

Thermosiphon pre-design

J. Direito (EN/CV/DC)

Gravity-driven Cooling Concept

- Natural circulation of the fluid:
 - Condensation temperature/pressure must lower than evaporation temperature/pressure
- No working components in the main circuit
 - Less probability of occurrence of leaks
 - No significant vibrations on the system
 - Low maintenance operations
- Access to refrigeration units at the surface
- No limit for the Evaporation Temperature:
 - Suction pressure of the compressors is not a limit anymore
 possibility of reaching lower evaporation temperatures

Preliminary design and parameters

• Thermodynamic Cycle Example for C3F8 with Sub-Cooling

Preliminary design and parameters

Preliminary design and parameters³

- A-B : **Condensation** dh = h (at $T_{condensation}$) h (at $T_{return lines}$)
 - Definition of the Condensation Power
- B-C: Hydrostatic dP > P_{transfer lines} (T_{transfer lines}) P_{return lines} (T_{return lines})
 - Definition of minimum height
- C-D : Heat Exchanger dh = h (at T_{in}) h ($T_{supply lines}$)
 - Definition of HX power
- D-E : Pressure Regulation Pressure Regulator Cv
 - Regulation of mass flow
- E-F : Sub-Cooling $dh = h (T_{evap} \text{ at } T_{cond}) h (X_{in})$
 - Definition of HX Power for sub-cooling
- F-G : **Capillary pressure drop** $dP = P_{\text{pressure regulator}} P_{\text{evaporation}}$
 - Definition of capillary length
- G-H : Evaporation dP _{stave}
 - Definition of dP at the stave
- H-I : Heater $dh = h(X_{out}) h(T_{transfer lines})$
 - Definition of Heater power
- I-A : Back-Pressure regulation Pressure Regulator Cv
 - Regulation of Evaporation Temperature

Preliminary design and parameters

- Application example for the IBL detector and Distribution Racks at USA 15:
 - Required mass flow = 36g/s
 - Evaporation temperature = -40C
 - Supply and return lines Temperature = 20C
 - Altitude difference ≈ 100m
- Definition of the main components:
 - Minimum height O.K.: 16 bar > dP (P_{cond} = 7.57 bar ; P_{evap} = 0.87 bar)
 - liquid line = DN25 -> dP= 16 bar ; Vapor line = DN50 -> dP = 90 mbar
 - Condensation Temperature < -42.5 C (P_{cond} < 0.87 bar 90mbar)
 - Condenser Power > 5.94kW (*dh* = 165kJ/kg; m = 36g/s)
 - Heat Exchanger Power > 1.44kW (dh = 40kJ/kg; m = 36 g/s)