Long-Lived Sterile Neutrino Dark Sectors at the FCC

Stefan Antusch

University of Basel Department of Physics

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

2nd FCC Physics Workshop, 2018, CERN January 19, 2018

A sterile neutrino dark sector can be an answer to one of the big open questions in BSM physics: What is the origin of the observed neutrinos masses?

Main topic of my talk: When the heavy (mainly "sterile") neutrinos have masses $M \lesssim m_W$, they can be long-lived and probed with great precision at the FCC via displaced vertex searches!

A sterile neutrino "dark sector" – a missing piece of the Standard Model?

There are no rightchiral neutrino states (v_{Ri}) in the Standard Model

 \rightarrow v_{Ri} would be completely neutral under all SM symmetries (neutral leptons \leftrightarrow RH neutrinos ↔ sterile neutrinos)

Adding v_{Ri} leads to the following extra terms in the Lagrangian density:

$$
\mathscr{L} = \mathscr{L}_{\rm SM} - \frac{1}{2} \overline{\nu_R^I} M_{IJ}^N \nu_{\rm R}^{cJ} - (Y_N)_{I\alpha} \overline{\nu_R^I} \widetilde{\phi}^\dagger L^\alpha + {\rm H.c.}
$$

M: sterile v mass matrix Y_N : neutrino Yukawa matrix (Dirac mass terms)

Light neutrino masses via the "seesaw mechanism"

What do the measured light neutrino parameters tell us about the sterile neutrino parameters M, Y_v?

Getting started: 1 v_R , 1 v_L

$$
\Rightarrow \qquad \qquad W_{\nu} = \frac{1}{2} \frac{v_{\text{EW}} 2}{M_R}
$$

 $→$ **Knowledge of m_v implies relation between y_v and M_R** "Naive" seesaw relation: $y_v^2 < O(10^{-13})$ (M / 100 GeV)

Example 1: 2 ν_R, 2 ν_L

Example of a small perturbation

$$
Y_{V} = \begin{pmatrix} \sigma(y_{v}) & 0 \\ 0 & \sigma(y_{v}) \end{pmatrix}, M = \begin{pmatrix} M_{R} & 0 \\ 0 & M_{\tau} \end{pmatrix}
$$

\n
$$
\Rightarrow W_{Y_{\lambda}} = \frac{v_{EW} \sigma(y_{v}^{2})}{M_{R}} (1 + \epsilon_{\overline{Q}_{i2}})
$$

 $→$ **Also in this example: Knowledge of m_{vi} implies relation between y_{vi} and M_R**

Stefan Antusch **Natusch Einester Community** of Basel & MPP Munich

Example 2: 2 ν_R, 2 ν_L

Similar: "inverse" seesaw, "linear" seesaw

See e.g.: D. Wyler, L. Wolfenstein ('83), R. N. Mohapatra, J. W. F. Valle ('86), M. Shaposhnikov (,07), J. Kersten, A. Y. Smirnov ('07), M. B. Gavela, T. Hambye, D. Hernandez, P. Hernandez ('09), M. Malinsky, J. C. Romao, J. W. F. Valle ('05), …

$$
Y_{\nu} = \begin{pmatrix} 0(y_{\nu}) & 0 \\ 0(y_{\nu}) & 0 \end{pmatrix}, M = \begin{pmatrix} 0 & M_R \\ M_R & \epsilon \end{pmatrix}
$$

\n
$$
\Rightarrow M_{\nu} = 0 + \epsilon \frac{v_{\epsilon \nu}^2 O(y_{\nu}^2)}{M_R^2}
$$
 Example of
\n
$$
M_R
$$

$→$ **In general: No "fixed relation" between y_v and M_R, larger y_v possible!**

Example 2: 2 v_R, 2 v_L

Similar: "inverse" seesaw, "linear" seesaw

$$
Y_{\nu} = \begin{pmatrix} 0(y_{\nu}) & 0 \\ 0(y_{\nu}) & 0 \end{pmatrix}, M = \begin{pmatrix} 0 & M_{R} \\ M_{R} & \epsilon \end{pmatrix}
$$

\n
$$
\Rightarrow M_{\nu} = 0 + \epsilon \frac{v_{EW} O(y_{\nu}^{2})}{M_{R}^{2}}
$$

Example for "protective" symmetry:

Note: Can be realized by symmetries, e.g. by an (approximate) "lepton number"-like symmetry

Stefan Antusch **Stefan Antusch University of Basel & MPP** Munich

Possible values of M_R and y_v

Not considering experimental constraints

Stefan Antusch **Natusch** 10 and 10 University of Basel & MPP Munich

"Landscape" of sterile neutrino models

Examples, schematic

Not considering experimental constraints

Stefan Antusch University of Basel & MPP Munich ¹¹

A benchmark model for EW scale sterile ν: SPSS (Symmetry Protected Seesaw Scenario)

Consider 2+n sterile neutrinos (plus the three active) \rightarrow with M and Y_y for two of the steriles as in example 2 due to some generic "lepton number"-like symmetry)

$$
Y_{v} = \begin{pmatrix} y_{k} & 0 \\ y_{v_{k}} & 0 \\ y_{v_{k}} & 0 \end{pmatrix}, M = \begin{pmatrix} 0 & M_{R} & 0 \\ M_{R} & 0 & \vdots \\ \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots &
$$

+ O(ε) perturbations to generate the light neutrino masss (which we can often neglect for collider studies)

Similar: "inverse" seesaw, "linear" seesaw

For details on the SPSS, see: S.A., O. Fischer (arXiv:1502.05915) Additional sterile neutrinos can exist, but have no effects at colliders (which can be realised easily, e.g. by giving lepton number = 0 to them).

A benchmark model for EW scale sterile ν: **SPSS (Symmetry Protection)**

Comment 1: In the symmetry limit, the two heavy neutrinos have both the same mass M. O(ε) perturbations induce small **mass splitting ΔM!**

Consider 2+n sterile neutrinos (plus the three the steriles as in example 2 due to some generic $\frac{1}{2}$ amber"-like symmetry)

 $Y_v = \begin{pmatrix} y_{v} & 0 \\ y_{v} & 0 \\ y_{v} & 0 \end{pmatrix}, M = \begin{pmatrix} M_R \\ M_R \end{pmatrix}$

 $+ O(\epsilon)$ perturbations to generate the light neutrino masss (which we can often neglect for collider studies)

Similar: "inverse" seesaw, "linear" seesaw

For details on the SPSS, see: S.A., O. Fischer (arXiv:1502.05915) Additional sterile neutrinos can exist, but have no effects at colliders (which can be realised easily, e.g. by giving lepton number = 0 to them).

A benchmark model **SPSS (Symmetry Prot**

Consider $2+n$ sterile neutrinos (plus the the steriles as in example 2 due to som

Comment 2: Since in the SPSS we allow for additional sterile neutrinos, M and y_α (α=e,μ,τ) are indeed free parameters (not constrained by m_v). In specific models there are correlations among the yα. Strategy of the SPSS: study how to measure the yα independently, in order to test (not a priori assume) such correlations!

+ O(ε) perturbations to generate the light neutrino masss (which we can often neglect for

collider studies)

Similar: "inverse" seesaw, "linear" seesaw

For details on the SPSS, see: S.A., O. Fischer (arXiv:1502.05915) Additional sterile neutrinos can exist, but have no effects at colliders (which can be realised easily, e.g. by giving lepton number = 0 to them).

14

What are the observable effects of EW scale heavy neutrinos?

(This part we neglect the $O(\epsilon)$ effects; will be discussed later ...)

As example: SPSS (Symmetry Protected Seesaw Scenario)

In the symmetry limit:

$$
\mathscr{L}_{N} = -\overline{N_{R}}^{1}M N_{R}^{c^{2}} - y_{\alpha}\overline{N_{R}}^{1}\widetilde{\phi}^{\dagger}L^{\alpha} + \text{H.c.}
$$

+ ... (terms from additional sterile vs)

As example: SPSS (Symmetry Protected Seesaw Scenario)

In the symmetry limit:

$$
\mathscr{L}_{N} = -\overline{N_{R}}^{1}M N_{R}^{c^{2}} - y_{\alpha}\overline{N_{R}}^{1}\widetilde{\phi}^{\dagger}L^{\alpha} + \text{H.c.}
$$

+ ... (terms from additional sterile vs)

4 Parameters: M, y_α, (α=e,μ,τ)

As example: SPSS (Symmetry Protected Seesaw Scenario)

In the symmetry limit:

$$
\mathscr{L}_{N} = -\overline{N_{R}}^{1}M \overline{N_{R}}^{2} - y_{\alpha} \overline{N_{R}}^{1} \widetilde{\phi}^{\dagger} L^{\alpha} + \text{H.c.}
$$

+ ... (terms from additional sterile vs)

After EW symmetry breaking, we diagonalize the 5x5 mass matrix:

 $\left[\left[\tilde{n}_j = \left(\nu_1, \nu_2, \nu_3, N_4, N_5 \right) \right]_j^T = U_{j \alpha}^\dagger n_\alpha \right]$ "**light**" and "**heavy**" Mass eigenstates: neutrinos "**active**" and "**sterile**" with: $n = (\nu_{e_L}, \nu_{\mu_L}, \nu_{\tau_L}, (N_R^1)^c, (N_R^2)^c)^\top$, where \sim neutrinos

This defines the 5x5 mixing matrix U.

We consider the SPSS: Instead of the y_α, we use *the active sterile mixing angles* $θ_{\alpha}$ *, (α=e,μ,τ)*

In the symmetry limit: $\mathscr{L}_N = -\overline{N_R}^1 M \overline{N_R}^2 - y_\alpha \overline{N_R}^1 \widetilde{\phi}^\dagger L^\alpha + \text{H.c.}$ + ... (terms from additional sterile νs)

 \blacktriangleright The leptonic mixing matrix to leading order in the active-sterile mixing parameters:

$$
U_{\text{s,s}} = \begin{pmatrix} \mathcal{N}_{1e} & \mathcal{N}_{1\mu} & \mathcal{N}_{1\tau} & -\frac{\text{i}}{\sqrt{2}}\theta_e & \frac{1}{\sqrt{2}}\theta_e \\ \mathcal{N}_{2e} & \mathcal{N}_{2\mu} & \mathcal{N}_{2\tau} & -\frac{\text{i}}{\sqrt{2}}\theta_{\mu} & \frac{1}{\sqrt{2}}\theta_{\mu} \\ \mathcal{N}_{3e} & \mathcal{N}_{3\mu} & \mathcal{N}_{3\tau} & -\frac{\text{i}}{\sqrt{2}}\theta_{\tau} & \frac{1}{\sqrt{2}}\theta_{\tau} \\ 0 & 0 & 0 & \frac{\text{i}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\theta_e^* & -\theta_{\mu}^* & -\theta_{\tau}^* & \frac{-\text{i}}{\sqrt{2}}(1-\frac{1}{2}\theta^2) & \frac{1}{\sqrt{2}}(1-\frac{1}{2}\theta^2) \end{pmatrix}
$$

Parameters: M, y_α, (α=e,μ,τ) *or equivalently* **M, θ_α, (α=e,μ,τ)**

Active-sterile neutrino mixing parameters: $\theta_{\alpha} = \frac{y_{\alpha}}{\sqrt{2}} \frac{v_{\text{EW}}}{M}, \qquad \alpha = e, \mu, \tau$

Stefan Antusch University of Basel & MPP Munich

Observable effects of the sterile neutrinos: M >> ΛEW

Main effect for M $>> \Lambda_{\text{EW}}$: "Leptonic non-unitary"

 $→$ *See talk by O. Fischer*

(Effective) mixing matrix of light neutrinos is a submatrix of a larger unitary mixing matrix (mixing with additional heavy particles)

> Langacker, London ('88); S.A., Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon ('06), … Gives rise to NSIs at source, detector & with matter: see e.g. S.A., Baumann, Fernandez-Martinez (arXiv:0807.1003) Global constraints on $\varepsilon_{\alpha\beta}$: S.A., Fischer (arXiv:1407.6607)

$$
U = \begin{pmatrix} \mathcal{N}_{1e} & \mathcal{N}_{1\mu} & \mathcal{N}_{1\tau} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_e & \frac{1}{\sqrt{2}}\theta_e \\ \mathcal{N}_{2e} & \mathcal{N}_{2\mu} & \mathcal{N}_{2\tau} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_\mu & \frac{1}{\sqrt{2}}\theta_\mu \\ \mathcal{N}_{3e} & \mathcal{N}_{3\mu} & \mathcal{N}_{3\tau} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_\tau & \frac{1}{\sqrt{2}}\theta_\tau \\ 0 & 0 & 0 & \frac{\mathrm{i}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\theta_e^* & -\theta_\mu^* & -\theta_\tau^* & \frac{-\mathrm{i}}{\sqrt{2}}(1-\frac{1}{2}\theta^2) & \frac{1}{\sqrt{2}}(1-\frac{1}{2}\theta^2) \end{pmatrix}
$$

Non-unitarity parameters:

$$
(NN^{\dagger})_{\alpha\beta} = (1_{\alpha\beta} + \boxed{\epsilon_{\alpha\beta}}) \stackrel{\Rightarrow}{\approx} \frac{U_{PMNS}}{\text{is non-unitary}} \stackrel{\Rightarrow}{\text{effects!}} \text{.}
$$

Stefan Antusch **Natusch Contract Contract**

Observable effects of the sterile neutrinos: Μ ≅ Λ_{EW}

In addition for M \cong Λ_{EW} : Effects from on-shell heavy neutrinos

Sterile neutrinos mix with the active ones \rightarrow the heavy neutrinos (= mass eigenstates) participate in weak interactions!

$$
U = \begin{pmatrix} \mathcal{N}_{1e} & \mathcal{N}_{1\mu} & \mathcal{N}_{1\tau} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_e & \frac{1}{\sqrt{2}}\theta_e \\ \mathcal{N}_{2e} & \mathcal{N}_{2\mu} & \mathcal{N}_{2\tau} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_\mu & \frac{1}{\sqrt{2}}\theta_\mu \\ \mathcal{N}_{3e} & \mathcal{N}_{3\mu} & \mathcal{N}_{3\tau} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_\tau & \frac{1}{\sqrt{2}}\theta_\tau \\ 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\theta_e^* & -\theta_\mu^* & -\theta_\tau^* & \frac{-\mathrm{i}}{\sqrt{2}}(1-\frac{1}{2}\theta^2) & \frac{1}{\sqrt{2}}(1-\frac{1}{2}\theta^2) \end{pmatrix}
$$

 \Rightarrow heavy neutrinos can get produced also in weak interaction processes!

Heavy neutrino interactions

When W bosons are involved, there is a possible sensitivity to the flavour-dependent θα

 $\boldsymbol{\nu}$ $(\theta_e, \theta_\mu, \theta_\tau)$ \mathbf{Z}

Stefan Antusch **Exercise 22 University of Basel & MPP Munich** 22

Lifetime and decay length of heavy neutrinos: For M < m_W, they can be long-lived!

Note: Decay length in the laboratory frame is:

cf. S. A., E. Cazzato, O. Fischer (arXiv:1709.03797)

Stefan Antusch **Einester Controller and Controller Contro**

Very sensitive searches possible for M<mw via "displaced vertices"

E.g. at an e⁺e⁻ collider:

Present bounds (& estim. future sensitivities) from displaced vertex searches at LHCb

VErtex LOcator

Remark: Forecasts for the sensitivities at Atlas and CMS for the HL-LHC phase are comparable, cf. E.g.: E. Izaguirre, B. Shuve (2015)

LHCb analysis exists for LHC run 1 data:

LHCb Collaboration, Eur. Phys. J. C 77 (2017) no.4, 224 arXiv:1612.00945

The results can be translated into bounds on $|\theta|^2$ (here for $\theta_e = \theta_\tau = 0$):

S. A., E. Cazzato, O. Fischer; arXiv:1706.05990

Stefan Antusch **Exercise Stefan Antusch Contract Co**

Sensitivity forecasts for the FCC-ee, hh and eh

General: Number of signal events from displaced vertices

Parameter sensitivities of the different detector regions

Estimated/"first look" sensitivities via displaced vertices at FCC-ee, -hh and -eh

Probing leptogenesis – and precision for the flavoured active-sterile mixing angles

Probing Leptogenesis

With: $U^2 = |\theta|^2$ and, for example, $U_{\mu}^2 = |\theta_{\mu}|^2$ **(**NO = normal light neutrino mass ordering)

Precision for U_{μ}^2 / U^2 **(Example: M = 30 GeV)**

Estimates from semi-leptonic heavy neutrino decays $N \rightarrow \mu$ ji, measurements also possible for the other flavours e and $\tau!$

S.A., E. Cazzato, M. Drewes, O. Fischer, B. Garbrecht, D. Gueter, J. Klaric (arXiv:1407.6607)

Stefan Antusch **Einester Controller and Controller Controller and Controller Stefan Antusch Controller Munich**

Probing lower M: Extra distant detector (e.g. MATHUSLA-type) with FCC-hh

MATHUSLA Theory White Paper, to appear 2018

è *See also talk by K. Deshpande*

Table 1: Possible detector geometries for MATHUSLA at FCC-The origin of the coordinate system is the IP, with hh $(z, y, x) = (0, 0, 0)$, with the z axis pointing along the direction of the beam, and y in the vertical and x in the horizontal direction. The "forward" detector variant is assumed to be symmetric in the angle ϕ (which rotates in the x-y plane) and with the fiducial detector volume starting outside of an inner

Comparison: Estimated sensitivities at future ee, pp and ep colliders

Can we observe Lepton Number violation (LNV) at colliders?

\rightarrow A comment and a recent result

Signatures for lepton num. **from sterile neutri**

Different collid different production channels:

Lepton-number violating (LNV) signatures possible (with no SM background at parton level) but expected to be suppressed by the protective "lepton number"-like symmetry!

Stefan Antusch **Einester Controller and Controller Controller Stefan Antusch Controller Controller Stefan Antusch**

As shown earlier: Lifetime and decay length of heavy neutrinos

Note: Decay length in the laboratory frame is: $c\tau$

 $\sqrt{\gamma^2 - 1}$

cf. S. A., E. Cazzato, O. Fischer (arXiv:1709.03797)

Stefan Antusch **Einester Controller and Controller Controller and Controller Stefan Antusch Controller Munich**

Recent result: Heavy neutrino-antineutrino oscillations could be resolvable

Example: Linear seesaw (inverse mass ordering)

(using the prediction for ΔM in the minimal linear seesaw model for inverse neutrino mass ordering)

Summary

- \triangleright A sterile neutrino dark sector is a well-motivated extension of the SM towards explaining the origin of the masses of the light neutrinos.
- \triangleright With protective "lepton number"-like symmetry, "large y_v" and EW scale masses of the sterile neutrinos are possible (& technically "natural")!
- \triangleright When the masses of the sterile neutrinos are around the EW scale (and in particular when they are $\leq m_W$), the FCC experiments can have fantastic discovery prospects for a sterile neutrino dark sector via displaced vertex searches.

Thanks for your attention!

Extra Slides

Predictions of specific low scale seesaw models: Examples

A benchmark model for EW scale sterile ν: SPSS (Symmetry Protected Seesaw Scenario)

Consider 2+n sterile neutrinos (plus the three active) \rightarrow with M and Y_y for two of the steriles as in example 2 due to some generic "lepton number"-like symmetry)

41

 $Y_v = \begin{pmatrix} y_{ve} & 0 \\ y_{vy} & 0 \\ y_{vz} & 0 \end{pmatrix}$

2 sterile neutrinos: y_α/y_β given in tems For example: Low scale seesaw with of the PMNS parameters. E.g. for NO:

$$
Y_N^T \simeq y \begin{pmatrix} e^{i\delta} s_{13} + e^{-i\alpha} s_{12} r^{1/4} \\ s_{23} \left(1 - \frac{\sqrt{r}}{2} \right) + e^{-i\alpha} r^{1/4} c_{12} c_{23} \\ c_{23} \left(1 - \frac{\sqrt{r}}{2} \right) - e^{-i\alpha} r^{1/4} c_{12} s_{23} \end{pmatrix}
$$

Cf.: Gavela, Hambye, D. Hernandez, P. Hernandez ('09)

+ O(ε) perturbations nerate the u trino

> we can **eglect for** studies)

Further predictions in specific types of low scale seesaw mechanisms: ΔM of heavy ν's

**) Basis: (ν_L^α, N₁, N₂)* Perturbations of the mass matrix: $M_{\nu} =$

 ε_{lin} linear seesaw

$$
\begin{pmatrix}\n0 & m_D & \varepsilon_{\text{lin}} \\
(m_D)^T & \tilde{\varepsilon} & M \\
\varepsilon_{\text{lin}}^T & M & \varepsilon_{\text{in}}\n\end{pmatrix}
$$

 Ω

 ε_{inv} inverse seesaw

($\tilde{\varepsilon}$ additional parameter, no contribution to light neutrino masses)

Perturbations $O(\epsilon)$ generate the light neutrino masses and. E.g. in the case of the minimal linear seesaw model, we obtain lead to a **prediction for the heavy neutrino mass splitting ΔM** (**in terms of the light neutrino mass splittings**):

$$
\Delta M^{\text{lin,NO}} = \frac{2\rho_{\text{NO}}}{1 - \rho_{\text{NO}}} \sqrt{\Delta m_{21}^2} = 0.0416 \text{ eV} \qquad \rho_{\text{NO}} = \frac{\sqrt{r+1} - \sqrt{r}}{\sqrt{r} + \sqrt{r+1}} \text{ and } r = \frac{|\Delta m_{21}^2|}{|\Delta m_{32}^2|}
$$
\n
$$
\Delta M^{\text{lin,IO}} = \frac{2\rho_{\text{IO}}}{1 + \rho_{\text{IO}}} \sqrt{\Delta m_{23}^2} = 0.000753 \text{ eV} \qquad \rho_{\text{IO}} = \frac{\sqrt{r+1} - 1}{\sqrt{r+1} + 1} \text{ and } r = \frac{|\Delta m_{21}^2|}{|\Delta m_{13}^2|}
$$

Cf.: S.A., E. Cazzato, O. Fischer (arXiv:1709.03797) ... more about this later in my talk!

Stefan Antusch **Einester Controller and Munich** 42 **The University of Basel & MPP Munich**

Resolvable heavy neutrinoantineutrino oscillations at colliders: definitions and more information

Heavy neutrino-antineutrino oscillations at colliders

Definition: Heavy (anti)neutrino defined via production; superposition of mass eigenstates N_4 , N_5

antineutrino, $W^- \rightarrow \overline{N} \ell^$ neutrino, $W^+ \rightarrow N \ell^+$

$$
\overline{N} = 1/\sqrt{2}(iN_4 + N_5) N = 1/\sqrt{2}(-iN_4 + N_5)
$$

Consider, e.g., the <u>"dilepton-dijet" signature</u> at pp colliders, pp \rightarrow l_α l_β jj:

In the symmetry limit of the SPSS benchmark model, lepton number is exactly conserved \rightarrow only LNC processes!

$$
pp \to \ell_{\alpha}^{+} \ell_{\beta}^{-} jj \text{ (LNC)} \checkmark
$$

\n
$$
pp \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\pm} jj \text{ (LNV)} \times
$$

Heavy neutrino-antineutrino oscillations at colliders

However with the $O(\varepsilon)$ perturbations included to generate the light neutrino masses, a mass splitting ΔM between heavy neutrinos is generated which induces oscillations!

 $\overline{}$

Probability that a produced N oscillates into N (or vice versa) given by $|g(t)|^2$, with

$$
g_{-}(t) \simeq -ie^{-iMt}e^{-\frac{\Gamma}{2}t}\sin\left(\frac{\Delta M}{2}t\right)
$$

Such an oscillation induces LNV!

K Mass splitting ΔM predicted e.g. in minimal low scale linear seesaw models

Signature: Ratio of LNV/LNC final states oscillates as function of heavy neutrino lifetime (or of vertex displacement in the laboratory system)

$$
R_{\ell\ell}(t_1,t_2)=\frac{\int_{t_1}^{t_2}|g_-(t)|^2dt}{\int_{t_1}^{t_2}|g_+(t)|^2dt}=\frac{\#(\ell^+\ell^+)+\#(\ell^-\ell^-)}{\#(\ell^+\ell^-)}
$$

With:

Stefan Antusch **Einester Controller and Controller and Controller Antusch Controller Antusch Controller and AS**

2

t ◆

 $g_{+}(t) \simeq e^{-iMt}e^{-\frac{\Gamma}{2}t}\cos\left(\frac{\Delta M}{2}\right)$

Heavy neutrino-antineutrino oscillations at colliders can be resolvable

Example: Linear seesaw (inverse mass ordering)

(using the prediction for ΔM in the minimal linear seesaw model for inverse neutrino mass ordering)

S. A., E. Cazzato, O. Fischer

Even if these oscillations are not resolvable, induced LNV can be relevant (depends on θ2)

Plot from S. A., E. Cazzato, O. Fischer (arXiv:1709.03797)

See also: J. Gluza and T. Jelinski (2015), P. S. Bhupal Dev and R. N. Mohapatra (2015),

G. Anamiati, M. Hirsch and E. Nardi, JHEP 1610 (2016),A. Das, P. S. B. Dev and R. N. Mohapatra (2017)