Status of Event Display for Open Data Access

S.Dmitrievsky; JINR

OPERA Collaboration Meeting, 2017/03 /22

Task: To implement OPERA event display (two 2D-views of an event in ED + one simplified 3D-view of
microtracks near the vertex in ECC) as a GUI web-application.

The proposal of Andrey Ustyuzhanin (AU) from Yandex team was to write the new event display from
scratch in Python language using the Matplotlib plotting library. (In this case no existing C++ code from the
OpRelease could be used directly.)

As the first step AU provided me with his examples of drawing of an ECC brick info implemented as Jupyter
notebooks (interactive web-pages with input commands and the results of their executions displayed in the same
window of a browser). Then he suggested to use a set of extensions (dushboards layout, dashboards bundlers, and
dashboards server) for a notebook in order to convert it into a standalone web-application.

Workflow of development of a web-application from a Jupyter notebook

2. Layout notebook
outputs as dashboard

‘ f | | 4 s
b il88411 1. Write code and i ..
| ! i . .
. v | bind data to widgets 3 .
Bran Networks
5. Update notebook i T 3. Deploy standalone on
and redeploy ' fn desired cloud provider

I
e
F

4. Use dashboard

http://jupyter-dashboards-layout.readthedocs.io/en/latest/use-cases.html
https://github.com/jupyter-incubator/dashboards_bundlers
https://github.com/jupyter-incubator/dashboards_server

Some issues to be discussed next week with CERN experts:

How the Event display web-application should be integrated in the OPERA site dedicated to the open data
access?

Who will be the administrator (or the responsible person) of the site in order to discuss with him the software
restrictions/requirements? For example, a lot of software is still based now on Python2 (but not on Python3),
though support of Python2 will probably be stopped in 2020 (?)

It's difficult for me to predict the speed of animation (interaction) of the web-application. (For example, we
know that speed of interaction with GUI of the EventViewer running on remote machine could be very low.)
There are several possibilities exists to increase the speed of python programs or to combine them with more
power libraries written in C++. May be it would be possible to use ROOT and write the application in C++ from
the very beginning (it would be more easy because it's similar to our off-line EventViewer) since ROOT now has
a Jupyter kernel...

