Colored Dark Sectors at (HL-)LHC and FCC

Sonia El Hedri with A. Kaminska, M. de Vries, J. Zurita

2nd FCC Workshop

January 18, 2018

arXiv:1703.00452

arXiv:1612.02825

Introduction: Thermal Dark Matter

- How to explain the Dark Matter relic density?
- Assume thermal equilibrium DM DM \leftrightarrow SM SM
- *m*_{DM} and the DM-SM coupling determine the relic density
- ► Heavier DM mass ⇒ Larger annihilation rate

How heavy can the Dark Matter be in generic models?

Constraining thermal Dark Matter

▶ First step: DM \leftrightarrow SM exchange through self-annihilation ⇒ EFT/Simplified Models: SM + DM (+ Mediator) Cirelli, Fornengo, Strumia [2005], Abdallah et al. [2015], ...

- Very tight constraints, $m_{DM} \lesssim$ a few TeV!
- Major loophole: new particle X, close in mass to and in thermal equilibrium with the DM
 - \Rightarrow Additional processes to deplete the Dark Matter!
- ▶ How far up can co-annihilation push the Dark Matter mass?

Constraining thermal Dark Matter

▶ First step: DM \leftrightarrow SM exchange through self-annihilation ⇒ EFT/Simplified Models: SM + DM (+ Mediator) Cirelli, Fornengo, Strumia [2005], Abdallah et al. [2015], ...

- Very tight constraints, $m_{DM} \lesssim$ a few TeV!
- Major loophole: new particle X, close in mass to and in thermal equilibrium with the DM

 \Rightarrow Additional processes to deplete the Dark Matter!

How far up can co-annihilation push the Dark Matter mass?

X can be colored or charged \Rightarrow huge number of simplified models

X can be colored or charged \Rightarrow huge number of simplified models

What happens if X is charged under SU(3)?

 \blacktriangleright X X \rightarrow SM SM is dominated by the strong interaction

X can be colored or charged \Rightarrow huge number of simplified models

- \blacktriangleright X X \rightarrow SM SM is dominated by the strong interaction
- X X annihilation dominates over DM DM annihilation

X can be colored or charged \Rightarrow huge number of simplified models

- \blacktriangleright X X \rightarrow SM SM is dominated by the strong interaction
- X X annihilation dominates over DM DM annihilation
- \blacktriangleright If no new strong gauge group or SUSY, DM X \rightarrow SM1 SM2 is subdominant

X can be colored or charged \Rightarrow huge number of simplified models

- \blacktriangleright X X \rightarrow SM SM is dominated by the strong interaction
- X X annihilation dominates over DM DM annihilation
- \blacktriangleright If no new strong gauge group or SUSY, DM X \rightarrow SM1 SM2 is subdominant
- The relic density and collider bounds on strongly coupled coannihilation are model-independent!

The models

- ▶ Dark Sector: X and DM, protected by a \mathbb{Z}_2 symmetry
- $SU(2) \times U(1)$ effects neglected \Rightarrow DM is a SM singlet
- X is a triplet, sextet or octet of SU(3)
- X and DM are scalars, vectors or fermions
- For this talk...keep the spin fixed, vary the color:

$$DM_F + X_{F3}$$
 $DM_F + X_{F6}$ $DM_F + X_{F8}$

- Only interaction(s): XXg (XXgg)
- Not a viable theory of Dark Matter yet...

The DM-X interaction

- Necessary for X decay and chemical/thermal equilibrium
- Negligible for (co)annihilation and collider studies
 Use effective operator!

$$\mathcal{L} \propto \frac{C_{ijk}}{\Lambda^n} \mathrm{DM} \, \mathrm{X}_i \, \mathrm{SM}_{1j} \, \mathrm{SM}_{2k}$$

- Introduced for models with scalar and fermion X
- \blacktriangleright Mediator out of the reach of the LHC/FCC \Rightarrow $\Lambda = 10/50$ TeV
- ► SM₁ and SM₂ chosen to be quarks or gluons ⇒ Weakest possible collider bounds (soft jets)

$$\mathcal{L} = \mathcal{L}_{\mathsf{DM}} + \mathcal{L}_{\mathsf{X}} + \mathcal{L}_{\mathsf{DM}+\mathsf{SM}}$$

Constraints

"Model-independent" constraints

- ► Relic density requirement Annihilation through XX→ qq̄, gg
- LHC/FCC searches
 Pair-production of X

Constraints on the $\mathsf{DM}\,\mathsf{X}\,\mathsf{SM}_1\,\mathsf{SM}_2$ interaction

X decay rate

Avoid long-lived particle searches at colliders

Chemical/Thermal equilibrium
 Ensure conversion of DM into X before freeze-out

Lifetime – LHC

- ► X decay rate only depends on m_{DM} and $\Delta = \frac{m_{\text{X}} m_{\text{DM}}}{m_{\text{DM}}}$
- Long-lived X strongly constrained by LHC R-hadron searches
- Exclude (m_{DM}, Δ) for which at least one particle travels through the beam pipe d_{beam} ~ 2.5 cm at a given luminosity
- ► Constant upper bound on the mass splitting, $m_{\rm X} - m_{\rm DM} \gtrsim 20$ GeV for ${\rm DM_F} - {\rm X_{F6}}, {\rm X_{F8}}$ at 3 ab⁻¹

Lifetime - FCC-hh

- ► X decay rate only depends on m_{DM} and $\Delta = \frac{m_{\text{X}} m_{\text{DM}}}{m_{\text{DM}}}$
- ► Large boosts at FCC-hh ⇒ significant improvement of the reach of the R-hadron searches
- Exclude (m_{DM}, Δ) for which at least one particle travels through the beam pipe d_{beam} ~ 2.5 cm at a given luminosity
- ▶ Upper bound on the mass splitting, m_X m_{DM} from 50 to 150 GeV for X_{F8} at 3 ab⁻¹

Thermal equilibrium

- $\Gamma(DM \leftrightarrow X)$ must be larger than the Hubble rate at freeze-out
- Weaker than the X lifetime constraints for most of our models
- \blacktriangleright Non-trivial constraints at large Δ for loop-suppressed operators, such as in DM_S-X_{F3}

Relic density

• Dominated by $X\overline{X}
ightarrow q ar{q}, gg$ annihilation cross sections

• Depends only on $m_{\rm DM}$ and $\Delta = \frac{m_{\rm X} - m_{\rm DM}}{m_{\rm DM}}$

What about non-perturbative effects?

Sommerfeld effect and bound state formation

- Long-range interactions caused by gluon exchange
- Strongest effects at low velocity Coulomb interaction between initial states

Sommerfeld effect

- Analytical solutions for LO partial-waves (L, S, Color) De Simone et al. [arXiv:1402.6287], Cassel [arXiv:0903.5307], Iengo [arXiv:0902.0688]
- Extension: include subleading order partial waves

Bound state formation and decay

- Considered only s-wave color singlet bound states. Follow the procedure described in Liew, Luo [arXiv:1611.08133]
- Alternate strategy in Mitridate et al. [arXiv:1702.01141]

Sommerfeld effect and bound state formation

- Long-range interactions caused by gluon exchange
- Strongest effects at low velocity Coulomb interaction between initial states

Sommerfeld effect

- Analytical solutions for LO partial-waves (L, S, Color) De Simone et al. [arXiv:1402.6287], Cassel [arXiv:0903.5307], Iengo [arXiv:0902.0688]
- Extension: include subleading order partial waves

Bound state formation and decay

- Considered only s-wave color singlet bound states. Follow the procedure described in Liew, Luo [arXiv:1611.08133]
- Alternate strategy in Mitridate et al. [arXiv:1702.01141]

Sommerfeld effect and bound state formation

- Long-range interactions caused by gluon exchange
- Strongest effects at low velocity Coulomb interaction between initial states

Sommerfeld effect

 Analytical solutions for LO partial-waves (L, S, Color) De Simone et al. [arXiv:1402.6287], Cassel [arXiv:0903.5307], Iengo [arXiv:0902.0688]

Extension: include subleading order partial waves

Bound state formation and decay

- Considered only s-wave color singlet bound states. Follow the procedure described in Liew, Luo [arXiv:1611.08133]
- ► Alternate strategy in Mitridate et al. [arXiv:1702.01141]

Results: $X_F - DM_F$

- Strong Sommerfeld corrections for most models
- Negligible non-perturbative effects for DM_F - X_{F3}
- Upper bound on the DM mass of up to 10 TeV!
- Lifetime of X $\Delta \gtrsim 0.5\%$

Lifetimes: $X_{F8} - DM_F$

- Strong boosts + large
 X_{F8} production rates
 ⇒ huge improvement
 compared to HL-LHC!
- Searches for LLPs will be crucial to understand coannihilating DM models at FCC
- Complementary work: reintroduce the mediator...

Collider Searches

- ▶ 1,2 hard jets + $\not\!\!\!E_T$ + soft jets
- *m*_X dependence through the production rate
- Weak ∆ dependence for multijet searches
- ► At low ∆: traditional monojet signature ATLAS 3.2 fb⁻¹ [arXiv:1604.07773], CMS 12.9 fb⁻¹ CMS-PAS-SUS16-06
 - Hard cuts on $\not \in_T$ and first jet p_T
 - Extra jets tolerated under certain conditions
- $\Delta > 2\%$: multijet searches..."monojet-like" channel ATLAS 13.3 fb⁻¹ ATLAS-CONF-2016-078, CMS 12.9 fb⁻¹ CMS-PAS-SUS16-014
 - Hard cuts on $\not \in_T$ and first jet p_T
 - Mild cuts up to the 4th extra jet

Results – (HL-)LHC

▶ From current to 3000 fb⁻¹ with *no systematics*

- With current systematics, no dependence in the luminosity
- Optimal limits around 1 TeV Very weak dependence in Δ

Combined constraints (LHC) – $\rm X_{F8} - \rm DM_{F}$

- \blacktriangleright Current constraints $\Delta \lesssim 10\%$
- Optimal constraints $\Delta \lesssim 8\%$
- Upper bound around
 7 TeV from relic
- The LHC mass reach is far too low...what happens at higher CM energy?

Combined constraints at FCC-hh – $\rm X_{F8} - \rm DM_{F}$

- Use Snowmass search for compressed gluinos
 Cohen et al, [arXiv:1311.6480]
- FCC-hh could probe the full parameter space of colored dark sector models!
- "Very compressed region" $\Delta \lesssim 0.5\%$: excellent motivation for LLP searches even if the mediator is resolved...

Conclusion

- Coannihilation with a strongly interacting particle is the simplest mechanism to loosen the bounds on thermal Dark Matter models
- ► Generically, self-annihilation of X with strong couplings will drive the Dark Matter depletion ⇒ model-independent bounds can be derived!
- Upper bounds on the DM mass pushed from a few TeV up to more than 10TeV
- \blacktriangleright The LHC can probe all the way down to $\Delta \sim 10\%$ for all models
- FCC-hh can cover all the remaining region
- Searches for long-lived particles are complementary to the jets + ∉_T searches and will be crucial in covering the high mass/low Δ region

Combined constraints – $\rm X_{F3}$ – $\rm DM_{F}$

- Current constraints $\Delta \lesssim 8\%$
- \blacktriangleright Optimistic constraints $\Delta \lesssim 4\%$
- Upper bound at 2 TeV from X lifetime
- The LHC selects a "wedge" in the parameter space

The DM X SM_1 SM_2 interaction

Choose the lowest possible dimensionality

$$\begin{split} \mathcal{L}_{\mathrm{DM}_{\mathrm{F}}+\mathrm{X}_{\mathrm{F3}}} &= \frac{1}{\Lambda^{2}} \epsilon_{kij} \left(\bar{\psi}_{k} \psi_{\mathrm{DM}} \right) \left(\bar{d}_{R,i} u_{R,j}^{\mathsf{C}} \right) \\ \mathcal{L}_{\mathrm{DM}_{\mathrm{S}}+\mathrm{X}_{\mathrm{C3}}} &= \frac{1}{\Lambda} \epsilon_{kij} \left(S_{\mathrm{DM}} S_{k} \right) \left(\bar{d}_{R,i} u_{R,j}^{\mathsf{C}} \right) \\ \mathcal{L}_{\mathrm{DM}_{\mathrm{S}}+\mathrm{X}_{\mathrm{F3}}} &= \frac{1}{16\pi^{2}\Lambda^{2}} T_{ij}^{\mathsf{a}} S_{\mathrm{DM}} \left(\bar{d}_{R,i} \sigma^{\mu\nu} \psi_{j} \right) G_{\mu\nu}^{\mathsf{a}} \end{split}$$

- Operators involving gluons are loop-suppressed
 Choose quarks over gluons whenever possible
- \blacktriangleright Most suppressed operator: $DM_{\rm S}{+}X_{\rm F3}$ (loop factor + dimension 6)

$$\mathcal{L} = \mathcal{L}_{\mathsf{DM}} + \mathcal{L}_{\mathsf{X}} + \mathcal{L}_{\mathsf{DM}+\mathsf{SM}}$$

Results: $X_3 - DM_S$

- *m*_{DM} ≤ a few TeV for triplet models
- Color stronger than spin due to non-perturbative effects
- Non-trivial lifetime and equilibrium constraints for loop-suppressed effective operators

