

TRIUMF Site Report

HEPix Fall 2009, NERSC/LBNL

Kelvin Raywood TRIUMF, Vancouver, Canada

Lab update

- York, Guelph and Queens U's joined as full members
 - 11 full-members + 4 associate-members
- 40th anniversary
- SRF e-linac project funded
 - 2nd driver in 40 years
 - Photo-fission for nuclear physics and medical-isotope production ⁹⁹Mo
 - Contribute to LHC-SPL, ILC & CLS upgrades
- External HPC facilities: WestGrid
 - Bugaboo: SL5, 1280 cores (E5450), DDR/IB, 2GB/core, 350TB Lustre
 - Orcinus: CentOS-5, 3072 cores(E5440) DDR/IB, 2GB/core
 - Checkers: SL5, 1280 cores(E5440), DDR/IB, 2GB/core
 - Storage: 1.5PB GPFS + 800TB (LTO 2,3,4) : Tivoli HSM

External Review of TRIUMF Computing

- Charged to review operations of leader and three of four TRIUMF computing-groups
 - MIS (3), GSC (5), CCN (6): +1 since 1990
 - WLCG/ATLAS Tier-1 Centre (9) not reviewed
- Triggered by increased demand for app. devel by MIS
 - modern admin systems, identity management, online work-flow, ...
- and by requirements of experiments supported by GSC
 - DAQ and analysis software, FPGA programming
- Senior management were largely unaware of issues with CCN
 - documentation, response time, high availability, disaster recovery, modernisation, ...
- Plans for resolution
 - app-devel stack, change control, virtualisation/HA, web-site, ...
 - People requirements: MIS +2, GSC +2, CCN +2

Recommendations of Review

- Strong endorsement of computing leader
 - Increase power for resource allocation, approve user-requests, ...
- Core Computing and Networking
 - Off-load commodity computing to University partners, commercial vendors
 - +1 "short-term staff", and +1 FTE
- General Scientific Computing
 - Reduce scope of activities
 - Require experiments to fund DAQ development and support
- Management Information Systems
 - Hire external consultant to validate / augment the long-term plan
 - Explore alternatives to in-house developed apps

RPMS for modifying configs

```
# $Id: Makefile 635 2009-06-20 20:26:54Z
                                                        sshd-protect root
 YUM REPO = triumf-server
 include ../Makefile.rpmbuild
   Special vars: YUM REPO,
   PKG ARCH, DIST RELEASE, ...
                                                            sshd_config.APPEND
                                                         Makefile
# triumf-sshd-protect root
# $Id: Specfile 640 2009-06-20 20:47:17Z
                                                         Specfile
Version: 1.1
Release: 1
                                               # rpm: triumf-sshd-protect root
PreReq: openssh-server
                                               # Allow only ssh-key auth for root
%description
                                              PermitRootLogin without-password
Disables ssh to root via password
%post
                                                Special extensions: .ADD .APPEND
service sshd condrestart > /dev/null | :
                                                .ED .REPLACE .SED .SYMLINK
%postun
                                                                     Builds rpm
                                                make install
[ "$1" = 0 ] && \
                                                                      Installs in repo
```

service sshd condrestart >/dev/null|

Linux configuration management

- Deploy single-purpose servers, preferably virtual
- Start with minimal installation and record extra packages
 - Small number of kickstarts and VM gold-masters
- Use well behaved rpms for common configurations
 - Nagios client, RAID monitoring, ssh keys, yum, syslog, ntp, ...
 - Config changes undone on removal
- Keep everything in a versioncontrol system (svn)
- Separate software, configs, data
- Push custom configs to server
 - Makefile checks svn status
 - Reloads service

SUN Unified Storage Server

- Acquired in spring
 - Based on ZFS, RAID-Z DP
 - Provides iSCSI, NFS, in kernel CIFS
 - Hybrid storage, DRAM, SSD, SATA
 - File & block level snapshots
 - Scales to 500TB
- Locked up on system-disk failure
 - Known bug
 - fixed in system update that we had not yet applied
- Q3 update contains new iSCSI stack
 - Required rebuild of iSCSI config
 - client config needed modification

ATLAS Tier-1 Upgrades

	In production (IBM)	New capacity (SUN)	Total
CPU / HEPSPEC-06	6300 656 cores, Woodcrest 3GHz	7000 560 cores, Nehalem 2.53GHz	13300
Disk / TB	720 RAID-6, DDN SAN	1400 RAID-Z2 / ZFS, SUN x4540 DAS*	2120
Tape / TB	560 8 LTO-4 drives, IBM TS3500	240 frame expansion, +6 LTO-4 drives	800

- * 8% 1TB drives, 92% 2TB drives (Nov.)
- New capacity is installed and being commissioned
- Will provide ~7% of world-wide ATLAS resources
- Upgrade Oracle RAC, ~30TB, +2 nodes

ATLAS Tier-1 Infrastructure

Limited floor space:

43' x 22'

No false floor

Rack optimization:

- high density solution
- hot & cold configuration

Power estimate:

~0.4 MW (up to 2012) (including cooling)

Cooling solution: Liebert XD system (very flexible)

340 kW total capacity (~1/4 used)

UPS: 225 kVA (in the future CPU racks on regular power or expand UPS capacity) (~1/3 used). (no diesel backup except for core network)

Expansion beyond 2012: new infrastructure will be required (TRIUMF next 5YP)

ATLAS Tier-1 HSM

High performance HSM

CHEP09 (Denice Deatrich, Simon Liu, Reda Tafirout)

- In production
- interfaced with dCache storage

developed at TRIUMF

- No proprietry code for tape-drivers or changer
- TCP socket based server daemon
- backend MySQL

Design goal: Efficient reprocessing

- Reorder and prioritise requests
- Control over file and tape grouping
 - Minimses tape mounts
 - Maximises reads per mount

No prestaging ~0.2TB / h

Prestaging ~1TB / h

LHCOPN Meeting at TRIUMF

- 1st LHCOPN meeting at T1 outside Europe
- Dante perSONAR multi-domain monitoring installed at all sites
- Monitoring T0-T1 traffic
- Considered extending LHCOPN to T1-T1 and T1-T2

- Traffic patterns unknown
- Need traffic-pattern specs from WLCG before designing a network topology

Network Status - the last km

All TRIUMF external network connections and ATLAS lightpaths pass through this shack.

Lac TRIUMF Lake

Thank You! Merci!