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Overview of NEDM Experiment
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Overview of NEDM Experiment

The Physics Mystery

* Sakharov conditions for
cosmic matter-antimatter

asymmetry
« Baryon number violation

* Charge and Charge-Parity
violation
 Qutside thermal equilibrium

 Neutron EDM sensitive to
undiscovered CP-violating

physics

*Slide from Leah Broussard.
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Overview of NEDM Experiment

* Major initiative for Physics at ORNL

 Top priority for Fundamental
Neutron Physics and prominently
featured in 2015 Long Range Plan
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* Unprecedented sensitivity to CP
violating physics
«d ~1028 e-cm

*Slide from Leah Broussard. 4



NEDM Simulations Framework
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L argest Computational Needs

Data Challenge 2.0

« Experiment runs at Spallation Neutron Source 2020+

 We want to have data analysis workflows in place when data
collection begins.

* Previous Data Challenge produced 10° simulated events with
backgrounds.

« Next iteration will produce 10'" events: 100k Titan node-hours,
or 1.6M core-hours and 20 TB of data.

Systematic Studies

 Detailed tracking of spin propagation in magnetic field is
needed to understand systematic uncertainties.

* On the order of 108 core-hours and 100 TB required for these
studies.

 Stand alone C++ application with ROOT dependency (R. Shmid
Dissertation)

 Currently being investigated for GPU vectorization.
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Prior Runs on Titan

Activation Background Simulations

 Geant4.9 based simulation with MPIl and no
multithreading.

* One MPI rank per core.

* Demonstrated efficient weak scaling on up to 100 nodes
for tasks longer than a few seconds.

* Implemented a ROOT based analysis workflow on LENS.
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Preparations for Data Challenge

Titan Build Workflow Completed for Central Detector
Simulation

* Geant4.10.03.p01 libraries built for static linking in
multithreaded mode.

 Binary built and tested based on previous Central Detector
Simulation.

» Timing runs performed to provide estimates of resource needs.
« Expect to be ready to launch production runs within a month.
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Expected Science Results

Timing and Photoelectron Spectra
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NEDM Plans for Panda

Minimize extra workforce requirements needed to
utilize available computational resources.

* No nEDM collaborators work full time on simulations, but many
make intermittent contributions.

Take advantage of fine grained backfill potential.

 NEDM Central Cell Simulation can utilize as little as 36 node-
seconds in an efficient manner.

 Results for Data Challenge can be accumulated over time.
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NEDM Collaboration

THANK YOU!

Arizona State University

Brown University

Boston University

UC Berkeley

California Institute of Technology

Duke University

Harvard University

Indiana University

University of lllinois Urbana-Champaign

University of Kentucky
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Los Alamos National Laboratory
Massachusetts Institute of Technology
Mississippi State University

North Carolina State University

Oak Ridge National Laboratory

Simon Fraser University

University of Tennessee

Valparaiso University

University of Virginia

Yale University



Extra Slides



EDM Measurement lechnique

* Measure change in
precession frequency with

parallel vs antiparallel E, B
fields

*Slide from Leah Broussard.
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EDM Measurement lechnique

~30mG .
apply ©/2 pulse free precession

s £ T

SHe + n = p + 3T (Q=764keV) has spin-dependent cross-section (@2200m/s):
Parallel spins: o4+ < 10b Anti-parallel spins : 04 ~ 11 kb

Scintillation light signal: 1 — P, P3 cos 6,3(%)

-~ angle between n & 3He spins

Effects of He-3 EDM suppressed by Schiff screening so that:
ed, | F|
t
h

Measure 3He precession Y3 Bo/(27) with SQUIDS => sensitivity ~ 5 x 1072% e.cm

Ons = |7n — V3| Bot = v3 2 1.1, v3Bo/(2m) &~ 100 Hz

Alternative dressed-spin technique: apply strong RF ( B ~ 1 G wys/(2m) ~ 3kHz)
and increase sensitivity of exp.

*Slide from Ken Leung.



