Possible Operation with Fluorocarbon blends of C₃F₈/C₂F₆

G. D. Hallewell Centre de Physique des Particules de Marseille, France;

Possibilities for operation with C_3F_8/C_2F_6 blends

INITIAL MOTIVATION:

Exhaust pressure drop problem (heaters, HeX and return tubing) will not allow present C₃F₈ compressor system to maintain an evaporation temperature of -27°C (to operate silicon below -7°C (TDR spec.) after significant irradiation (increased I_{leak}))

Present C₃F₈ implementation (from evaporative cooling paper)

Thermosyphon workshop, CERN, July 6, 2009

Example of temperature gradients across (pixel) cooling & support structures.

(Temperature differences to be *subtracted* from -7°C to get in-tube evaporation temperature: mass flow ~4.7 g.s⁻¹, enthalpy ~50 J.gm⁻¹)

So where are the actual pressure drops?

Original exhaust ΔP **budget (Olcese):** 350mbar

- * More recent estimates for SCT barrel @ 8.9 gm.s⁻¹ (exhaust hex, heaters, 'internal' tubes, BPRs, tubes to compressor) suggest 520 mbar as a more reasonable figure
- However, including the losses in SCT end-of-barrel exhaust manifolding, and losses along staves pushes this to 1190mbar!

$$\Rightarrow T_{Si} + 2^{\circ}C \text{ (Spec + 9^{\circ}C!)}$$

***** Far from TDR specification on T_{Si} post-irradiation...

AND THIS WAS BEFORE 'FAR HEATER' PROPOSAL STARTED TO BE CONSIDERED, WHICH ADDS ~220 mbar

→ T_{Si} +4°C (Spec +11°C!!)
WHAT TO DO??

Fluorocarbon blending Already experience with C₃F₈/C₄F₁₀

Thermosyphon workshop, CERN, July 6, 2009

Enthalpy (kJ/kg)

Enthalpy [J/kg]

Enthalpy [J/kg]

Fluorocarbons can be mixed (blended) to arrive at compromise thermodynamic properties (many modern refrigerants are blends) ★ This was tested with C₃F₈/C₄F₁₀ (2 papers in Fluid Phase Equilibria 2000-2001)

Mixture thermodynamic, transfer properties calculated & set up as 'temporary' folders in NIST database

Fig. 5. Measured variation of the Heat Transfer Coefficient in a 3.6mm ID tube with changing C_4F_{10}/C_3F_8 mixture composition.

(Sidesteps pressure drop problem and raises aspiration pressure) But needs mixing set-ups and batch assay (ultrasonic or GC...) Question of heat transfer coefficient: measurements needed

4 1 2 2

Nuclear Instruments and Methods in Physics Research A264 (1988) 219–234 North-Holland, Amsterdam

A SONAR-BASED TECHNIQUE FOR THE RATIOMETRIC DETERMINATION OF BINARY GAS MIXTURES *

G. HALLEWELL, G. CRAWFORD **, D. McSHURLEY, G. OXOBY and R. REIF Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, USA

Received 25 March 1987

We have developed an inexpensive sonar-based instrument to provide a routine on-line monitor of the composition and stability of several gas mixtures having application in a Cherenkov Ring Imaging Detector. The instrument is capable of detecting small (<1%) fluctuations in the relative concentration of the constituent gases and, in contrast with some other gas analysis techniques, lends itself well to complete automation.

Not a new idea: C5F12/N2 mixed for SLD RICH and analysed by sonar (1988→)

Fig. 16. Variation of sound velocity with concentration of C_5F_{12} in N_2 at 41°C: comparison between fitted measurements and predictions.

Real time ultrasonic Gas Analyzer

Fig. 1:

101 Velocity of sound [m/s] Series2 101 Linear (Series1) Linear (Series2) 100 100 y = -38.287x + 100.54y = 181.59x + 88.58999 $R^2 = 0.9967$ $R^2 = 0.9872$ 99 98 0.02 0.04 0 0.060.08 Pressure [MPa] Thermosyphon workshop, CERN, July 6, 2009

nalyzer

C₂F₆ / C₃F₈ Fluorocarbon Blending

Thermodynamic cycle calculations on good theoretical basis (Vacek, Prague)

- Have ideas on how to mix small samples and measure mixture by ultrasound but these need more work
- ★ Extensive HTC measurements will be needed in trial blends of C₂F₆/C₃F₈ @ realistic power loads and evaporation temps
 -25°C → -45°C (IBL?)