

Update of hadron interaction analysis

H. Mizusawa, M. Okubo, J. Ohira, M. Hatakeyama,T. Fukuda, T. Matsuo, S. Nishimura, T. Suzuki,H. Ishida, H. Shibuya, S. Ogawa, et al.Toho University

Introduction

- Hadron interaction is one of the main background source of tau decay in OPERA.
- In previous study, we analyzed 2, 4, 10 GeV/c π⁻ interaction in OPERA ECC and compared with a FLUKA based MC simulation.
- We concluded the agreement between the experimental data has been confirmed at the 30% level.
- In 2012, we took a new data set for hadron interaction analysis to increase statistics and confirm the agreement with better precision.

Interaction search

- Beam tracks are followed down from the upstream in the ECC.
- We defined beam stop candidates as follows:

Beam stop candidate No track found in 3 consecutive films. (angle difference for connection < 20mrad)

• If the beam-stop candidate found, the last beam track and predicted position in a downstream film are visually inspected.

Interaction search

Interaction search status

Beam momentum	2 GeV/c	3 GeV/c	4 GeV/c	5 GeV/c	6 GeV/c
Number of reconstructed tracks	538 /4cm ²	899 /4cm ²	547 /4cm ²	864 /1cm ²	239 /1cm ²
Number of manual checked films	51 films	51 films	51 films	51 films	51 films
Number of found interactions	213 events	239 events	127 events	233 events	61 events

Interaction search has been finished in all momentum area.

Secondary particle search

- Each confirmed interaction is subject to the secondary particle track search.
- When a secondary particle candidate is found in at least 1 of the 3 downstream films from the vertex, we required the follow conditions:

Secondary particle multiplicity

6

Secondary particle emission angle

OPERA collaboration meeting on 22 March 2017

Measurement of secondary particle momentum

- The momenta of secondary tracks are estimated by measuring their multiple Coulomb scattering in the brick.
- We use the coordinate method because it is more accurate when a small multiple scattering signal is expected.

Momentum measurable tracks

At least 14 emulsion films are available for the position measurements.

$$\sigma_r = \sqrt{\frac{\sum \delta r_i^2}{n}} = \frac{1}{2\sqrt{3}} \frac{0.0136 \text{ GeV}/c}{pc\beta} x \sqrt{\frac{x}{X_0}} \left\{ 1 + 0.038 \ln(\frac{x}{X_0}) \right\}$$

Secondary particle p

Secondary particle p_{T}

10

 $p_{\rm T}$ vs. p plot

OPERA collaboration meeting on 22 March 2017

Statistics of kinematical analysis

Numbers of secondary tracks for which the momentum is measurable

Momentum	2	3	4	5	6	10	Analyzed events
Previous study	12	-	7	-	-	10	29
This study	66	80	31	45	12	-	~234 (~8.1x)

More than 8 times the previous data were obtained.

$p > 2 \text{ GeV/c}, p_T > 0.6 \text{ GeV/c}$ ("Golden analysis")

Upper limits are at 90% C.L.

Momentum [GeV/c]		Data		MC			
	Tracks <i>p</i> measurable	Tracks in selection	Fraction [%]	Tracks <i>p</i> measurable	Tracks in selection	Fraction [%]	
2	66	0	< 3.38	15393	151	$0.98^{+0.09}_{-0.07}$	
3	80	1	$1.25\substack{+2.76 \\ -0.68}$	11594	373	$3.22\substack{+0.17 \\ -0.16}$	
4	31	1	$3.23^{+6.71}_{-1.00}$	8747	555	$6.35_{-0.25}^{+0.27}$	
5	45	2	$4.44_{-1.44}^{+5.36}$	7142	623	8.72 $^{+0.35}_{-0.32}$	
6	12	0	< 16.25	6277	641	$10.21^{+0.39}_{-0.37}$	

p > 1 GeV/*c*, *p*_T > 0.15 GeV/*c* ("Minimum bias analysis")

Momentum [GeV/c]		Data		MC			
	Tracks <i>p</i> measurable	Tracks in selection	Fraction [%]	Tracks <i>p</i> measurable	Tracks in selection	Fraction [%]	
2	66	13	9. $1^{+4.8}_{-2.4}$	15393	3217	$16.2\substack{+0.3\\-0.3}$	
3	80	27	$26.3^{+5.5}_{-4.3}$	11594	5037	$35.4^{+0.4}_{-0.4}$	
4	31	14	$38.7^{+9.2}_{-7.8}$	8747	5343	$52.1\substack{+0.5\\-0.5}$	
5	45	22	$40.0^{+7.6}_{-6.7}$	7142	5042	$62.1^{+0.6}_{-0.6}$	
6	12	10	66. $7^{+10.3}_{-15.2}$	6277	4684	$67.3^{+0.6}_{-0.6}$	
			OPERA collabora	ation meeting on 22 Mar	h 2017	13	

Goodness of agreement between Data and MC

- The numbers of secondary particles in the selection domain are too few to evaluate the goodness of the agreement between the Data and the MC.
- We consider an alternative method to estimate the goodness of the agreement same as previous study.
- We select 1-prong hadron interaction events with θ_{kink} cut, which correspond to p_T cut.

 $p_T = p \cdot \sin\theta_{\text{kink}} \sim p \cdot \theta_{\text{kink}} > 0.6 \text{ GeV/} c \text{ or } 0.15 \text{ GeV/} c$

Goodness of agreement between Data and MC

$p > 2 \text{ GeV/c}, p_T > 0.6 \text{ GeV/c}$ ("Golden analysis")

· · · ·		-		-		
p [GeV/c]		2	3	4	5	6
$ heta_{ m kink}$ cut [mrad]		300	200	150	120	100
Tracks	Data	22	63	31	61	15
	MC (normalized)	22.6	51.3	32.5	56.5	13.8
$\delta_{ m sys}$ [%]		-2.8	+22.9	-4.7	+8.0	+9.0
$\delta_{ m stat}$ [%]		±21.3	±12.6	±18.0	±12.8	±25.8

$$\delta_{\rm sys} = \frac{N_{\rm Data} - N_{\rm MC}}{N_{\rm MC}}$$
$$\delta_{\rm stat} = \frac{1}{\sqrt{N_{\rm Data}}}$$

• Relative differences δ_{sys} are around 25% and can be understood within the statistical errors δ_{stat}

Goodness of agreement between Data and MC

$p > 1 \text{ GeV}/c, p_T > 0.15 \text{ GeV}/c$ ("Minimum bias analysis")

p [GeV/c]		2	3	4	5	6
$ heta_{ ext{kink}}$ cut [mrad]		75	50	37.5	30	25
Tracks	Data	40	93	43	83	23
	MC (normalized)	49.4	86.1	52.8	93.3	22.5
$\delta_{ m sys}$ [%]		-19.0	+8.1	-18.5	-11.0	+2.1
$\delta_{ m stat}$ [%]		±15.8	±10.4	±15.3	±11.0	±20.9

$$\delta_{\rm sys} = \frac{N_{\rm Data} - N_{\rm MC}}{N_{\rm MC}}$$
$$\delta_{\rm stat} = \frac{1}{\sqrt{N_{\rm Data}}}$$

• Relative differences δ_{sys} are around 20% and can be understood within the statistical errors δ_{stat}

Nuclear Fragments

- If a secondary particle has a value of $\beta < 0.7$, the particle is observed as a heavily ionizing track or a nuclear fragment.
- Nuclear fragments emitted from hadron interactions were also sought by a newly developed automatic emulsion scanning system with wider angular acceptance, FTS.

Nuclear fragments search

- We scanned upstream and downstream films of the 1 or 3 prong vertex.
- Since most of nuclear fragments are emitted at large angle, scanning was performed by using FTS at Toho University.
 - Angle acceptance : $|\tan \theta| < 3.0$
- Since nuclear fragments are expected to suffer from large multiple scattering, therefore, a loose condition was imposed.
 - IP < 100 μm + 0.01 × depth
- Confirmation of candidates by visual inspection.

Scanning status

• We finished large angle track scan of all hadron interactions.

Results (Multiplicity distribution)

Results (Emission angle distribution)

Results (Association probability)

- We obtained new beam momentum data of nuclear fragments.
- The MC data agree reasonably well with the experimental data.
 Toho University

Summary

Interaction & Secondary particle search

- We finished the analysis of interaction & secondary particle search for all hadron beam interaction.
- MC data agree roughly well with the experimental data.

Nuclear fragments search

- Except for 3 GeV/c, manual check of nuclear fragments candidate have been done.
- These results agree reasonably well.

Momentum measurement and agreement between Data and MC

- We started the measurement of secondary particle momenta.
- We obtained more than 8 times the previous data.
- Relative differences δ_{sys} are around 20% and can be understood within the statistical errors δ_{stat} .