
Dra�

Converging High-Throughput and High-Performance
Computing: A Case Study

Author 1
Institution 1

email1

Author 2
Institution 2

email2

Author 3
Institution 3

email3

Author 4
Institution 4

email4

Author 5
Institution 5

email5

Author 6
Institution 6

email6

ABSTRACT
Experiments at the Large Hadron Collider (LHC) face unprece-
dented computing challenges. �ousands of physicists analyze
exabytes of data every year, using billions of computing hours on
hundreds of computing sites worldwide. PanDA (Production and
Distributed Analysis) is a workload management system (WMS)
developed to meet the scale and complexity of LHC distributed com-
puting for the ATLAS experiment. PanDA is the �rst exascale work-
load management system in HEP, executing millions of computing
jobs per day, and processing over an exabyte of data in 2016. In this
paper, we introduce the design and implementation of PanDA, de-
scribing its deployment on Titan, the third biggest supercomputer
in the world. We analyze scalability, reliability and performance of
PanDA on Titan, highlighting the challenges addressed by its ar-
chitecture and implementation. We present preliminary results of
experiments performed with the Next Generation Executer, a pro-
totype we developed to meet new challenges of scale and resource
heterogeneity.

KEYWORDS
ACM proceedings, LATEX, text tagging
ACM Reference format:
Author 1, Author 2, Author 3, Author 4, Author 5, and Author 6. 2017.
Converging High-�roughput and High-Performance Computing: A Case
Study. In Proceedings of �e International Conference for High Performance
Computing, Networking, Storage and Analysis, Denver, Colorado, USA, Nov
2017 (SC2017), 15 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
�e Large Hadron Collider (LHC) was created to explore the fun-
damental properties of ma�er for the next decades. Since LHC
start-up in 2009, multiple experiments at LHC have collected and
distributed hundreds of petabytes of data worldwide to hundreds
of computer centers. �ousands of physicists analyze petascale
data volumes daily. �e detection of the Higgs Boson speaks to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SC2017, Denver, Colorado, USA
© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM. . .$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

the success of the detector and experiment design, as well as the
sophistication of computing systems devised to analyze the data.

Historically the computing systems consisted of the federation
of a hundreds to thousands of distributed resources — ranging in
scale from small to mid-size resource [13]. Although the workloads
to be executed are independent, the management of the distribu-
tion of extremely- large workloads across many heterogeneous
resources to ensure the e�ective utilization of resources and e�-
cient execution of workloads presents non- trivial challenges.

Many so�ware solutions have been developed in response to
these challenges. One of the LHC experiments, the CMS experi-
ment devised a solution based around the HTCondor [?] so�ware
ecosystem. �e ATLAS [1] experiment, utilizes the Production and
Distributed Analysis (PanDA) workload management system [17]
(WMS) for distributed data processing and analysis. �e CMS
and ATLAS experiments represent arguably the largest produc-
tion grade distributed computing solutions and have symbolized
the paradigm of high-throughput computing viz., the e�ective exe-
cution of many independent workloads.

As the LHC prepares for the high-luminosity era (Run 3 in ≈
2022), it is anticipated that the data volumes that will need analyz-
ing will increase by 10X compared to the current phase (Run 2).
�e data will be larger in volume but will also require heteroge-
neous computational processes. In spite of the impressive scale of
the ATLAS distributed computing system, demand for computing
systems will signi�cantly outstrip supply (availability).

�ere are multiple levels at which this problem needs to be
addressed urgently, e.g., the utilization of emerging parallel archi-
tectures (e.g., platforms), algorithmic and advances in analytical
methods (e.g., use of Machine Learning) and the ability to exploit
di�erent platforms (e.g., clouds and supercomputers).

�is paper is a case study of how the ATLAS experiment has
”broken free” of the traditional computational approach of high-
throughput computing on distributed resources to embrace new
platforms, in particular high-performance computers. Speci�cally,
we discuss the experience of integrating the PanDA workload man-
agement system with Titan — a DOE leadership computing facility
and scaled to analyze up to ***SJ: XX% of the ATLAS experiment
workload. We present the design of PanDA and show how localized
substitution to use well established pilot-concepts allow enhanced
support for heterogeneous workloads (such as molecular dynamics)
and advanced execution modes.

�is state-of-practice paper provides multiple contributions. (i)
Documents the many design and operational considerations that

Dra�

SC2017, Nov 2017, Denver, Colorado, USA Author 1 et al.

have been taken to support the sustained, scalable and produc-
tion usage of Titan for historically high-throughput workloads, (ii)
Extensions to PanDA to support non-traditional heterogeneous
workloads and execution modes, and (iii) As the community looks
forward to designing the next generation of online analytical plat-
forms [?] the lessons learnt from our project provide some guid-
ance for how current and future experimental and observational
systems can be integrated with supercomputers in production.

2 PANDA OVERVIEW
PanDA is a Workload Management System (WMS) designed to
support the execution of distributed workloads and work�ows via
pilots. WMS is middleware for discovering and selecting resources,
submi�ing tasks of workloads and work�ows, and monitoring
their execution [20]. Pilot is an abstraction that enables multi-
level scheduling by decoupling resource acquisition from tasks
scheduling [31]. When implemented, a pilot is scheduled on a site
and, once active, tasks are scheduled to the pilot, not to the site’s
scheduler.

Pilot-enabled WMS enable high throughput of tasks execution
while supporting interoperability across multiple sites. �is is
particularly relevant for LHC experiments, where millions of tasks
are executed across multiple sites every month, analyzing and
producing petabytes of data. �e design of PanDA WMS started
in 2005 and its implementation went into production for the LHC
Run 1 on 2009. PanDA was then extended with new subsystems to
be deployed on Run 2, on 2015.

2.1 Design
PanDA’s application model assumes tasks, workloads and work-
�ows. Tasks represent a set of operations performed on a set of
events that are stored in one or more input �les. Tasks are de-
composed into jobs, where each job represents the task’s set of
operations and a partition of the task’s events. Since 2005, a cer-
tain amount of parallelism has been progressively introduced for
job execution [10] but, so far, no MPI jobs have been considered
for production. Jobs are supposed to be relatively self-contained,
capable of se�ing up their own execution environment or having a
minimal set of common dependences.

PanDA’s usage model is based on multitenancy of resources
and the support of at least two types of HEP users: individual re-
searchers and groups executing so called ‘production’ work�ows.
Users are free to submit tasks and work�ows to the PanDA WMS at
any point in time, directly or via dedicated application frameworks.
Consistently, PanDA’s security model is based on separation be-
tween authentication, authorization and accounting for both single
users and group of users. Both authentication and authorization
are based on digital certi�cates and the X.509 standard and on the
virtual organization (VO) abstraction.

Currently, PanDA’s execution model is based on �ve main ab-
stractions: task, job, queue, pilot, and event. Both tasks and jobs
are assumed to have a�ributes and states and to be queued into a
global queue for execution. Prioritization and binding of jobs are
assumed to depend on the a�ributes of each job. Pilot is used to in-
dicate the abstraction of resource capabilities. Each job is thought

to be bound to one pilot and executed on the site where the pilot
has been instantiated.

In PanDA’s data model, each event refers to the recorded or
simulated measurement of a physical event. One or more events can
be packaged into �les or other data containers. As with jobs, data
have both a�ributes and states, and some of the a�ributes are shared
between events and jobs. Raw, reconstruction, and simulation data
are assumed to be distributed across multiple storage facilities and
managed by the ATLAS Distributed Data Management (DDM) [14].
When necessary, datasets required by each job are assumed to be
replicated over the network, both for input and output data.

PanDA’s design supports provenance and traceability for both
jobs and data. A�ributes enable provenance by linking jobs and data
items, providing information like ownership or project a�liation.
States enable traceability by providing information about the stage
of the execution in which each job or data item is or has been. Some
a�ributes are assumed to be immutable across execution and jobs
and data items are assumed to be always in one and only one state.

2.2 Implementation and Execution
�e implementation of PanDA consists of several interconnected
subsystems, most of them built from o�-the-shelf and Open Source
components. Subsystems communicate via dedicated API or HTTP
messaging, and each subsystem is implemented by one or more
modules. Databases are used to store eventful entities like tasks,
jobs and events, and to store information about sites, resources,
logs, and accounting.

Currently, PanDA’s architecture has �ve main subsystems:
PanDA Server [19], AutoPyFactory [7], PanDA Pilot [21], JEDI [5],
and PanDA Monitoring [16]. Other subsystems are used by some
of ATLAS work�ows (e.g., PanDA Event Service [8]) but, at the mo-
ment, they are not relevant to understand how PanDA has been
ported to supercomputers. For a full list of subsystems see Ref. [28].
Figure 1 shows a diagrammatic representation of PanDA main sub-
systems, highlighting the execution process of tasks while omi�ing
monitoring details to improve readability.

�e relation between tasks and jobs can be one-to-one or one-to-
many, and the conversion between the two can by static or dynamic.
During the LHC Run 1, PanDA required users or applications to
perform a static conversion between tasks and jobs: tasks were
described as a set of jobs with a �xed number of events and then
submi�ed to the PanDA Server.

�is approach introduced ine�ciency both with usability and
resource utilization [6]. Ideally, users should not have to reason in
terms of jobs: Users conceive analyses in terms of one or more, pos-
sibly related tasks; the ‘job’ abstraction is required by the execution
middleware, i.e. PanDA. Further, a static partitioning of tasks into
jobs does not take into account the heterogeneity and dynamicity
of the resources of the pilots on which each job will be executed.

Another problem of static job sizing is that PanDA instantiates
pilots on sites with di�erent type of resources and di�erent models
of availability of those resources. An optimal sizing of each job
should take into account these properties. For example, sites may
o�er cores with di�erent speed, networking with di�erent amount
of bandwidth, and resources could be guaranteed to be available for

Dra�

Converging High-Throughput and High-Performance Computing: A Case Study SC2017, Nov 2017, Denver, Colorado, USA

Grid Site
Grid Site

Grid Site

Edge DDM
Services

HTTP Proxy

Storage Element Compute Element

PanDA
PilotData Block

JEDI

PanDA Server

Data Service

PanDA DB

JEDI DB

Task Broker

REST API

AutoPyFactory Condor-G

APF QueueAPF QueueAPF Queue

SubmitWMS Status

Task Buffer

REST API

Job DispatcherBrokerage

job

task

ATLAS
Production

Regional
Production

User
Submissions

Distributed
Analysis

PanDA Pilot

Job Generator Job Scheduler
job

ATLAS DDM

4

2

3

5

6

8

9

10

11

13

12

14

15

7

17

18

19

1
20

16

Figure 1: PanDA architecture with the subsystems and com-
ponents relevant to the integration of PanDA with super-
computers. Numbers indicates the execution process based
on JEDI: From the submission of tasks (1) to the retrieval of
their output (20). �e monitoring subsystem, the architec-
tural details of PanDA Pilot and the communication among
subsystem’s components are abstracted to improve clarity.

a de�ned amount of time or could disappear at any point in time
as with opportunistic models of resource provision.

JEDI was deployed for the LHC Run 2 to address these ine�-
ciencies. Users or the application layer submits tasks descriptions
to JEDI (Fig. 1:1) that stores them into a queue implemented by a
database (Fig. 1:2). Tasks are partitioned into jobs of di�erent size,
depending on both static and dynamic information about available
resources (Fig. 1:3). Jobs are bound to sites with resources that best
match jobs’ requirements, and submi�ed to the PanDA Server for
execution (Fig. 1:4).

Once submi�ed to the PanDA Server, jobs are stored by the Task
Bu�er component into a global queue implemented as a database
(Fig. 1:5). When jobs are submi�ed directly to the PanDA Server,
the Brokerage component is used to bind jobs to available sites,
depending on static information about the resources available for
each site. Jobs submi�ed by JEDI are already bound to sites so
no further brokerage is needed. Once jobs are bound to sites, the
Brokerage module communicates to the Data Service module what

data sets need to be made available on what site (Fig. 1:6). �e Data
Service communicates these requirements to the ATLAS DDM
(Fig. 1:7) that, when needed, takes care of aggregating �les into
datasets and containers, replicating them on the required sites
(Fig. 1:8).

�e AutoPyFactory subsystem communicates with the Task
Bu�er component of the PanDA Server, acquiring information
about jobs that are ready for execution on speci�c (type of) sites
(Fig. 1:9). On the basis of this information, AutoPyFactory de�nes
a set of suitable PanDA Pilots and concurrently submits them to
a Condor-G broker (Fig. 1:10). �is broker submits these pilots
wrapped as jobs or VMs to the required sites (Fig. 1:11).

When a PanDA Pilot becomes available on a site, it calls the Job
Dispatcher module of the PanDA Server, requesting for a job to
execute (Fig. 1:12). �e Job Dispatcher communicates with the Task
Bu�er, requesting for a job that is bound to the site of that pilot
and ready to be executed. Task Bu�er checks the global queue (i.e.,
the PanDA database) and if such a job is available, it passes the job
handler to the Job Dispatcher. �e Job Dispatcher dispatches the
job to the PanDA Pilot (Fig. 1:13).

Upon receiving a job, a PanDA Pilot starts a monitoring process
and forks a subprocess for the execution of the job’s payload. �e
job is setup, input data are transferred from the designated staging
in location (Fig. 1:14), and the job’s payload is executed (Fig. 1:15).
Once completed, output is transferred to the staging out location
(Fig. 1:16).

�e Data Service module of the PanDA Server tracks and collects
the output generated by each job (Fig. 1:17), updating jobs’ a�ributes
via the Task Bu�er module (Fig. 1:18). When the output of all the
jobs of a task are retrieved, it is made available to the user via
PanDA Server. When a task is submi�ed to JEDI, task is marked as
done (Fig. 1:19) and the result of its execution is made available to
the user by JEDI (Fig. 1:20).

3 DEPLOYING PANDA ON A
LEADERSHIP-SCALE SYSTEM

�e next LHC run for taking data (Run 3) will require more re-
sources than the Worldwide LHC Computing Grid (WLCG) can
provide. Currently, PanDA WMS uses more than 100,000 cores
at over 100 Grid sites, with a peak performance of 0.3 petaFLOPS.
�is capacity will be su�cient for the planned analysis and data
processing, but it will be insu�cient for the Monte Carlo produc-
tion work�ow and any extra activity. To alleviate these challenges,
ATLAS is engaged in a program to expand the current computing
model to include additional resources such as the opportunistic use
of supercomputers as well as commercial and academic clouds.

3.1 Use of Supercomputers with PanDA
Modern supercomputers have been designed mainly to support
parallel computation that requires runtime communication. Job
execution is parallelized across multiple cores, each core calculat-
ing a small part of the problem and communicating with other
cores via a message passing interface (MPI). Accordingly, super-
computers have large number of worker nodes, connected through
a high-speed, low-latency dedicated network. Each worker node

Dra�

SC2017, Nov 2017, Denver, Colorado, USA Author 1 et al.

has multicore CPUs, usually augmented with parallel Graphics
Processing Units (GPUs) or other types of specialized coprocessors.

PanDA WMS has been designed to support distributed Grid
computing. Executing ATLAS workloads or work�ows involves
concurrent and/or sequential runs of possibly large amount of jobs,
each requiring no or minimal parallelization and no runtime com-
munication. �us, computing infrastructure like WLCG have been
designed to aggregate large amount of computing resources across
multiple sites. While each site may deploy runtime message-passing
capabilities, usually these are not used to perform distributed com-
putations.

�ere are at least two approaches to enable PanDA WMS to
execute ATLAS workloads or work�ows on supercomputers: (i)
using the subset of resources and capabilities shared by both super-
computers and WLCG; (ii) reconciling the parallel and distributed
computing paradigms by means of dedicated abstractions. �e for-
mer is a pragmatic approach that enables the execution of speci�c
workloads by prototyping single-point solutions. �e la�er is a
principled approach, be�er suited for a production-grade solution,
capable of supporting general-purpose workloads and work�ows
on both supercomputers and Grid infrastructures. �ese two ap-
proaches are not mutually exclusive: developing a single-point
solution gives the opportunity to be�er understand the problem
space, supporting the creation of abstractions for the integration of
computing paradigms.

�is section illustrates the design and architecture of a job bro-
ker prototyped by the PanDA team. �is broker supports execution
of part of the ATLAS production Monte Carlo work�ow on Ti-
tan, a leadership-class supercomputer managed by the Oak Ridge
Leadership Computing Facility (OLCF) at the Oak Ridge National
Laboratory (ORNL). A�er an analysis of the results obtained and the
lessons learned, the following section introduces the design and �rst
experimental characterization of a next generation executor (NGE).
NGE is designed to abstract resources and capabilities, enabling the
concurrent execution of both parallel and distributed computing
on generic high performance computing (HPC) machines.

3.2 Interfacing PanDA with Titan
�e Titan supercomputer, current number three on the Top 500
list [12], is a Cray XK7 system with 18,688 worker nodes and a total
of 299,008 CPU cores. Each worker node has an AMD Opteron 6274
16-core CPU, a Nvidia Tesla K20X GPU, 32 GB of RAM and no local
storage, though a 16 GB RAM disk can be set up. Work nodes use
Cray’s Gemini interconnect for inter-node MPI messaging. Titan is
served by the Spider II [22], a Lustre �lesystem with 32 PB of disk
storage, and by a 29 PB HPSS tape storage system. Titan’s worker
nodes run Compute Node Linux, a run time environment based on
SUSE Linux Enterprise Server.

Titan’s users submit jobs to Titan’s PBS scheduler by logging into
login or data transfer nodes (DTNs). Titan’s authentication and au-
thorization model is based on two-factor authentication with a RSA
SecurID key, generated every 30 seconds. Login nodes and DTNs
have out/inbound wide area network connectivity while worker
nodes have only local network access. Fair-share and allocation
policies are in place both for the PBS batch system and shared �le
systems.

Titan’s architecture, con�guration and policies poses several
challenges to the integration with PanDA. �e deployment model
of PanDA Pilot is unfeasible on Titan: PanDA Pilot requires to con-
tact the Job Dispatcher of the PanDA Server to pull jobs to execute
but this is not possible on Titan because worker nodes do not o�er
outbound network connectivity. Further, Titan does not support
PanDA’s security model based on certi�cates and virtual organi-
zations, making the PanDA’s approach to identity management
also unfeasible. While DTNs o�er wide area network data trans-
fer, an integration with ATLAS DDM is beyond the functional and
administrative scope of the current prototyping phase. Finally, the
speci�c characteristics of the execution environment, especially
the absence of local storage on the worker nodes and modules tai-
lored to Compute Node Linux, require reengineering of ATLAS
application frameworks.

Currently, very few HEP applications could bene�t from Ti-
tan’s GPUs but some computationally-intensive and non memory-
intensive tasks of ATLAS work�ows can be o�oaded from the Grid
to Titan’s large amount of cores. Further, when HEP tasks can be
partitioned to independent jobs, Titan worker nodes can be used to
execute up to 16 concurrent payloads, one for each available core.
Given these constraints and challenges, the type of task most suit-
able for execution at the moment on Titan is Monte Carlo detector
simulation. �is type of task is mostly computational-intensive, re-
quiring less than 2GB of RAM at runtime and with small input data
requirements. Detector simulation tasks in ATLAS account for ≈
60% of all the jobs on WLCG, making them a primary candidate for
o�oading.

Detector simulation is part of the ATLAS production Monte
Carlo (MC) work�ow (also known as MC production chain) [11,
24, 25]. �e MC work�ow consists of four main stages: event
generation, detector simulation, digitization, and reconstruction.
Event generation creates sets of particle four-momenta via di�erent
generators, e.g., PYTHIA [27], HERWIG [9] and many others. �e
detector simulator is called Geant4 [3] and simulates the interaction
of these particles with the sensitive material of the ATLAS detector.
Each interaction creates a so-called hit and all hits are collected
and passed on for digitalization where hits are further process to
mimic the readout of the detector. Finally, reconstruction operates
local pa�ern recognition, creating high-level objects like particles
and jets.

3.3 PanDA Broker on Titan
�e lack of wide area network connectivity on Titan’s worker nodes
is the most relevant challenge for integrating PanDA WMS and Ti-
tan. Without connectivity, Panda Pilots cannot be scheduled on
worker nodes because they would not be able to communicate with
PanDA Server and therefore pull and execute jobs. �is makes im-
possible to port PanDA Pilot to Titan while maintaining the de�ning
feature of the pilot abstraction: decoupling resource acquisition
from workload execution via multi-stage scheduling.

�e unavailability of pilots is a potential drawback when execut-
ing distributed workloads like MC detector simulation. Pilots are
used to increase the throughput of distributed workloads: while
pilots have to wait in the supercomputer’s queue, once scheduled,
they can pull and execute jobs independently from the system’s

Dra�

Converging High-Throughput and High-Performance Computing: A Case Study SC2017, Nov 2017, Denver, Colorado, USA

queue. Jobs can be concurrently executed on every core available
to the pilot, and multiple generations of concurrent executions can
be performed until the pilot’s walltime is exhausted. �is is particu-
larly relevant for machines like Titan where queue policies privilege
parallel jobs on the base of the number of worker nodes they re-
quest: the higher the number of nodes, the shorter the amount of
queue time (modulo fair-share and allocation policies).

Titan’s back�ll functionality o�ers the opportunity to avoid
the overhead of queue wait times without using pilot abstraction.
Back�ll availability is the number of worker nodes that cannot be
used for a certain amount of time by any of the jobs already queued
on Titan: All queued jobs are either too large or their walltime
is too long. At any point in time, Titan’s Moab scheduler can be
queried for back�ll availability. Based upon the result of this query,
a job can be shaped to request no more than the back�ll availability.
As such, when submi�ed this job is usually scheduled immediately,
spending almost no time in the queue.

Compared to pilots, back�ll has the disadvantage of limiting the
amount of work nodes that can be requested. Pilots are normal
jobs: they can request as many worker nodes for as much time as a
queue can o�er. On the contrary, jobs sized on the basis of back�ll
information availability ***SJ: should be resource availability or
back�ll queue information? ***MT: AFAIH, there is no dedicated
queue to back�ll depend on the number of worker nodes that
cannot be given to any other job in the Titan’s queue.

Usually, back�ll availability is a fraction of the total capacity of
the queue but the size of Titan mitigates this limitation. Every year,
about 10% of Titan’s capacity remains unused, corresponding to an
average of 30,000 unused cores. �is equals approximately 270M
core hours per year, roughly 30% of the overall capacity of WLCG.

***MT: Please feel free to add details about back�ll as needed.
***MT: Please note: I know the following departs for the current
name given to the PanDA subsystem installed on Titan. I think
there is a good reason to call it a broker instead of a pilot, and I
think I explained it in the previous paragraphs. Please take this just
as a suggestion, something I would like to discuss in our meeting.
***SP: It’s not a pilot in conventional sense. I call it an agent. It just
happened that we were able to use full PanDA pilot’s code base to
serve our purposes on Titan. that’s why, by inertia, we still call it
a pilot. ***MT: �ank you. We would have a problem calling it
‘agent’ as we use that term to name the pilot of NGE. Would PanDA
Broker work? ***SP: OK broker it is for this paper.

Given the communication requirements of PanDA Pilots and the
unused capacity of Titan, PanDA pilot was repurposed to serve as
a job broker on the DTN nodes of Titan. Maintaining the core mod-
ules of PanDA Pilot and its stand-alone architecture, this prototype
called ‘PanDA Broker’ implements functionalities to: (i) interrogate
Titan about back�ll availability; (ii) pull MC jobs and events; (iii)
wrap the payload of ATLAS jobs into MPI scripts; (iv) submi�ing
MPI scripts to Titan’s PBS batch system and monitor their execu-
tion; and (v) staging input/output �les. Back�ll querying, payload
wrapping, and scripts submission required a new implementation
while pulling ATLAS job and events, and �le staging were inherited
from PanDA Pilot.

Back�ll querying is performed via a dedicated Moab scheduler
command while a tailored Python MPI script is used to execute the
payload of ATLAS jobs. �is MPI script enables the execution of

Figure 2: Schematic view of the PanDA Broker.

unmodi�ed Grid-centric, ATLAS jobs on Titan. Typically, a MPI
script is workload-speci�c as it sets up the execution environment
for a speci�c payload. �is involves organization of worker direc-
tories, data management, optional input parameters modi�cation,
and cleanup on exit. Upon submission, a copy of the MPI script
runs on every available worker node, starting the execution of the
ATLAS job’s payload in a subprocess and waits until its completion.

MPI scripts are submi�ed to Titan’s PBS batch system via
RADICAL-SAGA [29], a Python module, compliant with the OGF
GFD.90 SAGA speci�cation [15]. �e Simple API for Grid Appli-
cations (SAGA) o�ers a uni�ed interface to diverse job schedulers
and �le transferring services. In this way, SAGA provides an inter-
operability layer that lowers the complexity of using distributed
infrastructures. Behind the API façade, RADICAL-SAGA imple-
ments a adaptor architecture: each adaptor interface the SAGA API
with di�erent middleware systems and services, including the PBS
batch scheduler of Titan.

�e data staging capabilities of the PanDA Broker are imple-
mented via a �le system that is shared among DTNs and worker
nodes. �e input �les with the events of the ATLAS jobs are down-
loaded on the shared �lesystem via the ATLAS DDM service. �e
MPI script setup process includes making the location of these �les
available to the payload of the ATLAS’s jobs. �e PanDA Broker
can locate the payload’s output �les on the shared �lesystem and
transfer them from Titan to any computing center used by ATLAS.

Once deployed on Titan, every PanDA Broker supports the execu-
tion of MC detector simulation in 8 steps: (i) PanDA Broker queries
Titan’s Moab scheduler about current back�ll availability; (ii) the
PanDA Broker queries the Job Dispatcher module of the PanDA
server for ATLAS jobs that have been bound to Titan by JEDI; (iii)
Upon receiving the descriptions of those jobs, PanDA Broker pulls
their input �les from the ATLAS DDM service to the DTN; (iv) the
PanDA Broker creates an MPI script, wrapping enough ATLAS jobs’
payload to �t back�ll availability; (v) the PanDA Broker submits the
MPI script to the Titan’s PBS batch system via RADICAL-SAGA;
(vi) upon execution on the worker node(s), the MPI script creates

Dra�

SC2017, Nov 2017, Denver, Colorado, USA Author 1 et al.

con�gures and executes one AthenaMP for each work node avail-
able; (vi) AthenaMP spawns 1 event simulation process on each
available core (16); (vii) during execution, PanDA Broker moni-
tors execution progress and sends PanDA Server “heart beats” for
each job.; and (viii) upon completion of each simulation, the PanDA
Broker locates the output on the shared �lesystem, transfer it to
designated computing centre, and performs cleanup.

4 ANALYSIS AND DISCUSSION
Currently, ATLAS deploys 20 instances of PanDA Broker on 4 Ti-
tan’s DTNs, 5 instances per DTN. Each broker submits and manages
the execution of 15 to 300 ATLAS jobs, one job for each worker
node, and a theoretical maximum concurrent use of 96,000 cores.
Since November 2015, PanDA Brokers have operated only in back-
�ll mode, without a de�ned time allocation, and running at the
lowest priority on Titan.

We evaluate the e�ciency, scalability and reliability of the PanDA
Brokers along two dimensions: (i) the amount of back�ll availability
utilized by the PanDA Brokers; and (ii) the amount of runtime spent
performing detector simulations. We based these evaluations on
measuring the number of cores utilized by ATLAS on Titan, the
overall back�ll availability, the number of detector simulations
performed on all the resources available to ATLAS and on Titan,
and the failure rate of these simulations. All the measurements
were performed between January 2016 and February 2017, herea�er
called ‘experiment time window’.

4.1 Utilization and E�ciency of PanDA Broker
on Titan

Figure 3 (gray bars) shows the number of core-hours used by ATLAS
on Titan during the experiment time window. ATLAS consumed
a total of 73.8M core-hours, for an average of ≈7M core-hours a
month, with a minimum of 3.3M core-hours in April 2016 and a
maximum 14.8M core-hours in February 2017.

15
.3
3%

10
.8
4%

13
.4
7%

8.
90

%

9.
37

%

14
.2
9%

14
.7
5%

26
.6
3%

22
.4
6%

26
.1
6%

21
.2
7%

16
.3
0%

15
.6
4%

33
.5
2%

0
5
10
15
20
25
30
35
40
45
50

Ja
n-
16

Fe
b-
16

M
ar
-1
6

Ap
r-1

6

M
ay
-1
6

Ju
n-
16

Ju
l-1

6

Au
g-
16

Se
p-
16

O
ct
-1
6

No
v-
16

De
c-
16

Ja
n-
17

Fe
b-
17

Co
re
	H
ou

rs
	(M

ill
io
ns
)

Unused	Core	Hours Core	Hours	Used	by	ATLAS

Figure 3: Gray bars: Number of unused cores of Titan’s back-
�ll availability; green bars: Number of cores of back�ll avail-
ability used by ATLAS via PanDA Brokers on Titan; red la-
bels: E�ciency of PanDA Brokers on Titan de�ned as per-
centage of back�ll availability used every month of the ex-
periment window.

Figure 3 (green bars) shows back�ll utilization during the exper-
iment time window. E�ciency (Figure 3, red labels) is de�ned as
the fraction of Titan’s cores available via back�ll that was utilized
by the PanDA Brokers. �e brokers reached 18% average e�ciency,
with a minimum 8.9% e�ciency on April 2016 and a maximum
33.5% e�ciency on February 2017. �e number of total back�ll
cores available was 38.1M in April 2016, and 33.1M in February
2017. �is shows that the measured di�erence in e�ciency did not
depend on a comparable di�erence in total back�ll availability.

***SJ: I would plot the e�ciency on the Y2 axis for both [dia-
grams]. ***MT: Done but then the �rst diagram ended up plo�ing
a subset of the data of the second diagram. I used only the second
diagram. ***SJ: I would suggest similar style of X-axis as previous
�gure. Di�cult to parse which is April if we are going to call out a
speci�c month. Also consistency in style is generally good to keep
cognitive burden low. ***MT: Done.

During the experiment time window, about 2.25M detector sim-
ulation jobs were completed on Titan, for a total of 225M events
processed. �is is equivalent to 0.9% of all the 250M detector simu-
lations performed by ATLAS in the same period of time, and 3.5% of
the 6.6B events processed by those jobs. Comparatively, Titan con-
tributed 3.9% of the total of around 200K cores available to ATLAS
on Grid, Cloud, and HPC infrastructures together. �ese �gures
con�rms the relevance of supercomputers’ resource contribution
to the LHC Run 3, especially when accounting for the amount of
unused back�ll availability and the rate of improvement of PanDA
e�ciency.

On February 2017, PanDA Brokers used almost twice as much
back�ll availability than in any other month. No relevant code
update was made during that period and logs indicated that the
brokers were able to respond more promptly to back�ll availability.
�is is likely due to hardware upgrades on the DTNs. �e absence
of continuous monitoring of those nodes does not allow to quantify
bo�lenecks but spot measurements of their load indicate that a
faster CPU and be�er networking were likely responsible for the
improved performance.

Investigations showed an average CPU load of 3.6% on the up-
graded DTNs. As such, further hardware upgrades seem unlikely to
improve signi�cantly the performance of PanDA Brokers. Nonethe-
less, the current load suggests that the number of brokers per
DTN could be increased. �is would enable the submission of
a larger number of concurrent jobs to Titan’s PBS queue, allowing
for PanDA to consume a higher percentage of back�ll availability.

Every detector simulation executed on Titan process 100 events.
�is number of events is consistent with the physics of the use case
and with the average duration of back�ll availability. �e duration
of a detector simulation is a function of the number of events: the
more events, the longer the simulation. Not all events take the
same time to be simulated: Figure 4 shows a distribution of the
simulation time of 1 event from ≈2 to ≈40 minutes, with a mean of
≈14 minutes. Considering that each worker node process up to 16
events concurrently, 100 events takes around 2 hours to process.

Figure 5 shows the distribution of back�ll availability on Titan
as a function of number of nodes and the time of their availabil-
ity (i.e., walltime). We recorded these data by polling Titan’s Moab
scheduler at regular intervals during the experiment window time,
while developing and deploying PanDA Brokers. �e mean number

Dra�

Converging High-Throughput and High-Performance Computing: A Case Study SC2017, Nov 2017, Denver, Colorado, USA

Figure 4: Distribution of the time taken by a Geant4 detec-
tor simulation to simulate one event. 3000 Events; 30 Titan
worker nodes; 16 simulations per node; 100 events per node.
Average time per event ≈14min. Broad distribution from ≈2
to ≈40 minutes.

of nodes was 680, and their mean walltime was 680 minutes. De-
tector simulations of 100 events, enable to use down to 1 node for
1/2 of the mean walltime of back�ll availability. As such, it o�ers a
good compromise for PanDA Broker e�ciency.

Figure 5: Back�ll availability measures as walltime in min-
utes vs number of work nodes during the experiment win-
dow time. Availability was measured 62175 times: mean
number of work nodes available 680 (yellow line); mean
walltime available 122 minutes (red line).

Usually, detector simulations performed on the Grid process 10
times the number of events than those on Titan. �is explains the
di�erence between the percentage of detector simulations (9%) and
of events computed by those simulations (3.9%) on Titan. PanDA
Broker could �t the number of events to the walltime of the back�ll
availability on the base of the distribution of Figure 5. �at spe-
ci�c number of event could then be pulled from the PanDA Event
service [8] and given as input to one or more simulations. Once

packaged into the MPI script submi�ed to titan’s PBS batch system,
these simulations would be�er �t back�ll availability, increasing
the e�ciency of PanDA Brokers.

�e transition from a homogeneous to a heterogeneous number
of events per detector simulation has implications for the applica-
tion layer. An even number of events across simulations makes it
easier to partition, track and package events across simulations,
especially when they are performed on both the Grid and Titan.
A homogeneous number of events also helps to keep the size and
duration of other stages of the MC work�ow (§3.2) more uniform.
Further analysis is needed to evaluate the trade o�s between in-
creased e�ciency of resource utilization and the complexity that
would be introduced at the application layer.

Currently, each PanDA Broker creates, submits, and monitor
a single MPI PBS script at a time. �is design is inherited from
PanDA Pilot where a single process is spawn at a time to execute
the payload. As a consequence, the utilization of a larger portion of
Titan’s back�ll availability depends on the the number of concurrent
PanDA Brokers instantiated on the DTNs: When all the 20 PanDA
Brokers have submi�ed a MPI PBS Job, further back�ll availability
cannot be used.

Based on the current data, increasing PanDA Brokers e�ciency
on Titan would require around 60 concurrent brokers. Further
testing and be�er monitoring capabilities are required to estab-
lish whether the DTN capabilities can support this load, especially
when considering the volume of �les staged in and out the DTNs.
Alternatively, a design of a PanDA Broker capable of managing
multiple MPI scripts at a time is being evaluated.

4.2 E�ciency, Scalability, and Reliability of
Detector Simulation on Titan

We use two main parameters to measure the performance of the
detector simulation jobs submi�ed to Titan: (i) the time taken to
setup AthenaMP [2], the ATLAS so�ware framework integrating
the GEANT4 simulation toolkit [3]; and (ii) the distribution of the
time taken by the Geant4 toolkit to simulate a certain number of
events.

AthenaMP has an initialization and con�guration stage. At ini-
tialization time, AthenaMP is assembled from a large number of
shared libraries, depending on the type of payload that will have
to be computed. Once initialized, every algorithm and service of
AthenaMP is con�gured by a set of Python scripts. Both these oper-
ations result in a large number of read operations on the �lesystem,
including those required to access of small python scripts.

***MT: TODO: specify that this is work in progress (see Sergey’s
comment) and see how to move it to the data performance subsec-
tion Initially, all the shared libraries of AthenaMP and the python
scripts for the con�guration stage were stored on the Spider 2 Lus-
tre �le system. However, the I/O pa�erns of the initialization and
con�guration stages degraded the performance of the �lesystem
(Figure � ***MT: We may want to aggregate some of the diagrams
about lustre’s experiments here). Since Spider 2 is a center-wide
�le system, this resulted in performance degradation for all OLCF
resources and users. ***MT: I am afraid the details about the trace
are too speci�c given the space constraints of a SC submission.
Please feel free to uncomment it if you disagree.

Dra�

SC2017, Nov 2017, Denver, Colorado, USA Author 1 et al.

A�er careful characterization of the impact of ATLAS jobs on
Lustre, the performance degradation was addressed by moving
the AthenaMP distribution to a read-only NFS directory, shared
among DTNs and worker nodes. �is eliminated the problem of
metadata contention, improving metadata read performance from
≈6,300 seconds on Lustre to ≈1,500 seconds on NFS. Further, at
con�guration time, the input �les of each detector simulation job
were stored to a ramdisk on the work nodes. �is o�ered a marked
improvement of reading time: from 1,320 seconds on Lustre to 40
seconds on NFS.

�e AMD Opteron 6274 CPU used on Titan has 16 cores, divided
into 8 compute units. Each compute units has 1 �oating point
(FP) scheduler shared between 2 cores. When using 16 cores for
FP-intensive calculations, each pair of cores competes for a single
FP scheduler. �is creates the overhead shown in Figure 6: the
mean runtime per event for 8 concurrent simulations computing
50 events is 10.8 minutes, while for 16 simulations is 14.25 minutes
(consistent with Figure 4). Despite an ine�ciency of almost 30%,
Titan’s allocation policy based on number of worker nodes used
instead of number of cores does not justify the use of 1/2 of the
cores available.

Figure 6: Comparison between distributions of the time
taken by a Geant4 detector simulation to simulate one event
when placing 2 simulations (h1) or 1 simulation (h2) per
CPU. 2 simulation use 16 cores per node, 1 simulation 8, 1
per compute unit. 50 Events; 1 Titan worker nodes; 16 work
threads per node; 100 events per node.

�e performance analysis of Titan’s AMD CPUs for detector
simulations helps also to compare Titan and Grid site performances.
Usually, Grid sites exposes resources with heterogeneous CPU
architectures and a maximum of 8 (virtual) cores per worker node,
while Titan’s o�er an homogeneous 16 cores architecture. We used
the rate of events processes per minute as a measure of the e�ciency
of executing the same detector simulation on both Titan or Grid
sites. Figure 7 compares the e�ciencies of Titan to the BNL and
SIGNET Grid sites, normalized for 8 cores. E�ective performance
per-core at Titan is ≈0.57 event per minute, roughly 1/2 of BNL and
1/3 of SIGNET performances.

�e di�erences in performance between Titan and the BNL and
SIGNET Grid sites are due to the FP scheduler competition and

Figure 7: Comparison of the event rate for �nished jobs at
Titan (h1), BNL (h2) and GRIDNET (h3). Titan histogram
shows 1/2 of the measured values to account for the core
di�erence between Titan (16) and the Grid sites (8). Perfor-
mance per core: BNL 1.126; SIGNET 0.885; Titan 0.577.

the availability of newer processors. �e CPUs at the Grid sites
have one FP scheduler per core and are on average newer than the
CPU of Titan. �e heterogeneity of the Grid sites’ CPUs explain
the higher performance variance compared to the performance
consistency measured on Titan.

�e current design and architecture of the PanDA Broker is
proving to be as reliable as PanDA Pilot when used on the WLCG.
Between Jan 2016 and Feb 2017, the overall failure rate of all the
ATLAS detector simulation jobs was 14%, while the failure rate of
jobs submi�ed to Titan was a comparable 13.6%. PanDA Brokers
were responsible for around the 19% of the failures, compared to the
29% of failures produced by the JobDispatcher module of the PanDA
Server, and the 13% failures produced by the Geant4 toolkit. �e
current failure rate of the PanDA Brokers con�rms the bene�ts of
reusing most of the code base of the PanDA Pilot for implementing
the PanDA Broker. It also shows that adopting third-party libraries
like RADICAL-SAGA did not have a measurable adverse e�ect on
reliability.

4.3 PanDA I/O Impact at OLCF
To be�er understand the I/O impact of ATLAS PanDA project on
Titan supercomputing environment we analyzed 1,175 jobs ran on
the week of 10/25/2016, for a total of 174 hours. Table 1 shows
the overall statistical breakdown of the observed �le I/O impact of
ATLAS at OLCF.

ATLAS jobs use between 1 and 300 worker nodes, and 35 on
average. 75% of the ATLAS jobs consume less than 25 nodes and
92% less than 100. During the 174 hours of data collection, 6.75
ATLAS jobs were executed on average per hour, each job running
for an average of 1.74 hours. Every job read less than 250 GB and
wrote less than 75 GB of data and, on average, each job read 20 GB
and wrote 6 GB of data.

�e I/O of the ATLAS job executed on Titan show an interesting
pa�ern. Table 1 indicates that the amount of data read per ATLAS

Dra�

Converging High-Throughput and High-Performance Computing: A Case Study SC2017, Nov 2017, Denver, Colorado, USA

Num. Nodes Duration (s) Read (GB) Wri�en (GB) GB Read/nodes GB Wri�en/nodes open() close()
Min 1 1,932 0.01 0.03 0.00037 0.02485 1,368 349
Max 300 7,452 241.06 71.71 0.81670 0.23903 1,260,185 294,908
Average 35.66 6,280.82 20.36 6.87 0.38354 0.16794 146,459.37 34,155.74
Std. Dev. 55.33 520.99 43.90 12.33 0.19379 0.03376 231,346.55 53,799.08
Table 1: �e Statistical breakdown of the I/O impact of 1,175 PanDA jobs executed at OLCF for the week of 10/25/16

worker node is less than 400 MB on average, while the amount of
data wri�en per node is less than 170 MB on average. �is correlates
with our �nding that ATLAS PanDA jobs are read heavy. However,

ATLAS PanDA jobs are read heavy: On average, the amount of
data read per worker node is less than 400 MB, while the amount
of data wri�en is less than 170 MB. �is correlates with our �nding
that . However, the distributions of read and wri�en data are quite
di�erent: �e read operation distribution per job shows a long tail,
ranging from 12.5 GB to 250 GB, while the wri�en amount of data
has a very narrow distribution. ***MT: Should we say why?

�e metadata I/O breakdown shows that ATLAS jobs yield 23 �le
open() operations per second (not including �le stat() operations)
and 5 �le close() operations per second, with similar distributions.
On average, the maximum number of �le open() operations per job
is ≈170/s and the maximum number of �le close() operations is
≈39/s. For the 1,175 ATLAS PanDA jobs observed, the total number
of �le open() operations is 172,089,760 and the total number of �le
close() operations is 40,132,992. �e di�erence between these two
values is still under investigation: One possible explanation is that
ATLAS PanDA jobs don’t call a �le close() operation per every �le
open() issued.

Overall, based on our experiments with ATLAS jobs, it can be
safely concluded that the �le and metadata I/O load of ATLAS
PanDA project on the OLCF Titan supercomputing environment
and the Spider 2 �le system is not detrimental to the center oper-
ations. At the current scale of the project, the overall impact of
ATLAS operations on Titan is minimal.

5 PANDA: THE NEXT GENERATION
EXECUTOR

***AA: I think that the names of the states should be removed. �ey
are meaningless without the �gures. I le� them just in case we
decide to reintroduce the �gures. ***MT: Done.

***SJ: admi�edly i haven’t read earlier section in question care-
fully, but i’m a bit confused about the use of ”wide area”. wide area
is typically used for cross data center ***MT: Every PanDA Pilot
has to communicate with PanDA Server. PanDA Server runs on
dedicated resources, outside OLCF. Titan’s worker nodes cannot
communicate with PanDA Server because their connectivity is lim-
ited to Titan’s network. Do you have a suggestion for an alternative
to “wide area”?

As seen in §3, PanDA Broker was deployed on DTNs because of
the absence of wide area network connectivity on Titan’s worker
nodes. �e lack of pilot capabilities impacts both the e�ciency and
the �exibility of PanDA’s execution process. Pilots could help to
improve e�ciency by increasing throughput and by enabling be�er
use of back�ll utilization. Further, pilots makes easier to support
heterogeneous workloads.

As discussed in §4, the absence of pilots imposes the static cou-
pling between MPI scripts submi�ed to the PBS batch system and
detector simulations. �is makes impossible to schedule multiple
generations of workload on the same PBS job: Once a number of
detector simulations are packaged into a PBS job and this job is
queued on Titan, no further simulations can be added to that job.
New simulations have to be packaged into a new PBS job that needs
to be submi�ed to Titan on the base of the back�ll availability of
that moment.

�e support of multiple workload generations would enable a
more e�cient use of the back�ll availability of walltime. Currently,
when a set of simulations ends, the PBS job also ends, independent
of whether more wall-time would still be available. With a pilot,
more simulations could be executed so to utilize all the available
wall-time, while avoiding further job packaging and submission
overheads.

Multiple generations would also help with relaxing two assump-
tions of the current execution model: knowing the number of simu-
lations before submi�ing the MPI script, and having a �xed amount
of events per simulation (100 at the moment). Pilots would enable
the scheduling of simulations independently from whether they
were available at the moment of submi�ing the pilot. Further, sim-
ulations with a varying number of events could be scheduled on
a pilot, depending on the amount of remaining walltime and the
distribution of execution time per event, as shown in §4.2, Figure 4.
�is capabilities would be particularly useful to increase the PanDA
Broker e�ciency for availabilities with a wide delta between the
number of cores and walltime.

Pilots can o�er a payload-independent scheduling interface while
hiding the mechanics of coordination and communication among
multiple worker nodes. �is could eliminate the need for packaging
payload into MPI scripts within the broker, greatly simplifying
the submission process. �is simpli�cation would also enable the
submission of di�erent types of payload, without having to develop
a speci�c PBS script for each payload. �e submission process
would also be MPI-independent, as MPI is used for coordination
among multiple worker nodes, not by the payload.

***MT: NOTE: I would speak about about back�ll/not back�ll in
the discussion of NGE, when speaking about its generality towards
resources, i.e., uni�ed submission and scheduling process across
di�erent resources and multiple resources. Part of this generality
is being able to submit to whatever batch system is supported by
SAGA (including Titan’s PBS and all its queues) and, in case, to
multiple resources at the same time.

***MT: NOTE: NGE is not able to use back�ll on Titan as we do
not have speci�c functionalities to interrogate the Moab scheduler
about back�ll availability. �is is why NGE should be presented
as the pilot for PanDA Broker and not as an alternative to PanDA

Dra�

SC2017, Nov 2017, Denver, Colorado, USA Author 1 et al.

Application

Pilot
Titan

Unit
Manager

Pilot
Manager

User
Workstation

Agent MOM
Node

Pilot
Launcher

Unit
Scheduler

Pilot API

SAGA API

MongoDB

Worker
Node

ExecutorScheduler Worker
Node

Executor

Figure 8: NGE Architecture as deployed on Titan. �e Pilot-
Manager and the UnitManager reside on one of Titan’s DTN
while the Agent is executed on Titan’s worker nodes. Boxes
color coding: gray for entities external to NGE, white for
APIs, purple for NGE’s modules, green for pilots, yellow for
module’s components.

Broker. Further, NGE alone would not be able to speak directly to
PanDA Server.

5.1 Implementation
�e implementation of pilot capabilities within the current PanDA
Broker require quanti�cation of the e�ective bene�ts that it could
yield and, on the base of this analysis, a dedicated engineering e�ort.
We developed a prototype of a pilot system capable of executing
on Titan to study experimentally the quantitative and qualitative
bene�ts that it could bring to PanDA. We called this prototype Next
Generation Executor (NGE).

NGE is a runtime system designed to execute heterogeneous
and dynamic workloads on diverse resources. Fig. 8 illustrates its
current architecture as deployed on Titan: the two management
modules represent a simpli�ed version of the PanDA Broker while
the agent module is the pilot submi�ed to Titan and executed on
its worker nodes. �e communication between PanDA Broker and
PanDA Server is abstracted away as not immediately useful to
evaluate the performance and capabilities of a pilot on Titan.

NGE exposes an API for the application layer to describe work-
loads (Fig. 8, green squares) and pilots (Fig. 8, red circles), and to
instantiate a PilotManager and a UnitManager. �e PilotManager
submits pilots to Titan’s PBS batch system via SAGA API (Fig. 8,
dash arrow), as done by PanDA Broker to submit MPI scripts. Once
scheduled, the pilot’s Agent is bootstrapped on Titan’s MOM node
and worker nodes, and the UnitManager schedules units to the
Agent’s Scheduler (Fig. 8, solid arrow). �e Agent’s Scheduler
schedules the units on one or more Agent’s Executor for execu-
tion. �e Agent’s executors can manage one or more worker nodes,
depending on performance evaluations.

�e UnitManager and the Agent communicate via a database
that is instantiated on one of Titan’s DTN so to be reachable by
both modules. A similar approach would be used to enable PanDA
Broker to schedule pilots instead of MPI scripts. ***MT: Rewrite
this a�er checking it with Andre.

�e NGE Agent uses the Open Run-Time Environment (ORTE)
for communication and coordination of units execution. ORTE
is a spin-o� from the Open-MPI project and is a critical compo-
nent of the OpenMPI implementation. It was developed to support

distributed high-performance computing applications operating
in a heterogeneous environment. �e system transparently pro-
vides support for interprocess communication, resource discovery
and allocation, and process launching across a variety of platforms.
ORTE provides a mechanism similar to the Pilot concept - it allows
the user to create a “dynamic virtual machine” (DVM) that spans
multiple nodes. ORTE provides libraries to enable the submission,
monitoring and managing of tasks, avoiding �lesystem bo�lenecks
and race conditions with network sockets. As a consequence, it is
able to minimize the system overhead while submi�ing tasks.

5.2 Experiments
In this section we present experiments to determine the perfor-
mances of the NGE and to show how it provides a minimal overhead
while introducing new functionalities.

Experiments run instances of AthenaMP by using NGE pilots,
simulating a pre-determined number of events in the ATLAS detec-
tor. ***MT: are they 100 events? ***AA: ‘Not always.’ We present
three groups of experiments in which we test the NGE for weak
scalability, weak scalability with multiple generation, and strong
scalability.

We measured the execution time of the pilots and of the
AthenaMP executed within them, collecting timestamps at all stages
of the execution. Experiments have been performed by submi�ing
NGE’s pilots to TITAN’s batch queue. Because of TITAN’s policies,
the turnaround time of each run of our experiments is dominated
by queue time. Since we are interested only in the performances of
the NGE, we removed queue time from our statistics.

All the experiments have been performed by con�guring AthenaMP
to use all the 16 cores of TITAN’s worker nodes.

5.2.1 Weak scalability. In this experiment we run as many
AthenaMP instances (also referred as tasks from now-on) as the
number of nodes controlled by the pilot. Each AthenaMP simulates
100 events, requiring ∼ 70 minutes on average.

Tasks do not wait within the NGE Agent’s queue since one node
is available to each AthenaMP instance. Delays in tasks execution
are consequence of three other factors: (i) the bootstrapping of the
pilot on the nodes; (ii) the UnitManager, as de�ned in Section 5.1,
that has to dispatch tasks to the agent; and (iii) the time that the
agent requires to spawn all the tasks on the nodes.

We tested pilots with 250, 500, 1000 and 2000 worker nodes and
2 hours walltime. Figure 9 depicts the average pilot duration, the
average execution time of AthenaMP, and the pilot’s overhead as
function of the pilot size.

We observe that, despite some �uctuations due to external factors
(e.g., Titan’s shared �lesystem and the shared database used by the
NGE), the average execution time of AthenaMP ranges between
4200 and 4800 seconds. We also observe that in all the cases the
gap between AthenaMP execution times and the pilot durations
is minimal, although it slightly increases with the pilot size. We
notice that NGE’s overhead does not grow linearly with the number
of units.

5.2.2 Weak scalability with multiple generation . �is experi-
ment is similar to the one presented above but, in this case, we
want to test also the impact of submi�ing multiple generations of

Dra�

Converging High-Throughput and High-Performance Computing: A Case Study SC2017, Nov 2017, Denver, Colorado, USA

50
100

200

400

 2000

 4000

 6000

250/250 500/500 1000/1000 2000/2000

A
ve

ra
ge

 ti
m

e
(s

ec
on

ds
)

AthenaMP/# nodes

AthenaMP Execution time
Pilot Duration

Overhead

Figure 9: Weak scalability: average pilot duration, average
duration of a single AthenaMP execution, and pilot’s over-
head for di�erent pilot sizes (250, 500, 1000 and 2000 worker
nodes).

AthenaMP to the same pilot. ***MT: we used ‘generations’ at the
beginning of 6, I am assuming the reader understands the term by
now. Please change if you disagree. ***AA: I agree In this way,
we stress the pilot’s components, as new tasks are scheduled for
execution on the Agent while other tasks are still running.

***MT: we do we need to keep it below 2 hours? ***AA: You
are right. It was misleadind. I Changed. Check if you like it. We
performed the experiment by running �ve AthenaMP instances
per node. Since we are focusing on the overhead generated by the
scheduling and bootstrap of AthenaMP instances, we also reduced
the number of events simulated by each AthenaMP to sixteen in
such a way that the running time of each AthenaMP is, on average,
∼ 20 minutes. �is choice has been made to avoid the wasting of
Titan’s core hours but it does not a�ect the aim of the experiment.

We tested pilots with 256, 512, 1024 and 2048 worker nodes and
3 ***MT: 2? hours walltime. Figure 10 depicts the average pilot
duration, the average execution time of �ve sequential generations
***MT: generations? ***AA: Changed of AthenaMP, and the
corresponding overhead. We observe that the di�erence between
the two durations is more marked than in the previous experiments
***MT: mostly due to the increased overhead? ***AA: Well, I
guess that’s plain. . Despite this, we can notice that the growth
of the overhead is consistent with the increment of the number of
tasks per node for pilots with 256, 512 and 1024 worker nodes, and
much less than linear for the pilot with 2048 worker nodes ***AA:
Although that histogram is not trustworty because it is generate
with only two runs.

5.2.3 Strong scalability. �e last experiments study strong scal-
ability by running the same amount of tasks for di�erent pilot sizes.
We used 2048 AthenaMP instances and pilots with 256, 512, 1024
and 2048 nodes. �us, the number of AthenaMP generations is
equal to eight times the size of the smallest pilot and corresponds
to the size of the largest pilot. As a consequence, the number of
consecutive generations of AthenaMP decreases with the pilot size
by generating di�erent dynamics within the pilots. �is experi-
ment aim to show that the pilot overhead is not a�ected by the
concurrency level within the pilot but it depends only on the num-
ber of tasks. ***MT: Not sure I understand this sentence ***AA:

 250
 500

 1000

 2000

 4000

 6000

 8000

1280/256 2560/512 5120/1024 10240/2048

A
ve

ra
ge

 ti
m

e
(s

ec
on

ds
)

AthenaMP/# nodes

AthenaMP (5 executions)
Pilot Duration

Overhead

Figure 10: Weak scalability with multiple generations: av-
erage pilot duration, average duration of �ve sequential
AthenaMP executions, and pilot’s overhead for di�erent pi-
lot sizes (256, 512, 1024 and 2048 nodes).

My fault. It should have been seven and null or 8 and 1. It depends
on how we consider the word sequential. anyway, to avoid confu-
sion I changed the sentence. . Each AthenaMP instance simulates
sixteen events as in the previous experiment.

Figure 11 shows the average pilot duration and the average exe-
cution time of possibly sequential AthenaMP instances. We notice
that the di�erence between the pilot duration and the AthenaMP
execution times is almost constant for all the pilot sizes, although
the overall duration of the pilot decreases linearly with the pilot
size.

 400

 1000

 2000

 4000

 6000

 8000

 10000

2048/256 2048/512 2048/1024 2048/2048

A
ve

ra
ge

 ti
m

e
(s

ec
on

ds
)

AthenaMP/# nodes

Pilot Duration
AthenaMP duration per node

Overhead

Figure 11: Strong scalability: average pilot duration, aver-
age duration of sequential AthenaMP executions, and pilot’s
overhead for di�erent pilot sizes (256, 512, 1024 and 2048
nodes).

6 RELATEDWORK
***SJ: In this section we should talk less about PanDA and more
about other WMS – highlighting the fact that (i) there isn’t a com-
prehensive systems (design, architecture and execution properties)
discussion of other WMS so di�cult to compare ***MT: Be�er?
***SJ: (ii) real comparison should be to the Gliden-in WMS ecosys-
tem and use this as opportunity to narrate the reasons for the
divergence. ***MT: From our meetings with Sergey: Before Run 1,
ATLAS management become uncomfortable with the pace at which

Dra�

SC2017, Nov 2017, Denver, Colorado, USA Author 1 et al.

other WMS were being developed, loosing trust in their ability to
deliver production-grade capabilities. ATLAS USA decided to go
solo and developed their own solution. PanDA proven to be able
to deliver the usual pilot-based WMS capabilities at the right scale.
For that, it was chosen over other solutions. ***SJ: Also might this
section be moved towards the rear, as this is a practice paper and
not a traditional research paper? ***MT: Done.

Several pilot-enabled WMS were developed for the LHC ex-
periments: AliEn [4] for ALICE; DIRAC [23] for LHCb; Glidein-
WMS [26] for CMS; and PanDA [18] for ATLAS. �ese systems im-
plement similar design and architectural principles: centralization
of task and resource management, and of monitoring and account-
ing; distribution of task execution across multiple sites; uni�cation
of the application interface; hiding of resource heterogeneity; and
collection of static and sometimes dynamic information about re-
sources.

AliEn, DIRAC, GlideinWMS and PanDA all share a similar design
with two types of components: the management ones facing the ap-
plication layer and centralizing the capabilities required to acquire
tasks’ descriptions and matching them to resource capabilities; and
resource components used to acquire compute and data resources
and information about their capabilities. Architecturally, the man-
agement components include one or more queue and a scheduler
that coordinates with the resource modules via push/pull protocols.
All resource components include middleware-speci�c APIs to re-
quest for resources, and a pilot capable of pulling tasks from the
management modules and executing them on its resources.

AliEn, DIRAC, GlideinWMS and PanDA also have similar imple-
mentations. �ese WMS were initially implemented to use Grid
resources, using one or more components to the Condor so�ware
ecosystem [30] and, as with GlideinWMS, contributing to its devel-
opment. Accordingly, all LHC WMS implemented Grid-like authen-
tication and authorization systems and adopted a computational
model based on distributing a large amount of single/few-cores
tasks across hundreds of sites ***MT: Is this true? .

All the experiments at LHC produces and process large amount
of data both from actual collisions in the accelerator and from
their simulations. Dedicated, multi-tiered data systems have been
built to store, replicate, and distributed these data. All LHC WMS
interface with these systems to move data to the sites where related
compute tasks are executed or to schedule compute tasks where
(large amount of) data are already stored.

7 CONCLUSION
�e PanDA system was developed to meet the scale and complex-
ity of LHC distributed computing for the ATLAS experiment. In
the process, the old batch job paradigm of computing in HEP was
discarded in favor of a far more �exible and scalable model. �e
success of PanDA at the LHC is leading to widespread adoption and
testing by other experiments. PanDA is the �rst exascale workload
management system in HEP, already operating at a million com-
puting jobs per day, and processing over an exabyte of data in 2013.
Next LHC run will pose massive computing challenges. With a dou-
bling of the beam energy and luminosity as well as an increased
need for simulates data, the data volume is expected to increase
with a factor 5–6 or more. Storing and processing this amount of

data is a challenge that cannot be resolved with the currently ex-
isting computing resources in ATLAS. To resolve this challenge,
ATLAS is turning to commercial as well as academic Cloud ser-
vices and HPCs via the PanDA system. Also the work underway
is enabling the use of PanDA by new scienti�c collaborations and
communities as a means of leveraging extreme scale computing
resources with a low barrier of entry. �e technology base pro-
vided by the PanDA system will enhance the usage of a variety of
high-performance computing resources available to basic research.

ACKNOWLEDGEMENTS
�e authors would like to thank… �is research used resources
of the Oak Ridge Leadership Computing Facility, supported by
the O�ce of Science of the Department of Energy under Contract
DE-AC05-00OR22725.

REFERENCES
[1] G. Aad and others. 2008. �e ATLAS Experiment at the CERN Large Hadron

Collider. JINST 3 (2008), S08003. DOI:h�ps://doi.org/10.1088/1748-0221/3/08/
S08003

[2] Georges Aad, B Abbo�, J Abdallah, AA Abdelalim, A Abdesselam, O Abdinov,
B Abi, M Abolins, H Abramowicz, H Abreu, and others. 2010. �e ATLAS
simulation infrastructure. �e European Physical Journal C 70, 3 (2010), 823–874.

[3] Sea Agostinelli, John Allison, K al Amako, J Apostolakis, H Araujo, P Arce, M
Asai, D Axen, S Banerjee, G Barrand, and others. 2003. GEANT4—a simulation
toolkit. Nuclear instruments andmethods in physics research section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 506, 3 (2003), 250–303.

[4] S Bagnasco, L Betev, P Buncic, F Carminati, F Furano, A Grigoras, C Grigoras, P
Mendez-Lorenzo, A J Peters, and P Saiz. 2010. �e ALICE workload management
system: Status before the real data taking. J. Phys.: Conf. Ser. 219 (2010), 062004.
6 p. h�ps://cds.cern.ch/record/1353182

[5] Mikhail Borodin, K De, J Garcia, Dmitry Golubkov, A Klimentov, T Maeno, A
Vaniachine, and others. 2015. Scaling up ATLAS production system for the LHC
Run 2 and beyond: project ProdSys2. In Journal of Physics: Conference Series,
Vol. 664. IOP Publishing, Bristol, UK, 062005. Issue 6.

[6] Mikhail Borodin, Kaushik De, Jose Garcia Navarro, Dmitry Golubkov, Alexei
Klimentov, Tadashi Maeno, David South, and others. 2015. Uni�ed System
for Processing Real and Simulated Data in the ATLAS Experiment. (2015).
arXiv:1508.07174

[7] J Caballero, J Hover, P Love, and GA Stewart. 2012. AutoPyFactory: a scalable
�exible pilot factory implementation. In Journal of Physics: Conference Series,
Vol. 396. IOP Publishing, Bristol, UK, 032016. Issue 3.

[8] Paolo Cala�ura, K De, W Guan, T Maeno, P Nilsson, D Oleynik, S Panitkin,
V Tsulaia, P Van Gemmeren, and T Wenaus. 2015. �e ATLAS Event Service:
A new approach to event processing. In Journal of Physics: Conference Series,
Vol. 664. IOP Publishing, Bristol, UK, 062065. Issue 6.

[9] Gennaro Corcella, Ian G Knowles, Giuseppe Marchesini, Stefano More�i, Kosuke
Odagiri, Peter Richardson, Michael H Seymour, and Bryan R Webber. 2001.
HERWIG 6: an event generator for hadron emission reactions with interfering
gluons (including supersymmetric processes). Journal of High Energy Physics
2001, 01 (2001), 010.

[10] D Crooks, P Cala�ura, R Harrington, M Jha, T Maeno, S Purdie, H Severini, S
Skipsey, V Tsulaia, R Walker, and others. 2012. Multi-core job submission and
grid resource scheduling for ATLAS AthenaMP. In Journal of Physics: Conference
Series, Vol. 396. IOP Publishing, Bristol, UK, 032115. Issue 3.

[11] J De Favereau, C Delaere, P Demin, A Giammanco, V Lemaı̂tre, A Mertens, and
M Selvaggi. 2013. DELPHES 3, A modular framework for fast simulation of a
generic collider experiment. (2013). arXiv:1307.6346

[12] Jack Dongarra, Hans Meuer, and Erich Strohmaier. 2016. Top500 Supercomputing
Sites. h�p://www.top500.org. (2016).

[13] Ian Foster and Carl Kesselman. 2003. �e Grid 2: Blueprint for a new computing
infrastructure. Elsevier, Amsterdam, Netherlands.

[14] Vincent Garonne, Graeme A Stewart, Mario Lassnig, Angelos Molfetas, Martin
Barisits, �omas Beermann, Armin Nairz, Luc Goossens, Fernando Barreiro
Megino, Cedric Serfon, and others. 2012. �e atlas distributed data management
project: Past and future. In Journal of Physics: Conference Series, Vol. 396. IOP
Publishing, Bristol, UK, 032045. Issue 3.

[15] T Goodale, S Jha, H Kaiser, T Kielmann, P al Kleijer, A Merzky, J Shalf, and C
Smith. 2008. A Simple API for Grid Applications (SAGA). OGF Document Series
90. (2008).

https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://cds.cern.ch/record/1353182
http://arxiv.org/abs/1508.07174
http://arxiv.org/abs/1307.6346
http://www.top500.org

Dra�

Converging High-Throughput and High-Performance Computing: A Case Study SC2017, Nov 2017, Denver, Colorado, USA

[16] A Klimentov, P Nevski, M Potekhin, and T Wenaus. 2011. �e ATLAS PanDA
Monitoring System and its Evolution. In Journal of Physics: Conference Series,
Vol. 331. IOP Publishing, Bristol, UK, 072058. Issue 7.

[17] T Maeno. 2011. Overview of ATLAS PanDA workload management. J. Phys.:
Conf. Ser 331, 7 (2011), 072024. h�p://stacks.iop.org/1742-6596/331/i=7/a=072024

[18] T Maeno, K De, A Klimentov, P Nilsson, D Oleynik, S Panitkin, A Petrosyan, J
Schovancova, A Vaniachine, T Wenaus, and others. 2014. Evolution of the ATLAS
PanDA workload management system for exascale computational science. In
Journal of Physics: Conference Series, Vol. 513. IOP Publishing, Bristol, UK, 032062.
Issue 3.

[19] Tadashi Maeno, K De, T Wenaus, P Nilsson, GA Stewart, R Walker, A Stradling,
J Caballero, M Potekhin, D Smith, and others. 2011. Overview of atlas panda
workload management. In Journal of Physics: Conference Series, Vol. 331. IOP
Publishing, Bristol, UK, 072024. Issue 7.

[20] Cecchi Marco, Capannini Fabio, Dorigo Alvise, Ghiselli Antonia, Giacomini
Francesco, Maraschini Alessandro, Marzolla Moreno, Monforte Salvatore,
Petronzio Luca, and Prelz Francesco. 2009. �e glite workload management
system. In International Conference on Grid and Pervasive Computing. Springer
Publishing, New York City, NY, USA, 256–268.

[21] P Nilsson, J Caballero, K De, T Maeno, A Stradling, T Wenaus, Atlas Collaboration,
and others. 2011. �e ATLAS PanDA pilot in operation. In Journal of Physics:
Conference Series, Vol. 331. IOP Publishing, Bristol, UK, 062040. Issue 6.

[22] Sarp Oral, David A Dillow, Douglas Fuller, Jason Hill, Dustin Leverman, Sudhar-
shan S Vazhkudai, Feiyi Wang, Youngjae Kim, James Rogers, James Simmons,
and others. 2013. OLCF’s 1 TB/s, next-generation lustre �le system. (2013).

[23] Stuart Paterson, Joel Closier, and the Lhcb Dirac Team. 2010. Performance of
combined production and analysis WMS in DIRAC. Journal of Physics: Conference
Series 219, 7 (2010), 072015. h�p://stacks.iop.org/1742-6596/219/i=7/a=072015

[24] A Rimoldi, A Dell’Acqua, A di Simone, M Gallas, A Nairz, J Boudreau, V Tsulaia,
and D Costanzo. 2006. Atlas Detector Simulation: Status and Outlook. In As-
troparticle, Particle and Space Physics, Detectors and Medical Physics Applications,
Vol. 1. World Scienti�c Publishing, Singapore, 551–555.

[25] Elmar Ritsch. 2014. ATLAS Detector Simulation in the Integrated Simulation Frame-
work applied to the W Boson Mass Measurement. Ph.D. Dissertation. Innsbruck
U.

[26] Igor S�ligoi. 2008. glideinWMS—a generic pilot-based workload management
system. In Journal of Physics: Conference Series, Vol. 119. IOP Publishing, Bristol,
UK, 062044. Issue 6.

[27] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. 2006. PYTHIA 6.4 physics
and manual. Journal of High Energy Physics 2006, 05 (2006), 026.

[28] ATLAS PanDA Team. 2017. �e PanDA Production and Distributed Analysis
System. (2017). Retrieved March 25, 2017 from h�ps://twiki.cern.ch/twiki/bin/
view/PanDA/PanDA

[29] RADICAL Team. 2017. RADICAL-SAGA So�ware Toolkit. (2017). Retrieved
March 21, 2017 from h�ps://github.com/radical-cybertools/radical-saga

[30] Douglas �ain, Todd Tannenbaum, and Miron Livny. 2005. Distributed comput-
ing in practice: the Condor experience. Concurrency and computation: practice
and experience 17, 2-4 (2005), 323–356.

[31] Ma�eo Turilli, Mark Santcroos, and Shantenu Jha. 2015. A Comprehensive
Perspective on Pilot-Job Systems. (2015). arXiv:1508.04180

A ARTIFACT DESCRIPTION — CONVERGING
HIGH-THROUGHPUT AND
HIGH-PERFORMANCE COMPUTING: A
CASE STUDY

A.1 Abstract
Experiments at the Large Hadron Collider (LHC) face unprece-
dented computing challenges. �ousands of physicists analyze
exabytes of data every year, using billions of computing hours on
hundreds of computing sites worldwide. PanDA (Production and
Distributed Analysis) is a workload management system (WMS)
developed to meet the scale and complexity of LHC distributed com-
puting for the ATLAS experiment. PanDA is the �rst exascale work-
load management system in HEP, executing millions of computing
jobs per day, and processing over an exabyte of data in 2016. In this
paper, we introduce the design and implementation of PanDA, de-
scribing its deployment on Titan, the third biggest supercomputer
in the world. We analyze scalability, reliability and performance of

PanDA on Titan, highlighting the challenges addressed by its ar-
chitecture and implementation. We present preliminary results of
experiments performed with the Next Generation Executer, a pro-
totype we developed to meet new challenges of scale and resource
heterogeneity.

A.2 Description
A.2.1 Check-list (artifact meta information).

• Program: ATLASMonteCarloWork�ow, Geant4, AthenaMP,
GROMACS

• Data set: Available at
h�ps://github.com/ATLAS-Titan/PanDA-WMS-paper/tree/master/
data

• Run-time environment: PanDA Workload Management
System, RADICAL-Pilot Pilot System (NGE)

• Hardware: OLCF Titan Cray XK7
• Output: Available at

h�ps://github.com/ATLAS-Titan/PanDA-WMS-paper/tree/master/
data

• Experiment work�ow: Raw data acquisition, data wran-
gling and �ltering, plotting, analysis

• Publicly available?: Yes

A.2.2 How so�ware can be obtained (if available).

• PanDA Workload Management System:
h�ps://github.com/PanDAWMS.

• RADICAL-Pilot Pilot System (NGE):
h�ps://github.com/radical-cybertools.

A.2.3 Hardware dependencies. Access and allocation on OLCF
Titan Cray XK7, workstation with at least 8GB of RAM.

A.2.4 So�ware dependencies. Python, jupyter, pandas, mat-
plotlib, gnuplot, excel.

A.2.5 Datasets.

Section 5.1 – Figure 3
Section 5.1 – Figure 4
Section 5.1 – Figure 5 h�ps://github.com/ATLAS-Titan/PanDA-WMS-paper/

blob/master/data/�gure 5
Section 5.1 – Figure 6
Section 5.2 – Figure 7
Section 5.2 – Figure 8
Section 5.3 – Figure 9
Section 6.3 – Figure 14
Section 6.3 – Figure 15
Section 6.3 – Figure 16
Section 6.3 – Figure 17
Section 6.3 – Figure 18
Section 6.3 – Figure 19
Section 6.3 – Figure 20
Section 6.3 – Figure 21

A.3 Installation
Section 5.1 – Figure 3
Section 5.1 – Figure 4
Section 5.1 – Figure 5
Section 5.1 – Figure 6
Section 5.2 – Figure 7

http://stacks.iop.org/1742-6596/331/i=7/a=072024
http://stacks.iop.org/1742-6596/219/i=7/a=072015
https://twiki.cern.ch/twiki/bin/view/PanDA/PanDA
https://twiki.cern.ch/twiki/bin/view/PanDA/PanDA
https://github.com/radical-cybertools/radical-saga
http://arxiv.org/abs/1508.04180
https://github.com/ATLAS-Titan/PanDA-WMS-paper/tree/master/data
https://github.com/ATLAS-Titan/PanDA-WMS-paper/tree/master/data
https://github.com/ATLAS-Titan/PanDA-WMS-paper/tree/master/data
https://github.com/ATLAS-Titan/PanDA-WMS-paper/tree/master/data
https://github.com/PanDAWMS
https://github.com/radical-cybertools
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5

Dra�

SC2017, Nov 2017, Denver, Colorado, USA Author 1 et al.

Section 5.2 – Figure 8
Section 5.3 – Figure 9
Section 6.3 – Figure 14
Section 6.3 – Figure 15
Section 6.3 – Figure 16
Section 6.3 – Figure 17
Section 6.3 – Figure 18
Section 6.3 – Figure 19
Section 6.3 – Figure 20
Section 6.3 – Figure 21

A.4 Experiment work�ow
Section 5.1 – Figure 3
Section 5.1 – Figure 4
Section 5.1 – Figure 5
Section 5.1 – Figure 6
Section 5.2 – Figure 7
Section 5.2 – Figure 8
Section 5.3 – Figure 9
Section 6.3 – Figure 14
Section 6.3 – Figure 15
Section 6.3 – Figure 16
Section 6.3 – Figure 17
Section 6.3 – Figure 18
Section 6.3 – Figure 19
Section 6.3 – Figure 20
Section 6.3 – Figure 21

A.5 Evaluation and expected result
Section 5.1 – Figure 3
Section 5.1 – Figure 4
Section 5.1 – Figure 5
Section 5.1 – Figure 6
Section 5.2 – Figure 7
Section 5.2 – Figure 8
Section 5.3 – Figure 9
Section 6.3 – Figure 14
Section 6.3 – Figure 15
Section 6.3 – Figure 16
Section 6.3 – Figure 17
Section 6.3 – Figure 18
Section 6.3 – Figure 19
Section 6.3 – Figure 20
Section 6.3 – Figure 21

B OLD – REMOVE AFTER COMPLETING
ABOVE

Reproducibility initiative appendices: Artifact Description (AD)
and Computational Results Analysis (CRA). Description of the or-
ganization of the appendix.

B.1 Section 5.1 - Figure 3
Artifacts description.

• Experiment code: repository address (when applicable)
• Raw data: repository address
• Wrangling: repository address

• Analysis code: repository address
• Plo�ing code: repository address

Replicability:
(1)

B.2 Section 5.1 - Figure 4
Artifacts description.

• Experiment code: repository address (when applicable)
• Raw data: repository address
• Wrangling: repository address
• Analysis code: repository address
• Plo�ing code: repository address

Replicability:
(1)

B.3 Section 5.1 - Figure 5
Correlation between back�ll availability of cores and walltime on
Titan during the experiment time window.

• Raw data: h�ps://github.com/ATLAS-Titan/PanDA-WMS-paper/
blob/master/data/�gure 5/titan back�ll availability.txt, as
provided by the PanDA Brokers logs on Titan.

• Wrangling: h�ps://github.com/ATLAS-Titan/PanDA-WMS-paper/
blob/master/data/�gure 5/titan back�ll availability.csv

• Analysis and Plo�ing: h�ps://github.com/ATLAS-Titan/
PanDA-WMS-paper/blob/master/data/�gure 5/titan back�ll
availability.ipynb

Replicability:
(1) Get a log �le including regular polling of back�ll availabil-

ity from one or more PanDA Brokers on titan.
(2) Wrangle the ascii �le with the �nd/replace regular expres-

sions listed at: h�ps://github.com/ATLAS-Titan/PanDA-WMS-paper/
blob/master/data/�gure 5/titan back�ll availability.ipynb,
cell #1.

(3) Load the Jupyter workbook from a python virtual en-
vironment with the module Jupyter installed and all
the modules listed at: h�ps://github.com/ATLAS-Titan/
PanDA-WMS-paper/blob/master/data/�gure 5/titan back�ll
availability.ipynb, cell #2.

(4) Execute each cell of the Jupyter notebook to replicate Fig-
ure 5.

B.4 Section 5.2 - Figure 6
Artifacts description.

• Experiment code: repository address (when applicable)
• Raw data: repository address
• Wrangling: repository address
• Analysis code: repository address
• Plo�ing code: repository address

Replicability:
(1)

B.5 Section 5.2 - Figure 7
Artifacts description.

• Experiment code: repository address (when applicable)

https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.txt
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.txt
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.csv
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.csv
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.ipynb
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.ipynb
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.ipynb
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.ipynb
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.ipynb
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.ipynb
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.ipynb
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_5/titan_backfill_availability.ipynb

Dra�

Converging High-Throughput and High-Performance Computing: A Case Study SC2017, Nov 2017, Denver, Colorado, USA

• Raw data: repository address
• Wrangling: repository address
• Analysis code: repository address
• Plo�ing code: repository address

Replicability:
(1)

B.6 Section 5.3 - Figure 8
Panda failures on Titan by exit code during the experiment window.

• Raw data: h�ps://github.com/ATLAS-Titan/PanDA-WMS-paper/
blob/master/data/�gure 8/panda-broker-failures jan2016-feb2017.
csv

• Wrangling: h�ps://github.com/ATLAS-Titan/PanDA-WMS-paper/
blob/master/data/�gure 8/panda-broker-failures jan2016-feb2017.
xlsx (Pivot Data & Wrangled Data tabs)

• Analysis: h�ps://github.com/ATLAS-Titan/PanDA-WMS-paper/
blob/master/data/�gure 8/panda-broker-failures jan2016-feb2017.
xlsx (Aggregated Data tab)

• Plo�ing: h�ps://github.com/ATLAS-Titan/PanDA-WMS-paper/
blob/master/data/�gure 8/panda-broker-failures jan2016-feb2017.
xlsx (Plots tab)

Replicability:
(1) Download raw data download in csv format from the AT-

LAS jobs dashboard. Download link: h�p://dashb-atlas-job.
cern.ch/dashboard/request.py/terminatedjobsstatuscsv?sites=
All%20T3210&sitesCat=All%20Countries&resourcetype=All&
pandares=ORNL Titan MCORE&activities=simul&sitesSort=
7&sitesCatSort=0&start=2016-01-01&end=2017-02-28&timeRange=
daily&sortBy=16&granularity=Monthly&generic=0&series=
30&type=abcb

(2) Load the csv �le into Excel (or any other so�ware/lan-
guage).

(3) Create a pivot table with failure types as columns and
months as rows.

(4) Aggregate data of error codes of the same type by merge
columns and adding the values of their raws according to
this table:

(5) Plot the resulting table as a stacked area diagram.

B.7 Section 6.3 - Figure 14
Artifacts description.

• Experiment code: repository address (when applicable)
• Raw data: repository address
• Wrangling: repository address
• Analysis code: repository address
• Plo�ing code: repository address

Replicability:
(1)

B.8 Section 6.3 - Figure 15
Artifacts description.

• Experiment code: repository address (when applicable)
• Raw data: repository address
• Wrangling: repository address

• Analysis code: repository address
• Plo�ing code: repository address

Replicability:
(1)

B.9 Section 6.3 - Figure 16
Artifacts description.

• Experiment code: repository address (when applicable)
• Raw data: repository address
• Wrangling: repository address
• Analysis code: repository address
• Plo�ing code: repository address

Replicability:
(1)

B.10 Section 6.3 - Figure 17
Artifacts description.

• Experiment code: repository address (when applicable)
• Raw data: repository address
• Wrangling: repository address
• Analysis code: repository address
• Plo�ing code: repository address

Replicability:
(1)

https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.csv
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.csv
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.csv
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.xlsx
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.xlsx
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.xlsx
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.xlsx
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.xlsx
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.xlsx
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.xlsx
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.xlsx
https://github.com/ATLAS-Titan/PanDA-WMS-paper/blob/master/data/figure_8/panda-broker-failures_jan2016-feb2017.xlsx
http://dashb-atlas-job.cern.ch/dashboard/request.py/terminatedjobsstatuscsv?sites=All%20T3210&sitesCat=All%20Countries&resourcetype=All&pandares=ORNL_Titan_MCORE&activities=simul&sitesSort=7&sitesCatSort=0&start=2016-01-01&end=2017-02-28&timeRange=daily&sortBy=16&granularity=Monthly&generic=0&series=30&type=abcb
http://dashb-atlas-job.cern.ch/dashboard/request.py/terminatedjobsstatuscsv?sites=All%20T3210&sitesCat=All%20Countries&resourcetype=All&pandares=ORNL_Titan_MCORE&activities=simul&sitesSort=7&sitesCatSort=0&start=2016-01-01&end=2017-02-28&timeRange=daily&sortBy=16&granularity=Monthly&generic=0&series=30&type=abcb
http://dashb-atlas-job.cern.ch/dashboard/request.py/terminatedjobsstatuscsv?sites=All%20T3210&sitesCat=All%20Countries&resourcetype=All&pandares=ORNL_Titan_MCORE&activities=simul&sitesSort=7&sitesCatSort=0&start=2016-01-01&end=2017-02-28&timeRange=daily&sortBy=16&granularity=Monthly&generic=0&series=30&type=abcb
http://dashb-atlas-job.cern.ch/dashboard/request.py/terminatedjobsstatuscsv?sites=All%20T3210&sitesCat=All%20Countries&resourcetype=All&pandares=ORNL_Titan_MCORE&activities=simul&sitesSort=7&sitesCatSort=0&start=2016-01-01&end=2017-02-28&timeRange=daily&sortBy=16&granularity=Monthly&generic=0&series=30&type=abcb
http://dashb-atlas-job.cern.ch/dashboard/request.py/terminatedjobsstatuscsv?sites=All%20T3210&sitesCat=All%20Countries&resourcetype=All&pandares=ORNL_Titan_MCORE&activities=simul&sitesSort=7&sitesCatSort=0&start=2016-01-01&end=2017-02-28&timeRange=daily&sortBy=16&granularity=Monthly&generic=0&series=30&type=abcb
http://dashb-atlas-job.cern.ch/dashboard/request.py/terminatedjobsstatuscsv?sites=All%20T3210&sitesCat=All%20Countries&resourcetype=All&pandares=ORNL_Titan_MCORE&activities=simul&sitesSort=7&sitesCatSort=0&start=2016-01-01&end=2017-02-28&timeRange=daily&sortBy=16&granularity=Monthly&generic=0&series=30&type=abcb
http://dashb-atlas-job.cern.ch/dashboard/request.py/terminatedjobsstatuscsv?sites=All%20T3210&sitesCat=All%20Countries&resourcetype=All&pandares=ORNL_Titan_MCORE&activities=simul&sitesSort=7&sitesCatSort=0&start=2016-01-01&end=2017-02-28&timeRange=daily&sortBy=16&granularity=Monthly&generic=0&series=30&type=abcb

	Abstract
	1 Introduction
	2 PanDA Overview
	2.1 Design
	2.2 Implementation and Execution

	3 Deploying PanDA on a Leadership-scale system
	3.1 Use of Supercomputers with PanDA
	3.2 Interfacing PanDA with Titan
	3.3 PanDA Broker on Titan

	4 Analysis and Discussion
	4.1 Utilization and Efficiency of PanDA Broker on Titan
	4.2 Efficiency, Scalability, and Reliability of Detector Simulation on Titan
	4.3 PanDA I/O Impact at OLCF

	5 PANDA: The Next Generation Executor
	5.1 Implementation
	5.2 Experiments

	6 Related Work
	7 Conclusion
	References
	A Artifact Description — Converging High-Throughput and High-Performance Computing: A Case Study
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected result

	B OLD – REMOVE AFTER COMPLETING ABOVE
	B.1 Section 5.1 - Figure 3
	B.2 Section 5.1 - Figure 4
	B.3 Section 5.1 - Figure 5
	B.4 Section 5.2 - Figure 6
	B.5 Section 5.2 - Figure 7
	B.6 Section 5.3 - Figure 8
	B.7 Section 6.3 - Figure 14
	B.8 Section 6.3 - Figure 15
	B.9 Section 6.3 - Figure 16
	B.10 Section 6.3 - Figure 17

