Plans for MC production

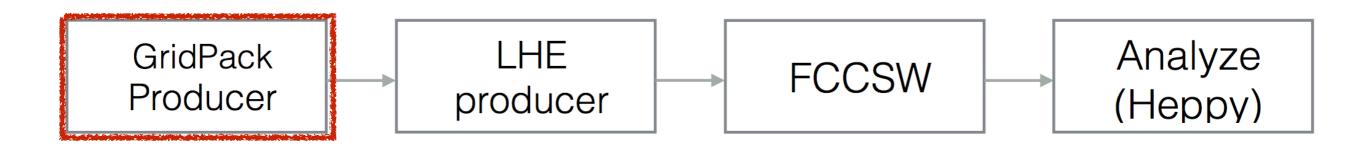
Michele Selvaggi
CERN

SnowMass Strategy

- Detailed in (arXiv:1308.1636)
- Produce $2 \rightarrow 4$ merged samples, i.e.
 - pp \rightarrow V + 0/1/2/3 jets
 - pp \rightarrow VV + 0/1/2 jets
 - pp \rightarrow VVV + 0/1 jets
- Binned in $H_T = \sum p_T(\text{final state})$

Dataset Name	Main Processes	Final States	Order
Dominant Backgrounds			
B-4p, Bj-4p ^a	vector boson + jets	V + nJ	$\mathcal{O}(lpha_s^nlpha_w)$
BB-4p	divector + jets	VV + nJ	$\mathcal{O}(lpha_s^nlpha_w^2)$
TT-4p	top pair + jets	TT + nJ	$\mathcal{O}(lpha_s^{2+n})$
TB-4p	top pair off-shell $T^* \to Wj + \text{jets}$	TV + nJ	$\mathcal{O}(lpha_s^{n+1}lpha_w)$
TJ-4p	single top (s and t-channel) $+$ jets	T + nJ	$\mathcal{O}(lpha_s^{n-1}lpha_w^2)$
LL-4p	off-shell $V^* \to LL + \text{jets}$	$LL + nJ \ [m_{ll} > 20 \ \text{GeV}]$	$\mathcal{O}(lpha_s^nlpha_w^2)$
Subdominant Backgrounds			
TTB-4p	top pair + boson	(TTV + nJ), (TTH + nJ)	$\mathcal{O}(lpha_s^{2+n}lpha_w)$
BLL-4p	off-shell divector $V^* \to LL + \text{jets}$	$VLL + nJ \ [m_{ll} > 20 \ GeV]$	$\mathcal{O}(lpha_s^nlpha_w^3)$
BBB-4p	tri-vector + jets, Higgs associated + jets	(VVV + nJ), (VH + nj)	$\mathcal{O}(\alpha_s^n \alpha_w^3)$
H-4p	gluon fusion + jets	H+nJ	$\mathcal{O}(\alpha_s^n \alpha_h)$
BJJ-vbf-4p	vector boson fusion + jets	$(V+nJ), (H+nJ) \ [n \ge 2]$	$\mathcal{O}(\alpha_s^{n-2}\alpha_w^3)$

Our Strategy


- Cannot use SnowMass samples because of gen. level acc. cuts
- Produce separate V and H samples
- Adding:
 - ggH,VBF H,VH, ttH,
 - ggHH,VBF HH
- We plan on producing the following samples (work in progress):

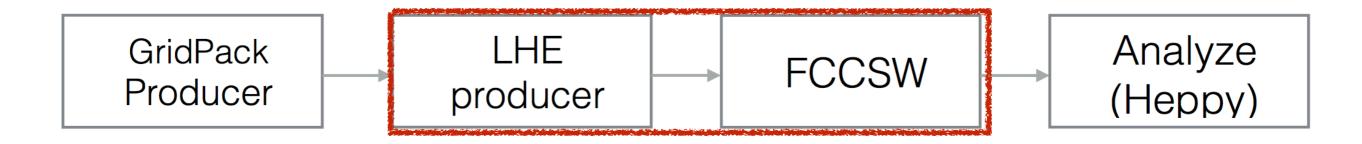
Samples

H_T bins

```
p_v0123j_5f":[0,1500,2900,5100,8500,100000],
'pp_vvv01j_5f":[0,1200,3000,6000,100000],
[pp_vv012j_5f":[0,300,1400,2900,5300,8800,100000],
pp_vbf_v01j_5f":[0,2000,4000,7200,100000],
pp_llv01j_5f":[0,800,2000,4000,100000],
[pp_11012j_5f":[0,200,700,1500,2700,4200,100000],
[pp_tv012j_5f":[0,500,1500,2800,4700,7400,100000],
[pp_t123j_5f":[0,1900,3500,5900,100000],
[pp_ttv01j_5f":[0,1100,2700,4900,8100,100000],
[pp_tt012j_5f":[0,600,1200,2100,3400,5300,8100,100000],
'pp_h012j_5f":[0,100,1900,4400,8500,100000],
'pp_vh012j_5f":[0,300,1400,2900,5300,8800,100000],
[pp_hh01j_5f":[0,300,1400,2900,5300,8800,100000],
[pp_tth01j_5f":[0,1100,2700,4900,8100,100000],
pp_vbf_h01j_5f":[0,2000,4000,7200,100000],
 p_vbf_hh01j_5f":[0,2000,4000,7200,100000]
```

Workflow: GridPacks

- GridPack Producer⁽¹⁾
 - makes MG5_aMC@NLO GridPacks (i.e standalone script that produces LHE files)
 - Can be used either locally or on lxbatch/condor queues


./run.sh [nevents] [seed]

 For simplicity, GP that are of common interest will be produced centrally (WIP) and stored here:

/eos/fcc/hh/generation/mg5_amcatnlo/gridpacks

https://github.com/selvaggi/GridPackProducer

Workflow: LHEs

LHE Producer⁽¹⁾

- Produces Les Houches Event (LHE) files using GridPacks using Ixbatch queues (working on extending to HTCondor)
- Produces FCCSW files using LHE files
- This part should be carried out by the user

https://github.com/clementhelsens/LHEventProducer

Conclusion

Samples

- We have defined a list of samples to be produced centrally
- GridPack production of "common" samples will happen centrally (MS and C. Helsens)
- LHE/FCCSW output will carried out by the user

We have a workflow ready for producing large MC event samples

- Working on extension to HTCondor
- Will announce a tutorial shortly (although instructions are already available)