The Bright Future for Supernova Cosmology

Alex Kim agkim@lbl.gov Lawrence Berkeley National Laboratory

1998 Science Breakthrough of the Year

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE

2017: Why Care About SN Cosmology - Fundamental Physics

- Addresses the major puzzle confronting physics today
- Cosmological Principle + General Relativity yields the Friedmann Equation

(Looks like: Kinetic Energy
$$H^2 = \frac{8\pi G}{3}\rho$$
 Gravitational Potential Energy)

• Supernova measurements show

 $H^2 \neq \frac{8\pi G}{3} \rho_{\rm known \ forms \ of \ energy}$

 $H^{2} - F(H) = \frac{8\pi G}{3}\rho \text{ or } H^{2} = \frac{8\pi G}{3}\left(\rho_{\text{known forms of energy}} + \rho_{\text{unknown forms of energy}}\right)$ • Therefore Modified Gravity! DARK ENERGYPhysics Beyond the Standard Model!

2017: Why Care About SN Cosmology - A Competitive Probe

- Original discovery of the accelerating universe made with Type Ia SNe
- Measure of the expansion history of the Universe with SNe Ia continue to be an important probe of dark energy
- Uniquely measures distances from 0<z<1.5 spanning accelerating and decelerating regimes

2017: Why Care About SN Cosmology - Can Do Better

 Decrease systematic uncertainty within the current redshift range to improve error budget

Uncertainty sources	$\sigma_x(\Omega_m)$	% of σ ² (Ω _m)
Calibration	0.0203	36.7
Milky Way extinction	0.0072	4.6
Light-curve model	0.0069	4.3
Bias corrections	0.0040	1.4
Host relation ^a	0.0038	1.3
Contamination	0.0008	0.1
Peculiar velocity	0.0007	0.0
Stat	0.0241	51.6

Betoule et al. (2014)

z

 Expand the redshift range to provide leverage for testing dark energy models

2017: Why Care About SN Cosmology - Major Experiments Planned

- Major future surveys will provide improved measurements
 - Important contribution when combined with other probes
 - Measured in terms of "Figure of Merit"
- Community support and funding for SN surveys
 - DES, LSST, WFIRST

From WFIRST Final Report

Redshift

As the Universe expands, light that starts from galaxy A...

... has its wavelength expanded by the time it gets to galaxy B

The relative increase in wavelength (redshift) is a measure of the relative change in size of the Universe

Redshift Directly Related to Observer-Frame Luminosity

Universe

Expanded

Jniverse

 $a_0 = 1$

 $L_1 = L_a a^2$

 Propagation of light described by the FRW metric

$$d\tau^{2} = -dt^{2} + a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega\right)$$

- a(t) is the scale factor that describes the size of the Universe
- Redshift $z = a^{-1} 1$
- Photon energy proportional to a⁻¹
 - Redshift
- Clocks appear to move as a⁻¹
 - Time Dilation
- $L_1=L_aa^2$

Light Cone and Flux

A source at galaxy A emits photons at some redshift, ...

... that are now on a shell of a sphere centered around the source The surface area of a sphere of radius χ is 4π χ²

Photon flux diluted by the surface area

Surface Area of Light Cone Related to Flux

 Surface area of light cone described by the FRW metric

$$d\tau^{2} = -dt^{2} + a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega\right) \qquad A = 4\pi\chi^{2}$$

$$A = 4\pi\chi^{2}, \text{ where}$$

$$\int_{0}^{\chi} \frac{dr}{\sqrt{1 - kr^{2}}} = \int_{t_{e}}^{t_{o}} \frac{dt}{a(t)} = \int_{0}^{z} \frac{dz}{H(z)},$$

$$z = \frac{1}{a} - 1$$

$$H = \frac{\dot{a}}{a} \quad \text{Hubble parameter}$$
• Piece 1 & Piece 2 give
$$f = \frac{L_{a}a^{2}}{4\pi\chi^{2}}$$

General Relativity Specifies *H* to Predict Flux

 \mathcal{Z}

 $\rho(z)$

- Physics (General Relativity) provides expected evolution of a(t) based on the energy contents of the Universe
- Friedmann Equation:

$$H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho(a;\Omega_i,w_i,\ldots)$$

$$\int_0^{\chi} \frac{dr}{\sqrt{1 - kr^2}} = \int_{t_e}^{t_o} \frac{dt}{a(t)} = \int_0^z \frac{dz}{H(z)}$$

$$\int_0^{\chi} \frac{dr}{H(z)} = \int_0^z \frac{dz}{H(z)}$$

Hubble Parameter and the Matter Content $w \equiv p/\rho$ $H^2 = H_0^2 \left(\sum_{i \in \text{energy states}} \Omega_i (1+z)^{3(1+w_i)} \right)$

Dynamics depend on the equation-of-state of the sources of energy in the Universe

Energy State	Matter (CDM, Baryons)	Radiation (γ, ν)	Cosmological Constant Λ	"Dark Energy"	Curvature
W =p/ρ	0	1/3	-1	w(a) modeled as: constant w<-1/3 w=w ₀ +w _a (1-a)	-1/3

- For a set of standard candles of luminosity L
 - Measure flux f (magnitude)
 - Measure redshift z

Unexpected Energy In the Universe that is Gravitationally Repulsive

Type la Supernova

- Supernova without H, with Si
- C/O white dwarf gaining material from a binary companion
- As the white dwarf reaches the Chandrasekhar mass (1.4 solar mass) a thermonuclear runaway is triggered
 - Two burning phases: subsonic produce intermediate mass elements and supersonic produces ⁵⁶Ni
 - $>10^{51}$ ergs explosion energy disrupts star
 - Debris in homologous expansion
- Observed light from radioactive decay of ⁵⁶Ni to ⁵⁶Fe
- A homogeneous triggered bomb

Supernovae Almost But Not Perfect Standard Candles

- Heterogeneity in supernova brightnesses and light curve shapes
- After correction for foreground dust supernovae have peak-magnitude dispersion of ~0.3 mag
- We can determine luminosity per object
- After correction for light-curve shape supernovae become "calibrated" candles with ~0.15 mag dispersion

Estimating the Luminosity of the Standard Candle

- Supernova luminosities determined from fits of multi-band light curves
 - Depends on light-curve shapes and colors

Supernova Hubble Diagram: Expansion History if the Universe

Dark Energy Parameter Estimates With Supernovae

- Sensitive to the acceleration of the universe
- Constrains the mass density, dark energy density, and a constant dark energy equation of state w

Publicly Available Datasets

- SDSS-II/SNLS3 Joint Light-Curve Analysis
 - <u>http://supernovae.in2p3.fr/sdss_snls_jla/</u> <u>ReadMe.html</u>
 - (Find the redshift bug!)
- Union 2.1
 - <u>http://supernova.lbl.gov/union/</u>
- Make a model for H(z) and write a paper

LSST

- Effective 6.7-m in Cerro Pachon Chile
- 10 sq deg CCD camera
- Survey start 2022
- 10-year survey
- 10 million transient alerts per night

Ground-Based Cosmological SN Surveys

	DES SN		LSST		
	Wide	Deep	Main	Deep Drilling	
Duration	5 CTIO Semesters		10 years		
Effective Mirror Diameter	3.6 m		6.7 m		
Solid Angle	8x3 sd	2x3 sd	18,000 sd	O(5)x9.6 sd	
Depth/visit	24 griz	25 griz	24/25/24/23/22 u/gr/i/z	26.5/26/25.5/24.5 gr/i/z/y	
Cadence	5 days/band	5 days/band	3 days	4 days/band	
Numbers	2500	500	1,000,000	50,000	

NASA WFIRST SN Program

Supernova Survey

WFIRST+LSST SN Program

Projections for LSST-WFIRST

Perlmutter 2016 LSST-DESC Collaboration Meeting

Opportunities for New Researchers in the Field

- Improve accuracy of SN Ia distances and reduce systematic uncertainties from SN luminosity model
- Supernova cosmology beyond the Hubble Diagram
- Improve flux calibration of our observations

Opportunities for New Researchers in the Field

- Improve accuracy of SN Ia distances and reduce systematic uncertainties from SN luminosity model
 - Make a better SN Ia Model!
- Supernova cosmology beyond the Hubble Diagram
- Improve flux calibration of our observations

Uncertainty in SN Model

- Supernova distances determined from fits of multi-band light curves
 - Depends on magnitude at peak brightness, light-curve decline rate, and color

Uncertainty in SN Model

Uncertainty in SN Model Leads to Dark Energy Uncertainty

- Bulk of high-quality SN measurements in optical wavelengths and near peak
 - SNe less well understood in UV and NIR, well before and well after peak brightness
- Issue manifest in discrepancy of distances from different light-curve fitters
 - Inconsistent U-band templates
 - Different interpretation of color
 - Different priors

Make a Better SN Ia Model

- SN Ia models used for cosmology have two parameters: light-curve shape and color
- SN Ia are physically expected to and exhibit much more diversity: multi-color, spectral features, host-galaxy properties
- Sophisticated statistical techniques required to tease out signal (see e.g. Mandel et al. ApJ, 842, 93, 2017)

intrinsic spectral features

Opportunities for New Researchers in the Field

- Improve accuracy of SN Ia distances and reduce systematic uncertainties from SN luminosity model
 - Figure out how to do SN la cosmology with little spectroscopy!
- Improve flux calibration of our observations
- Cosmology beyond the Hubble Diagram

LSST Numbers Do Not Tell the Entire Story: Spectroscopy

- Spectroscopy used to make Hubble diagram
 - Transients typed as SNIa
 - Host galaxies identification
 - Highly precise redshift
- It takes more telescope time to spectroscopically type SNe than get light curves
 - Can't get spectrum of every LSST SN
- Not part of the imaging DES or LSST IMAGING surveys

Numbers Do Not Tell the Entire Story: Incomplete Spectroscopy

- DES Hubble Diagram (very preliminary!!)
 - has an impressive number of transients
 - is an impressive mess
- Mess is due to lack of spectroscopic completeness
 - Contamination from non-la's
 - Host galaxies misidentified
 - Highly uncertain redshifts
- It has NOT been established whether systematic uncertainties can be constrained to yield precision cosmology from these data

Remains an unsolved problem

Opportunities for New Researchers in the Field

- Improve accuracy of SN Ia distances and reduce systematic uncertainties from SN luminosity model
- Supernova cosmology beyond the Hubble Diagram
 - Test General Relativity!
- Improve accuracy of SN Ia distances

New LSST SN Probes of Cosmology: Peculiar Velocities

- Universe has mass overdenties that induce galaxy velocities on top of cosmological expansion
- Amplitude of extra motion related to
 - Amplitude of mass overdensities:
 σ₈
 - Rate at which gravity forms mass overdensities: f(a)
 - To first order not related to bias: b
- General Relativity found empirically to have a tight prediction for velocity amplitude

Millenium Simulation

New LSST SN Probes of Cosmology: Peculiar Velocities

- Peculiar velocity = "peculiar distance"
- Transform Hubble diagram residuals to (line-of-sight) peculiar velocities

New LSST SN Probes of Cosmology: Peculiar Velocities

 Peculiar velocities of LSST-discovered SNe Ia tests GR and other gravity models

Opportunities for New Researchers in the Field

- Improve accuracy of SN Ia distances and reduce systematic uncertainties from SN luminosity model
- Supernova cosmology beyond the Hubble Diagram
 - Measure the Hubble Constant!
- Improve accuracy of SN Ia distances

Image: Kelly et al. 2015 (Science)

Strong lensing creates multiple images.

If the source is variable, then time delays between the images can measured. This is a *dimensional* measurement, so we can measure H_0 (Refsdal 1964). We can also measure dark energy (Linder 2004, 2011).

Seize the Day

Two very recent papers:

- Discovery of the first multiply lensed SN Ia Goobar et al. (*Science* 2017)
- Novel method for increasing the discovery rate by an order of magnitude Goldstein & Nugent (*ApJL* 2017)

Opportunities for New Researchers in the Field

- Improve accuracy of SN Ia distances and reduce systematic uncertainties from SN luminosity model
- Supernova cosmology beyond the Hubble Diagram
- Improve flux calibration of our observations
 - Calibrate of optical path tied to absolute flux standards

Relative SN Distances Require Color Calibration

Improved Calibration Needed

- Flux calibration one of the top limiting uncertainties for SN cosmology
- Precision SN cosmology needs <1% calibration over optical wavelengths
- Current flux calibration tied to modeling of white dwarfs
 currently faced with limiting sources of uncertainty
- Goal: Tie next generation experiments to laboratorycalibrated standards

SCALA: NIST-Tracable Flux Calibration

C

Conclusions

- Type Ia Supernovae are and will remain a leading probe of dark energy
- Many challenges to overcome in order to realize improved constraints —> research opportunities