $\gamma\gamma$

FILIPPO SALA (DESY HAMBURG)

"10-100 GEV ALPS"

2ND FCC WORKSHOP

Low-mass analyses we found

Experiment	Process	Lumi	\sqrt{s}	low mass reach	ref.
LEPI	$e^+e^- \rightarrow Z \rightarrow \gamma a \rightarrow \gamma j j$	$12 \mathrm{~pb^{-1}}$	Z-pole	$10 {\rm GeV}$	[29]
LEPI	LEPI $e^+e^- \rightarrow Z \rightarrow \gamma a \rightarrow \gamma \gamma \gamma$		Z-pole	$3~{ m GeV}$	[30]
LEPII	$e^+e^- \rightarrow Z^*, \gamma^* \rightarrow \gamma a \rightarrow \gamma j j$	$9.7,10.1,47.7 \ { m pb}^{-1}$	$161,172,183~{ m GeV}$	$60~{ m GeV}$	[31]
LEPII	$e^+e^- \rightarrow Z^*, \gamma^* \rightarrow \gamma a \rightarrow \gamma \gamma \gamma$	$9.7,10.1,47.7 \ { m pb}^{-1}$	$161,\!172,\!183~{ m GeV}$	$60 { m GeV}$	[31, 32]
LEPII	$ e^+e^- \to Z^*, \gamma^* \to Za \to jj\gamma\gamma $	$9.7,10.1,47.7 \ { m pb}^{-1}$	$161,172,183~{ m GeV}$	$60~{ m GeV}$	[31]
D0/CDF	$p ar p o a o \gamma \gamma$	$7/8.2~{ m fb}^{-1}$	$1.96 { m ~TeV}$	$100 {\rm GeV}$	[33]
ATLAS	$pp ightarrow a ightarrow \gamma \gamma$	$20.3~{ m fb}^{-1}$	$8 { m TeV}$	$65~{ m GeV}$	[34]
CMS	$pp ightarrow a ightarrow \gamma \gamma$	$19.7 { m ~fb^{-1}}$	$8 { m TeV}$	$80 { m GeV}$	[35]
CMS	$pp ightarrow a ightarrow \gamma \gamma$	$19.7 { m ~fb^{-1}}$	$8 { m TeV}$	$150 { m GeV}$	[36]
CMS	$pp ightarrow a ightarrow \gamma \gamma$	$35.9 { m ~fb^{-1}}$	$13 { m ~TeV}$	$70 {\rm GeV}$	[37]
CMS	pp ightarrow a ightarrow jj	$18.8 { m ~fb^{-1}}$	$8 { m TeV}$	$500 { m ~GeV}$	[38]
ATLAS	pp ightarrow a ightarrow jj	$20.3 { m ~fb^{-1}}$	$8 { m TeV}$	$350~{ m GeV}$	[39]
CMS	pp ightarrow a ightarrow jj	$12.9 { m ~fb}^{-1}$	$13 { m ~TeV}$	$600 {\rm GeV}$	[40]
ATLAS	pp ightarrow a ightarrow jj	$3.4~{ m fb}^{-1}$	$13 { m ~TeV}$	$450~{ m GeV}$	[41]
CMS	pp ightarrow ja ightarrow jjj	$35.9 { m fb^{-1}}$	$13 { m TeV}$	$50 { m GeV}$	[42]
UA2	$p \bar{p} ightarrow a ightarrow \gamma \gamma$	13.2 pb^{-1}	$0.63~{ m TeV}$	$17.9~{\rm GeV}$	[43]
D0	$p ar p o a o \gamma \gamma$	$4.2 { m ~fb}^{-1}$	$1.96 { m ~TeV}$	$8.2~{ m GeV}$	[44]
CDF	$par{p} ightarrow a ightarrow \gamma \gamma$	$5.36 { m ~fb}^{-1}$	$1.96 { m ~TeV}$	$6.4 { m GeV}$	[45, 46]
ATLAS	$pp ightarrow a ightarrow \gamma \gamma$	$4.9 { m ~fb}^{-1}$	$7 { m ~TeV}$	$9.4~{ m GeV}$	[8]
CMS	$pp ightarrow a ightarrow \gamma \gamma$	$5.0 { m ~fb}^{-1}$	$7 { m ~TeV}$	$14.2 \mathrm{GeV}$	[10]
ATLAS	$pp ightarrow a ightarrow \gamma \gamma$	$20.2 { m ~fb^{-1}}$	$8 { m TeV}$	$13.9~{ m GeV}$	[9]

FILIPPO SALA (DESY HAMBURG)

Signal efficiencies and cross section

$$\epsilon_S(m_a) = \frac{\sigma_{\gamma\gamma}^{\text{MCcuts}}(m_a, s)}{C_s \, \sigma_{\gamma\gamma}^{\text{LO}}(m_a, s)}$$

 $\sigma_{\gamma\gamma}^{\rm MCcuts}$ Simulated w/Madgraph+Pythia+Delphes matched up to 2 extra jets

 $\sigma_{\gamma\gamma}^{\text{LO}}$ reproduces up to a constant factor C_s the shape of $\sigma_{\gamma\gamma}^{\text{MCtot}}$ for $m_{\gamma\gamma} \gtrsim 60$ GeV (i.e. sufficiently far from the sum of the minimal detector p_T cuts on the photons). A constant factor $C_s \equiv \sigma_{\gamma\gamma}^{\text{MCtot}}(s)/\sigma_{\gamma\gamma}^{\text{LO}}(s)$ is hence included in Eq. (5) and we obtain $C_{7\text{TeV}} \simeq C_{8\text{TeV}} \simeq 0.85$ while $C_{2\text{TeV}} \simeq 1$ at the Tevatron center of mass energy. The

$$\sigma_{\gamma\gamma}^{\rm th}(m_a, s) = \frac{K_\sigma}{K_g} \cdot \sigma_{\gamma\gamma}^{\rm LO}(m_a, s) \,, \tag{A1}$$

where we work in the approximation $\Gamma_{\text{tot}} \simeq \Gamma_{gg}$ (which is excellent in the parameter space that we have studied), and where

$$\sigma_{\gamma\gamma}^{\rm LO}(m_a, s) = \frac{1}{m_a s} C_{gg}(m_a^2/s) \cdot \Gamma_{\gamma\gamma} , \qquad (A2)$$

$$C_{gg} = \frac{\pi^2}{8} \int_{m_a^2/s}^1 \frac{dx}{x} f_g(x) f_g(\frac{m_a^2}{sx}) , \qquad (A3)$$

where $f_g(x)$ is the gluon PDF from the MSTW2008nnlo68 set [58], where we fix the pdf scale $q = m_a$. We work with

$$K_{\sigma} = 3.7$$
 from ggHiggs v3.5
Bonvini et al. 2013-2016

$$K_g = 2.1$$

m_a in GeV	10	20	30	40	50	60	70	80	90	100	110	120
ϵ_S for $\sigma_{7 \text{TeV}}$ ATLAS [8]	0	0.008	0.022	0.040	0.137	0.293	0.409	0.465	0.486	0.533	0.619	0.637
ϵ_S for $\sigma_{7\text{TeV}}$ CMS [10]	0	0.002	0.010	0.020	0.030	0.058	0.156	0.319	0.424	0.499	0.532	0.570
ϵ_S for $\sigma_{8 \text{TeV}}$ ATLAS [9]	0	0.0007	0.008	0.014	0.024	0.037	0.071	0.233	0.347	0.419	0.452	0.484
ϵ_S for $\sigma_{2\text{TeV}}$ CDF [45, 46]	0.001	0.007	0.026	0.143	0.212	0.241	0.276	0.275	0.283	0.3	0.319	0.327
ϵ_S for $\sigma_{2\text{TeV}}$ D0 [44]	0	0.002	0.008	0.018	0.114	0.169	0.208	0.21	0.217	0.234	0.244	0.252

FILIPPO SALA (DESY HAMBURG)

"10-100 GEV ALPS"

2ND FCC WORKSHOP

Validation

FILIPPO SALA (DESY HAMBURG)

Validation

Interplay of LHC and Tevatron

FILIPPO SALA (DESY HAMBURG)

2ND FCC WORKSHOP