Prompt Team Background & Interpretation

DES, LSST, and other experiments will probe the nature of dark energy and determine if it is *just* the Cosmological Constant (Λ). What are the specific measurements that need to be made, and how precisely do such experiments need to be, before **you** will be convinced that dark energy is just Λ ?

Question

Prompt **Team** Background & Interpretat

Rodolfo Capdevilla Benjamin Osherson Sebouh Paul Ana Diaz Rivero Arthur Constantino Scardua Chun-Hao To Liangtai Xing Ziang Yan Xuji Zhao University of Notre Dame University of Illinois, Urbana-Champaign College of William and Mary Harvard University Brazilian Center for Physical Research Stanford University Brown University University of British Columbia Texas A&M University

Prompt Team Background & Interpretation

$$G^{\mu\nu} = 8\pi T^{\mu\nu} \mid T^{\mu\nu} \supset \bigwedge g^{\mu\nu} + \sum_{i} \underbrace{((\rho_{i} + P_{i})u_{i}^{\mu}u_{i}^{\nu} + P_{i}g^{\mu\nu})}_{\text{perfect fluid in equilibrium}}$$

perfect fluid contribution in equilibrium, in inertial frame $({\bf u}=(1,0,0,0),\ g^{\mu\nu}=\eta^{\mu\nu})$

$$T_i^{\mu\nu} = \left(\begin{array}{cc} \rho & & \\ & P & \\ & & P \\ & & P \end{array}\right)$$

dustradiation Λ $P = w\rho$ w = 0w = 1/3w = -1

Prompt Team Background & Interpretation

 $\begin{array}{l} \mbox{Measurements available} \\ \mbox{Are you convinced } \alpha \mbox{ is a universal constant?} \\ \mbox{Dark Energy is } \Lambda \mbox{ until another model has a better Bayes factor.} \end{array}$

What are the specific measurements that need to be made?

	Expansion	Growth rate of structure
Observable	$H(z), d_L, d_A$	$\sigma_8, S_8, f\sigma_8, \gamma_L$
		Matter Power Spectrum
Experiments	SN Ia	
	Galaxy BAO peak	RSD
	Ly- $lpha/$ Quasar BAO peak	CMB (kSZ, tSZ)
	Strong Lensing	Weak Gravitational Leasing
	Voids*	Clusters of galaxies
	Gravitational waves*	

*Soon

Question Answer asurements Thank you!

Measurements available

Are you convinced α is a universal constant? Dark Energy is A until another model has a better Bayes factor.

¹LSST Science book

(日) 《聞) 《聞) 《聞) 《聞) 《曰

Ben Osherson

SSI 2017 Project

Measurements available Are you convinced α is a universal constant? Dark Energy is Λ until another model has a better Bayes factor.

To what precision do these measurements need to be made?

A just happens to have some 'fine tuned' value, but it's as constant as the fine-structure constant $\alpha.$

Measurements available Are you convinced α is a universal constant? Dark Energy is A until another model has a better Bayes factor.

Ratio of frequencies of dissimilar atomic clocks depends on $\alpha!$ Seventeen decimal places of measured α did not change over a year.²

²T. Rosenband et al. (2008)

Ben Osherson SSI 2017 Project

Measurements available Are you convinced α is a universal constant? Dark Energy is Λ until another model has a better Bayes factor.

 $2\cdot 10^9$ years ago, a pocket in the Earth naturally formed a Ur fission reactor, reacting for $2.3\cdot 10^5$ years. The abundance ratio of $^{149}_{62}Sm/^{150}_{62}Sm$ constrains $|\Delta\alpha/\alpha| < 10^{-5}$, the coolest experiment ever.³

³J-P Uzan (2002)

Measurements available Are you convinced α is a universal constant? Dark Energy is Λ until another model has a better Bayes factor.

Quasar measurements constrain $\alpha(z)$ by things like comparing spectral lines for *MgII* and *FeII* as a function of redshift. ⁴

⁴J. Webb et al. (1998)

Ben Osherson SSI 2017 Project

Measurements available Are you convinced α is a universal constant? Dark Energy is Λ until another model has a better Bayes factor.

Measurements available Are you convinced α is a universal constant? Dark Energy is Λ until another model has a better Bayes factor.

Computing the Bayes Factor

Ρ

$$P(\theta|x) = \frac{1}{N} e^{-\frac{1}{2} \left(\frac{w-1}{\sigma}\right)^2} | -1 - \Delta_- \le w \le -1 + \Delta_+$$

$$N = \frac{\sigma\sqrt{\pi}}{\sqrt{2}} \left(\operatorname{erfc} \left(\frac{-\Delta_-}{\sigma\sqrt{2}}\right) - \operatorname{erfc} \left(\frac{\Delta_+}{\sigma\sqrt{2}}\right) \right)$$

$$(w = -1) = \frac{dw}{\Delta_+ + \Delta_-} \qquad P(w = -1|x) = \frac{dw}{N}$$

$$B_{01} = \frac{\sqrt{2}(\Delta_+ + \Delta_-)}{\sigma\sqrt{\pi}} \left(\operatorname{erfc} \left(\frac{-\Delta_+}{\sigma\sqrt{2}}\right) - \operatorname{erfc} \left(\frac{\Delta_-}{\sigma\sqrt{2}}\right) \right)^{-1}$$

Can do this for any (multidimensional) parametrization of w, as long as $(D.E. = \Lambda)$ is a nested model.

Measurements available Are you convinced α is a universal constant? Dark Energy is Λ until another model has a better Bayes factor.

Computing the Bayes Factor

$$B_{01} = \frac{\sqrt{2}(\Delta_{+} + \Delta_{-})}{\sigma\sqrt{\pi}} \left(\operatorname{erfc}\left(\frac{-\Delta_{+}}{\sigma\sqrt{2}}\right) - \operatorname{erfc}\left(\frac{\Delta_{-}}{\sigma\sqrt{2}}\right) \right)^{-1}$$

If your theory allows for -1.00 < w < -0.99, you need to measure $w = -1.000 \pm .0016$ at one σ for $\ln(B_{01}) = 5$.

If your theory allows for -1.000 < w < -0.999, you need to measure $w = -1.0000 \pm .0004$ at one σ for $\ln(B_{01}) = 5$.

Model	(Δ_+, Δ)	Required σ for odds			
		> 20:1	> 150:1	$\ln B \text{ today } (\sigma = 0.1)$	1
Phantom	(0, 10)	0.4	$5 \cdot 10^{-2}$	4.4 (strongly disfavoured)	
Fluid–like	(2/3, 0)	$3 \cdot 10^{-2}$	$3 \cdot 10^{-3}$	1.7 (slightly disfavoured)	
Small departures	(0.01, 0.01)	$4 \cdot 10^{-4}$	$5 \cdot 10^{-5}$	0.0 (inconclusive)	5

Amendola et al (2012)

Arthur Scardua SSI 2017 Project

Measurements available Are you convinced α is a universal constant? Dark Energy is Λ until another model has a better Bayes factor.

Figures of Merit

 $B_{01} = \frac{\Delta w_a \Delta w_0 \text{FoM}}{\pi} \quad \begin{array}{ll} \text{Normally constained: FoM} > \simeq 350\\ \text{Very constrained: FoM} > \simeq 10000 \end{array}$

Measurements available Are you convinced α is a universal constant? Dark Energy is Λ until another model has a better Bayes factor.

$$B_{01} = rac{\sqrt{2}(\Delta_+ + \Delta_-)}{\sigma\sqrt{\pi}} \left(ext{erfc} \left(rac{-\Delta_+}{\sigma\sqrt{2}}
ight) - ext{erfc} \left(rac{\Delta_-}{\sigma\sqrt{2}}
ight)
ight)^{-1}$$

SNe 1a: How standard are they? Compliment SNe 1a with standard sirens Weak lensing, BAO, RSD

Phillips relationship of luminosity vs. duration explained by non-equilibrium dynamics and metallicity ratios? ⁷

SNe 1a: How standard are they? Compliment SNe 1a with standard siren Weak lensing, BAO, RSD

Dependence on host galaxies too? 8

⁸M. Childressi et al. (2013)

Ben Osherson

SSI 2017 Project

SNe 1a: How standard are they? Compliment SNe 1a with standard sirens. Weak lensing, BAO, RSD

Standard sirens

- Interferometry alone can not measure redshift!
 - But it is an independent measurement of d_L .
- Need a complimentary E&M measurement to break redshift & mass degeneracy.
- Mergers could then be detected to at least $z\sim5-10$, possibly beyond. ⁹

⁹D. E. Holz & S. A. Hughes (2005) Ben Osberson

SSI 2017 Project

SNe 1a: How standard are they? Compliment SNe 1a with standard sirens. Weak lensing, BAO, RSD

Weak gravitational lensing: Systematics

- Error in photoZ
- PSF model error
- instrinsic alignment

Systematics in terms of shear-shear power spectrum

$$\tilde{(C)}_{ij}^{\gamma\gamma}(l) = \underbrace{(1+f_i)(1+f_i)C_{ij}^{\gamma\gamma}(l)}_{multiplicative} + \underbrace{C_{ij}^{add}(l)}_{additive}$$

Additive error will not be overly important for LSST from Image simulation (C. Change et al., 2012) Multiplicative error has to be less than 0.4% (Masset et al. 2011)

SNe 1a: How standard are they? Compliment SNe 1a with standard sirens. Weak lensing, BAO, RSD

Weak gravitational lensing: Current status

- 2 shape measurement (im3shape/metacalibration)
- 2 independent way to measure photoZ

Multiplicative error: 1%

SNe 1a: How standard are they? Compliment SNe 1a with standard sirens Weak lensing, BAO, RSD

Weak gravitational lensing: Future experiment

SNe 1a: How standard are they? Compliment SNe 1a with standard sirens. Weak lensing, BAO, RSD

BAO: Current status

2.4 σ tension between galaxy and Ly- α BAO (comparable to 2.5 σ tension between Ly- α BAO and *Planck*)

 Will have to understand the systematic caused by different samples.

Addison et al. astro-ph 1707.06547

SNe 1a: How standard are they? Compliment SNe 1a with standard sirens. Weak lensing, BAO, RSD

BAO: Future experiment (DESI)

Risa Wechsler talk

f

SNe 1a: How standard are they? Compliment SNe 1a with standard sirens. Weak lensing, BAO, RSD

RSD: Current status

Probe the growth of structure:

$$T = \frac{dlnG(a)}{dlna} = \Omega_m(z)^\gamma$$

Only limit to k<0.05-0.1 h/Mpc

Will need better bias model and simulations

Risa Wechsler talk

SNe 1a: How standard are they? Compliment SNe 1a with standard sirens. Weak lensing, BAO, RSD

RSD: Future experiment (DESI)

For k down to 0.2 h/Mpc

Risa Wechsler talk

Chun-Hao To SSI 2017 Project

SNe 1a: How standard are they? Compliment SNe 1a with standard sirens. Weak lensing, BAO, RSD

Hubble tension doesn't inspire confidence

¹⁰W. L. Freedman (2017)

Ziang Yan SSI 2017 Project

SNe 1a: How standard are they? Compliment SNe 1a with standard sirens Weak lensing, BAO, RSD

Alternative parametrizaion of *w*

Leave w(z) completely unconstrained and resolve Hubble tension!

¹¹Gond-Bo Zhao et al. (2017)

Ziang Yan SSI 2017 Project

Weak lensing, BAO, RSD Observations can be dangerous

- Models can be made such that they predict |(w(z) 1)| < very small.
 - ΛCDM will hold until something better comes along.
 - For these models, we need a correspondingly tiny σ on w measurements to have a Bayes factor that either comparatively favors or disfavors ΛCDM .
- $\circ\,$ If all systematics and tensions are resolved, then we may accept ΛCDM
 - SNe light curve discrepancies
 - Weak lensing photoZ error
 - Instrinsic alignment
 - Different BAO samples are inconsistent
 - Galaxy bias for RSB
 - Hubble tension between probes

Weak lensing, BAO, RSD Observations can be dangerous

Weak lensing, BAO, RSD Observations can be dangerous

Triggers

Chameleon particle

$$S = \int d^4x \sqrt{-g} \left(-rac{R}{16\pi G} + rac{g_{\mu
u}}{2} \partial_\mu \phi \partial_
u \phi - V(\phi)
ight) + S_{matter}$$

GammeV, CHASE, CERN Axion Solar Telescope

Ben SSI 2017 Project

Energy Budget to H(z)

$$\frac{d\rho}{dt} = -3\frac{da/dt}{a}(\rho + P)$$
$$\frac{d\ln(\rho)}{d\ln(a)} = -3(1+w)$$
$$\rho(a) = \rho(a=1)a^{(-3-3w)}$$

$$H(a) = H_0 \sqrt{a^{-3}\Omega_{matter,0} + a^{-4}\Omega_{rad,0} + \Omega_{\Lambda,0}} |$$
 $X_0 \equiv \rho_x/\rho_{crit}$
 $X_0 = X(a = 1)$