
Harvester and Yoda.
Next generation of PanDA and

ATLAS software products
Danila Oleynik

UTA

Outline
• Introduction
• Harvester: resource oriented application in PanDA

• Harvester design
• Current status and nearest plan

• Yoda: fine grained processing of ATLAS data on HPC
• Development stages
• Yoda design
• Current status and nearest plan

Introduction
Last few years PanDA ecosystem starts growing and about one year
ago was decided to reimplement PanDA Pilot from scratch. It was clear
that PanDA starts serves different providers of computing resources
and from time to time in a specific way. On fist step we assumed, that
all these differences will be covered by new pilot (Pilot 2.0). After
analysing of already know workflows and new component model for
this application we found that Pilot 2.0 will be too complicated for
lightweight application, in terms of future support. More other, Pilots
distribution machinery (aka Auto Pilot Factory) were reviewed, and was
decided that improvements on this layer will be needed as well. That
was the entry point for new PanDA application - 'Harvester'

Harvester: resource oriented application in PanDA
• Harvester is a resource-facing service between the PanDA server

and execution environment for resource provisioning and workload
shaping. It is a lightweight stateless service running on a VObox or
an edge node of HPC facility to provide a uniform view for various
resources.

• For grid sites execution environment is pilot job

• For HPC it can be special MPI application (Yoda in case of ATLAS)

Harvester. Design key points (1)

• Lightweigh
• To run on logon/edge nodes at HPC centers

• Stateless for scalability + central database (oracle) + local
database (sqlite3)
• Capability to rebuild the local database from the central database

for auto restart
• Local database to reduce redundant access to the central database
• Only important checkpoints are propagated to the central database

• Deployment with or without root privilege

Harvester. Design key points (2)
• Configurability

• To customize workflow for each type of resource
• To turn on/off components with various plugins

• Running on top of pilot API
• Core + plugins + resource specifics managers or pilot components
• Leveraging development effort for the pilot consistently with the evolution plan (pilot

2.0)
• Direct bi-directional communication with PanDA

• Requesting workload to PanDA based on dynamic resource availability information
and static configuration

• Receiving commands directly from PanDA to throttle or boost the number of workers
(worker = pilot, MPI job, or VM)

Harvester. Design schema

Harvester

PanDA
communication

control

Workload
control

Data transfer
control

Local DB

Resource(s)
information

collector Computing
resourse

DDM or
External
storage

PanDA server

Static Resources
Configuration source
(Information system)

Pilot 2.0
PanDA server

interface

Pilot 2.0
Movers

Resource
communication

interface

Data

Harvester. Current status and nearest plan
• Harvester core components and needful Pilot 2.0 components in active development

stage

• Harvester core components were deployed and tested at OLCF.

• Passed unit and functional test

• Current deployment technics mostly oriented for developers: virtualenv as
environment and components needful for main application control manager

• Rucio client was deployed as interface layer to transfer tools/protocols

• Pilot 2.0 movers API development in progress

• In testing phase, SAGA based interface layer to manage payloads

Yoda: fine grained processing of ATLAS data on
HPC

«The ATLAS Yoda system provides this capability to HEP-like event
processing applications by implementing event-level processing in an MPI-
based master-client model that integrates seamlessly with the more broadly
scoped ATLAS Event Service. Fine grained, event level work assignments
are intelligently dispatched to parallel workers to sustain full utilization on all
cores, with outputs streamed off to destination object stores in near real time
with similarly fine granularity, such that processing can proceed until
termination with full utilization. The system offers the efficiency and
scheduling flexibility of preemption without requiring the application actually
support or employ check-pointing.»

 21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 092025

Yoda. Development stages
• Still in development stage

• Initially Yoda was designed as special extension of PanDA Pilot.

• All complicity, related with asynchronous data transfers were
integrated in to PanDA pilot

• With Harvester, Yoda was extracted from Pilot and adapted as
standalone MPI application

• Asynchronous data management naturally organised in Harvester

Yoda simplified schema

Yoda current status and plans for OLCF
• Yoda still on development stage

• Early versions will be deployed at OLCF soon for testing

• Yoda on Titan will not use Object Store for stageout of produced
data:

• Projected amount of produced files is too big

• Merging process in OLCF should be agreed (IO intensive
operation)

