$\nu_{\mu} \rightarrow \nu_{e}$ sterile analysis status

G. Sirri, M. Tenti & S. Zemskova

21 March 2017

1

Shape analysis	• Signal channels:
Syst. uncertainties	• $\nu_{\mu} \rightarrow \nu_{e}$
Matter effects (const. density)	$ \qquad \bullet \qquad \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
POI:	Background channels:
• $\sin^2 2\theta_{\mu e} = 4 U_{\mu 4} ^2 U_{e4} ^2$	$ \qquad \bullet \qquad \nu_e \rightarrow \nu_e$
• Δm_{41}^2	$ \qquad \bullet \qquad \overline{\nu}_e \rightarrow \overline{\nu}_e$
Nuisance parameters:	• Background (not osc):
$\theta_{12}, \theta_{13}, \theta_{23}, \theta_{34}, \delta_1, \delta_2, \delta_3$	• NC
Costants: Δm_{21}^2	• $\tau \rightarrow e$
Prior on Δm_{31}^2	

NB: θ_{ij} and δ_k are not physical observables. They depend on the model and parametrization. In particular, they are not the same ones of a $3-\nu$ model.

Ingredients

Normalization on the total number of events expected from v_e beam contamination in case of no oscillation ($N_{v_e}^{beam}$): $N_{v_e}^{beam} = 31.7$

Binning: {0, 10, 20, 30, 40, 50, 400} [GeV]

Background: {0.21, 0.57, 0.17, 0.08, 0.06, 0.11}

Likelihood:

$$L_{shape} = \prod_{i} [Pois(n_{i}, \lambda_{i}(1 + k_{i})) \times Gaus(k_{i}, 0, \sigma_{i})] \times Prior(\Delta m_{23}^{2})$$

$$\lambda_{i}(\theta) \quad \text{n. of expected events in bin i}$$

$$n. \text{ of observed events in bin i}$$

Test statistic: profile likelihood ratio $t_{\mu} = -2 \ln \lambda$

Sensitivity VS E_{cut}

Best sensitivity is obtained from energy distribution <u>without cut</u>

Exclusion

Conclusions

- Preliminary exclusion plot are ready
- They should be update according to the new numbers of bkg and normalization