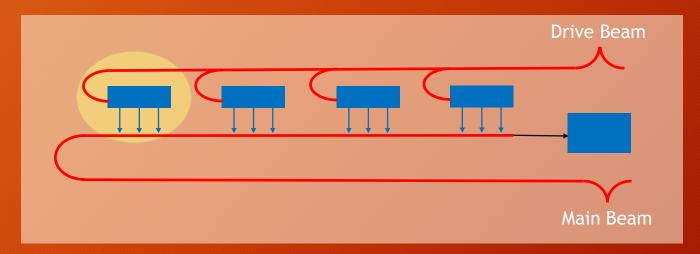
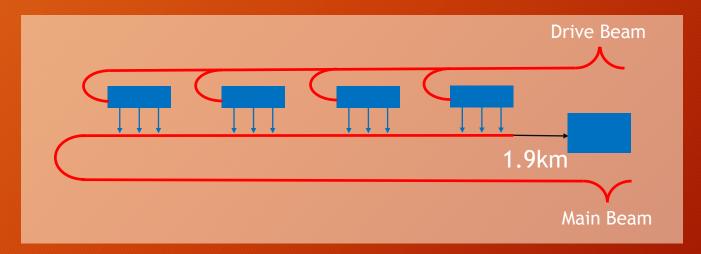
CLIC Civil Engineering Update

clc

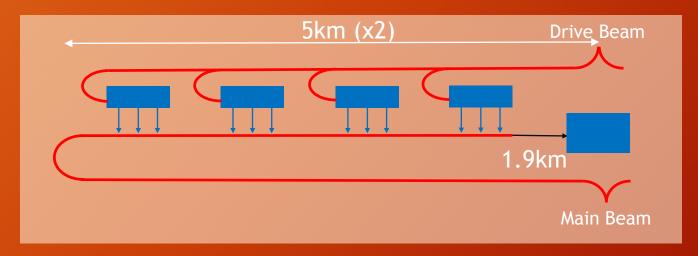

Matthew Stuart - John Osborne SMB-SE-FAS

Reminder - Summary From 31/03/2017

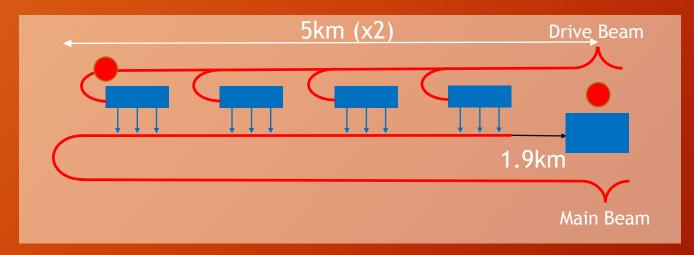
- 380GeV, 1.5TeV and 3TeV machine layouts to be created
- Develop new engineering layout for 380GeV machine using Klystron technology
- Develop a layout for the interaction region
- CLIC-TOT to be produced to allowed optimisation of tunnel location.
- A detailed cost estimate for infrastructure to be produced and work together with ILC on areas of synergy



- 4 turnarounds and accelerator sections either side of the Interaction Region
- 1.9 km Beam Delivery System
- Total length of 10km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land



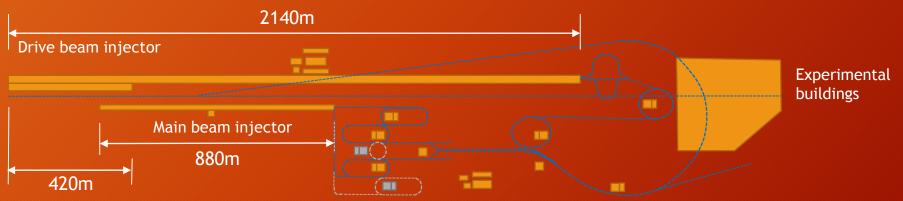
- 4 turnarounds and accelerator sections either side of the Interaction Region
- 1.9 km Beam Delivery System
- Total length of 10km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land



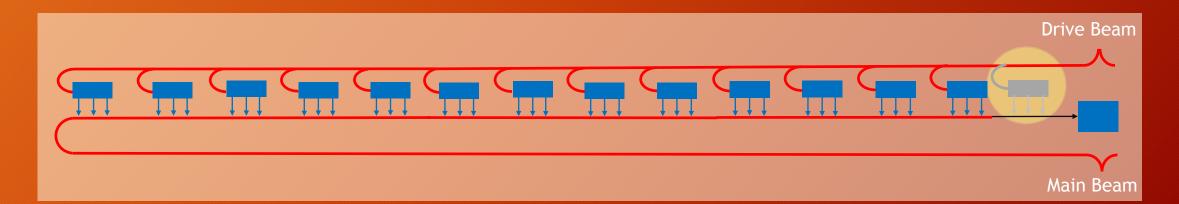
- 4 turnarounds and accelerator sections either side of the Interaction Region
- 1.9 km Beam Delivery System
- Total length of 10km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land



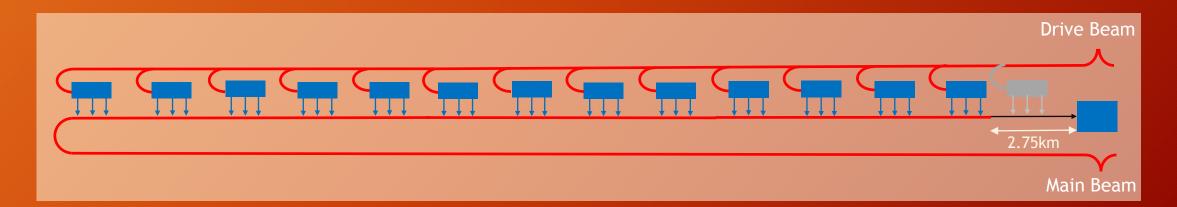
- 4 turnarounds and accelerator sections either side of the Interaction Region
- 1.9 km Beam Delivery System
- Total length of 10km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land



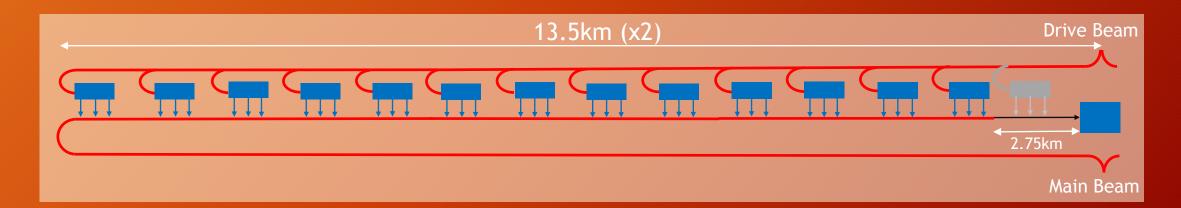
- 4 turnarounds and accelerator sections either side of the Interaction Region
- 1.9 km Beam Delivery System
- Total length of 10km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land



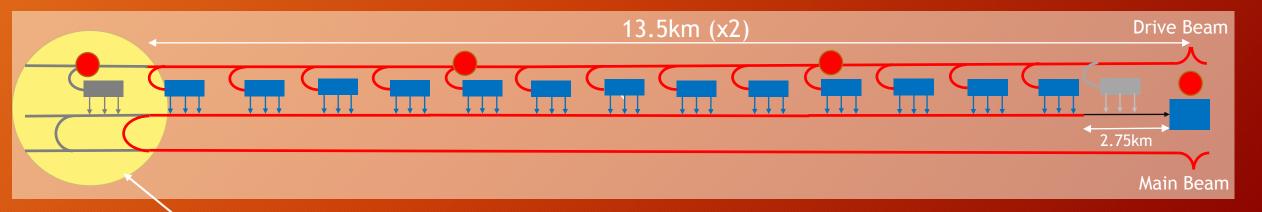
- 4 turnarounds and accelerator sections either side of the Interaction Region
- 1.9 km Beam Delivery System
- Total length of 10km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land



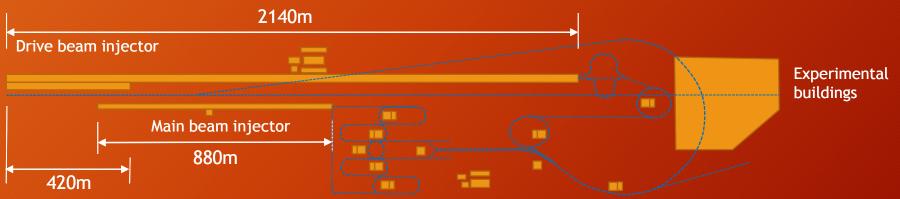
- 13 turnarounds and accelerator sections either side of the Interaction Region 1 redundant turnaround.
- 2.75 km Beam Delivery System
- Total length of 27km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land



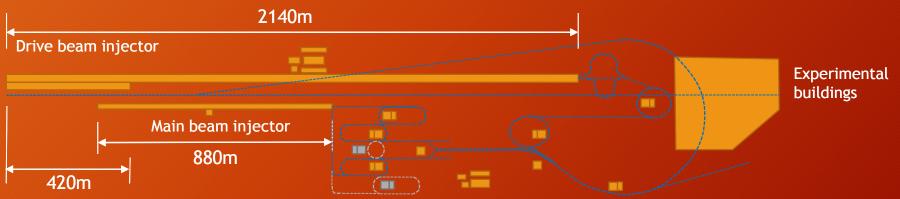
- 13 turnarounds and accelerator sections either side of the Interaction Region - 1 redundant turnaround
- 2.75 km Beam Delivery System
- Total length of 27km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land



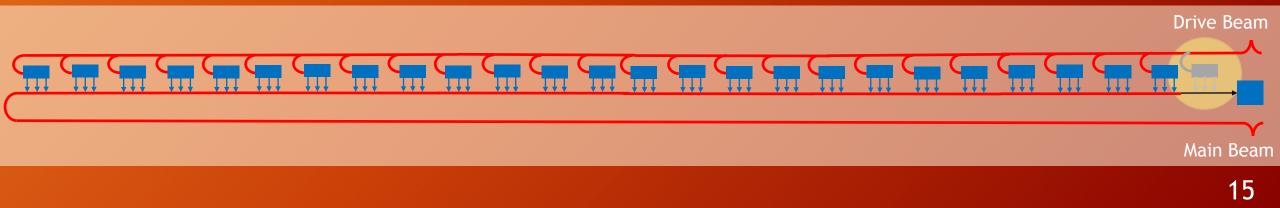
- 13 turnarounds and accelerator sections either side of the Interaction Region - 1 redundant turnaround
- 2.75 km Beam Delivery System
- Total length of 27km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land


- 13 turnarounds and accelerator sections either side of the Interaction Region - 1 redundant turnaround
- 2.75 km Beam Delivery System
- Total length of 27km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land

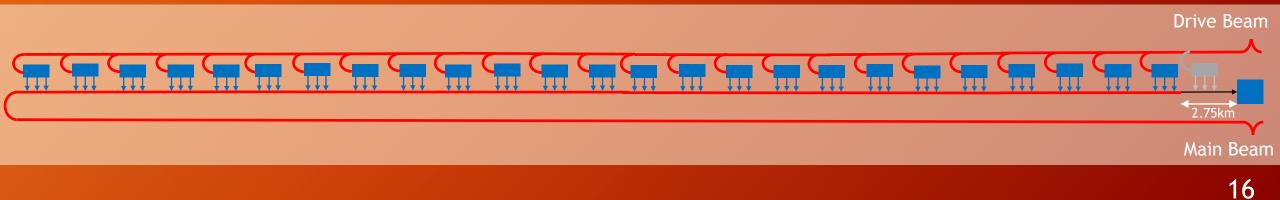
Potentially construct tunnel to shaft 7 and approx. 100m past at second stage.



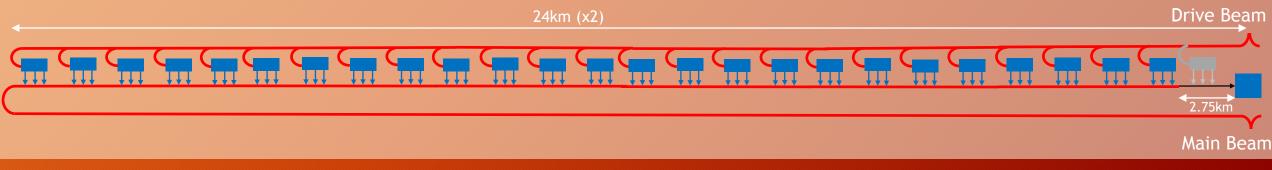
- 13 turnarounds and accelerator sections either side of the Interaction Region - 1 redundant turnaround
- 2.75 km Beam Delivery System
- Total length of 27km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land



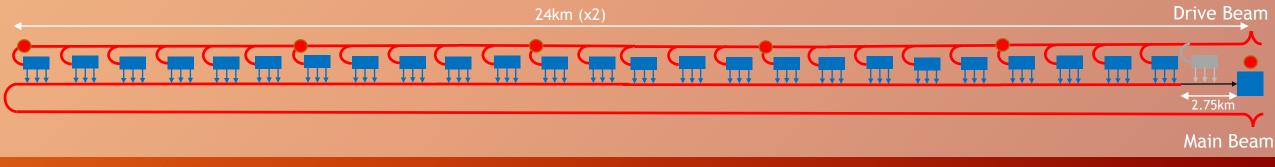
- 13 turnarounds and accelerator sections either side of the Interaction Region - 1 redundant turnaround
- 2.75 km Beam Delivery System
- Total length of 27km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land



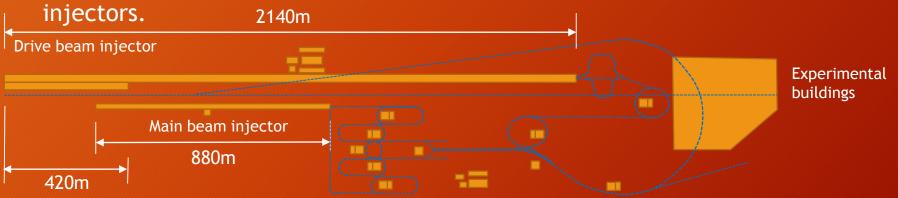
- 25 turnarounds and accelerator sections either side of the Interaction Region 1 redundant turnaround.
- 2.75 km Beam Delivery System
- Total length of 48km
- Shafts every 5km
- Central Injector Complex Located on CERN land two drive beam injectors.



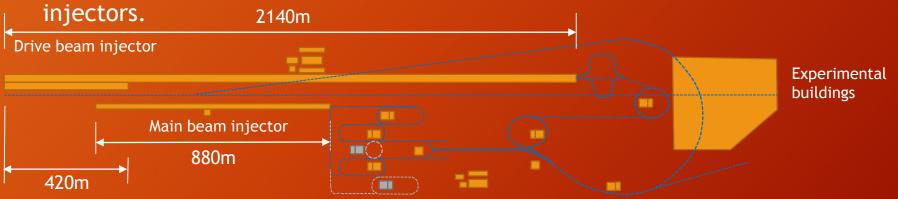
- 25 turnarounds and accelerator sections either side of the Interaction Region 1 redundant turnaround.
- 2.75 km Beam Delivery System
- Total length of 48km
- Shafts every 5km
- Central Injector Complex Located on CERN land two drive beam injectors.



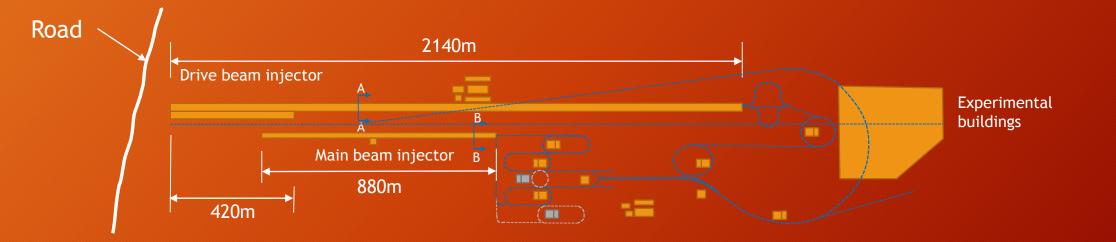
- 25 turnarounds and accelerator sections either side of the Interaction Region 1 redundant turnaround.
- 2.75 km Beam Delivery System
- Total length of 48km
- Shafts every 5km
- Central Injector Complex Located on CERN land two drive beam injectors.



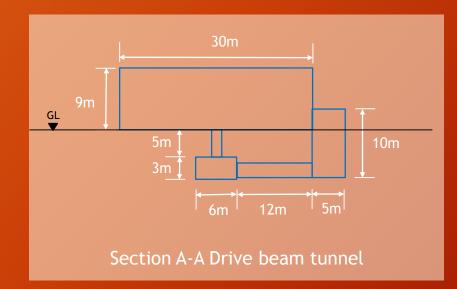
- 25 turnarounds and accelerator sections either side of the Interaction Region 1 redundant turnaround.
- 2.75 km Beam Delivery System
- Total length of 48km
- Shafts every 5km
- Central Injector Complex Located on CERN land two drive beam injectors.



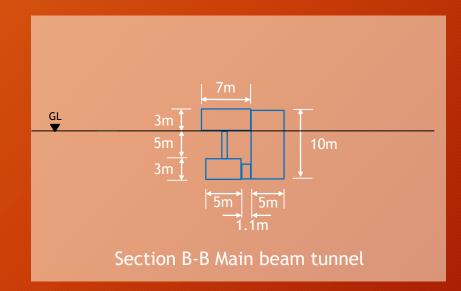
- 25 turnarounds and accelerator sections either side of the Interaction Region 1 redundant turnaround.
- 2.75 km Beam Delivery System
- Total length of 48km
- Shafts every 5km
- Central Injector Complex Located on CERN land two drive beam


- 25 turnarounds and accelerator sections either side of the Interaction Region 1 redundant turnaround.
- 2.75 km Beam Delivery System
- Total length of 48km
- Shafts every 5km
- Central Injector Complex Located on CERN land two drive beam

Central Injector Complex

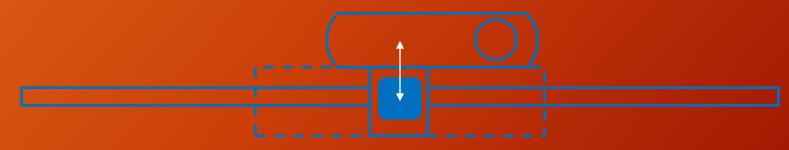

- Consists of 3 main parts Drive beam injector, main beam injector and experimental buildings.
- Section A-A: Cross sectional geometry of the drive beam injector
- Section B-B: Cross sectional geometry of the main beam injector

Central Injector Complex



- Section A-A: Cross sectional geometry of the drive beam injector
- Section B-B: Cross sectional geometry of the main beam injector

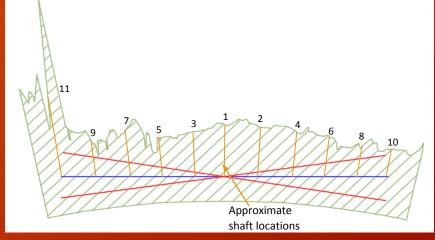
Central Injector Complex


- Consist of 3 main parts Drive beam injector, main beam injector and experimental buildings.
- Section A-A: Cross sectional geometry of the drive beam injector.
- Section B-B: Cross sectional geometry of the main beam injector

Interaction Region

- Access shaft for detector and machine ?
- What to do with the proposed escape tunnel?
- Thickness of shielding wall?
- Moveable detector garage position available.

CLIC-TOT


- Optimise the Position of the CLIC for the three energy stages.
- Optimise the depth
- Optimise the angle of the tunnels
- Optimise the position of the IR
- Production of Tool including user inputs and outputs has been agreed
- Geological data required outside of the FCC study area. (Meeting with local geologists 22 May).

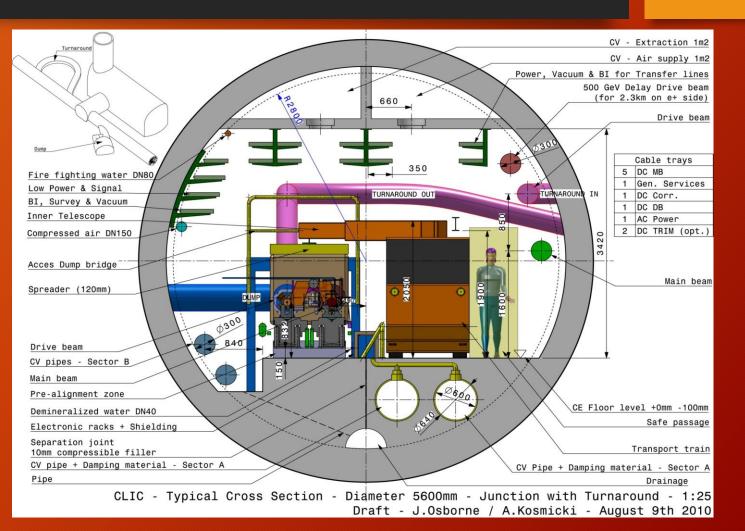
Tool Functionality

- Allows rotation of the tunnel in the vertical plane shown here.
- Gives an optimised depth and most suitable shaft positions.
- Reduce average depth of tunnel to decrease cost and schedule.
- Rotation of the Tunnel in the horizontal plane shown here.
- Provide a Geological cross section of the tunnel.
- Allow positioning of inclined tunnel access and provide geological data for the inclined tunnels.

TOT Timeline

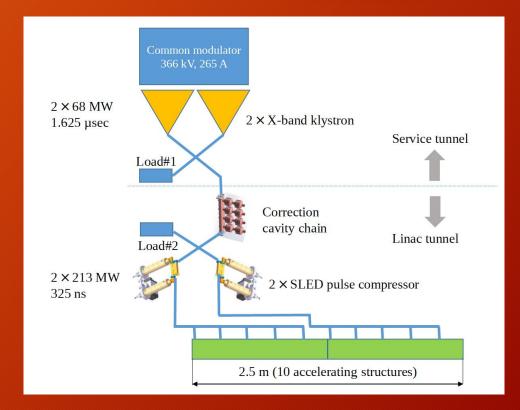
The proposed programme task completion dates are as follows, assuming a project commencement at the end of April 2017:

Task 1	Establish Project Setup and Technical Basis	June (mid)
Task 2	Data and Functionality Prioritisation	June (end)
Task 3	Specifications and TOT-CLIC architecting/wireframing (Concept Stage)	July (mid)
Task 4	Data Integration and TOT-CLIC (beta) development	July (mid)
Task 5	Finalised TOT-CLIC Development	Sept (end)
Task 6	Troubleshooting and Technical Support	-


Civil Engineering Drawings

- Existing Civil Drawings to be updated where required.
- New drawings for Klystron Design will be required.
- Full 3D schematic required for entire length.
- 3D schematic required for IR.
- Schedule for Drawings to be agreed with Civil Draughtsmen.

	•	Task						May '17		L5 May '17			22 May				1
	0	Mode 🔻	Task Name 👻	Duration 👻		Finish 👻		T W T F	S S	M T W	TF	S S	MT	W T	F	S S	5
1		*	CEIS Working Group Meeting 05/05/2017	0 days	Fri 05/05/17	Fri 05/05/17	♦ 0F/05										
2		*	CEIS Working Group Meeting 16/06/2017	0 days	Fri 16/06/17	Fri 16/06/17											
3		*	CEIS Working Group Meeting 21/07/2017	0 days	Fri 21/07/17	Fri 21/07/17											
4		*	CLIC Week	0 days	Mon 21/08/17	Mon 21/08/17											
5			Proposed Tunnel Layout	9 days	Fri 05/05/17	Wed 17/05/17					1						
6			4 11km Tunnel Layout	6 days	Fri 05/05/17	Fri 12/05/17											
7			Detector Cavern Layout	1 day	Fri 05/05/17	Fri 05/05/17	AutoCad C	Civil Draughtsman	1								
8			BDS Layout	1 day	Mon 08/05/17	Mon 08/05/17	*	AutoCad Civil D)raughtsn	nan							
9			General Tunnel and caverns	1 day	Tue 09/05/17	Tue 09/05/17		AutoCad Civ	vil Draug	htsman							
10			Beam Dump Layout	1 day	Wed 10/05/17	Wed 10/05/17		AutoCac	d Civil Dr	aughtsma	n						
11			Turnaround Layout	1 day	Thu 11/05/17	Thu 11/05/17		Auto	toCad Civ	il Draught	sman						
12			Drive Beam Return Loop	1 day	Fri 12/05/17	Fri 12/05/17		*	AutoCad	Civil Drau	ightsmar	۱					
13			▲ 29km Tunnel Layout	2 days	Mon 15/05/17	Tue 16/05/17											
14			Tunnel Extension	1 day	Mon 15/05/17	Mon 15/05/17			1	AutoCa	ad Civil [Draught	sman				
15		÷	BDS Layout extension	1 day	Tue 16/05/17	Tue 16/05/17				Au	toCad Ci	vil Drau	ghtsm	an			
16			⊿ 55km Tunnel Layout	1 day	Wed 17/05/17	Wed 17/05/17				r –	1						
17			Tunnel Extension	1 day	Wed 17/05/17	Wed 17/05/17				Ť.	AutoCa	d Civil I	Draugh	tsman			
18		÷	Klystron Layouts	3 days	Thu 18/05/17	Mon 22/05/17					r						
19		÷	11km Single Tunnel	1 day	Thu 18/05/17	Thu 18/05/17					Au Au	toCad C	ivil Dra	ughtsma	in		
20			11km Double Tunnel	1 day	Fri 19/05/17	Fri 19/05/17					*	AutoC	d Civil	Draugh	tsman	1	
21			Cross section of Klystron single and double tunnel	1 day	Mon 22/05/17	Mon 22/05/17							A	utoCad (Civil D	raugł	iti
22			 Detail 01 (plan and Cross-Sections) 	2 days	Tue 23/05/17	Wed 24/05/17							-				
23			Detail plan of beam dump, turnaround, shaft and main	0.5 days	Tue 23/05/17	Tue 23/05/17								AutoCad	l Civil	Drau	gi T


Drive Beam Tunnel

- 5.6m Internal Diameter
- Turnaround with 10m turning radius to exit and enter main tunnel.
- Beam dump cavern required at each turnaround.

- The ideal scenario would be to have the same tunnel design for the drive beam and for the klystron accelerator.
- The first energy stage design should be consistent with the previously proposed drive beam design allowing consideration for an upgrade
- Ensure that it is compatible with an energy upgrade if it is decided that energy upgrades will be powered by klystrons.

SLED-II

delay lines

Accelerator


Structures

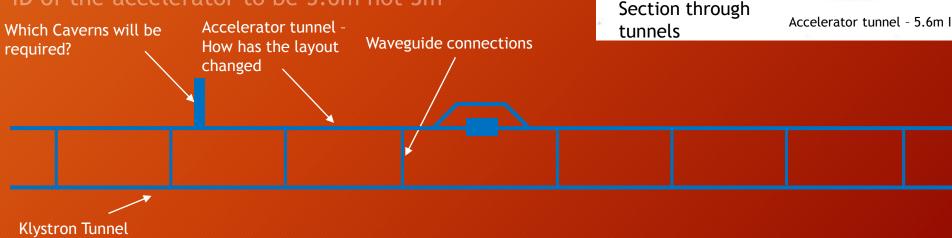
Modulator

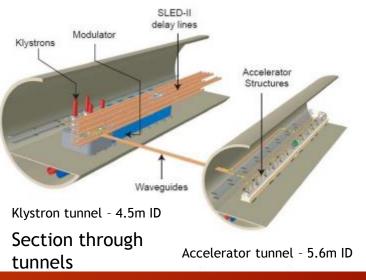
Klystrons

Klystron Layout

- Double tunnel one for the accelerator and one for the klystrons.
- Accelerator tunnel How does this
- Are the connections between the tunnels compatible with the current design?
- ID of the accelerator to be 5.6m not 3m

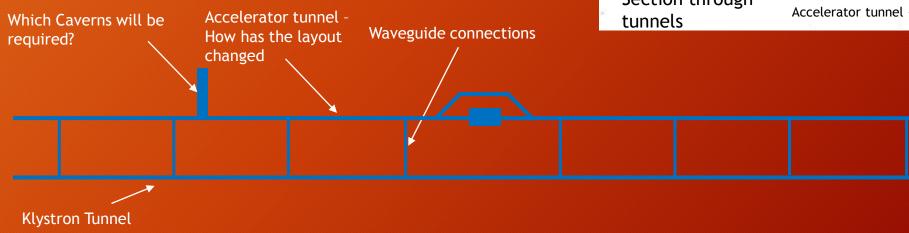
Klystron Tunnel


Which Caverns will be


required?

Klystron Layout

- Double tunnel one for the accelerator and one for the klystrons.
- Accelerator tunnel How does this change?
- Are the connections between the tunnels compatible with the current design?
- ID of the accelerator to be 5.6m not 3m



SLED-II delay lines Accelerator Structures Vaveguides Klystron tunnel - 4.5m ID Section through tunnels

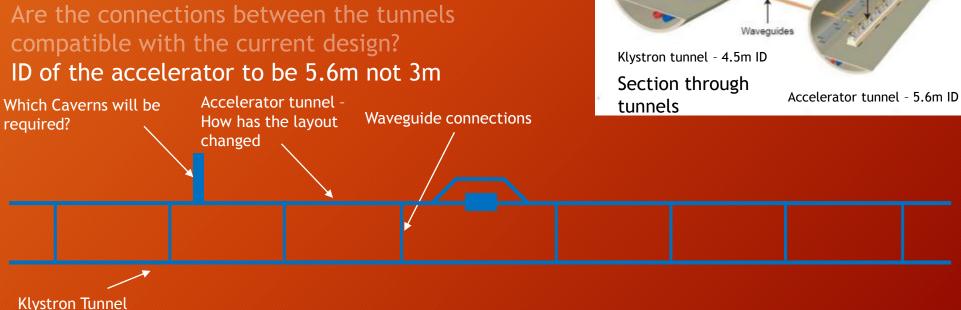
Klystron Layout

- Double tunnel one for the accelerator and one for the klystrons.
- Accelerator tunnel How does this change?
- Are the connections between the tunnels compatible with the current design?
- ID of the accelerator to be 5.6m not 3m

SLED-II

delay lines

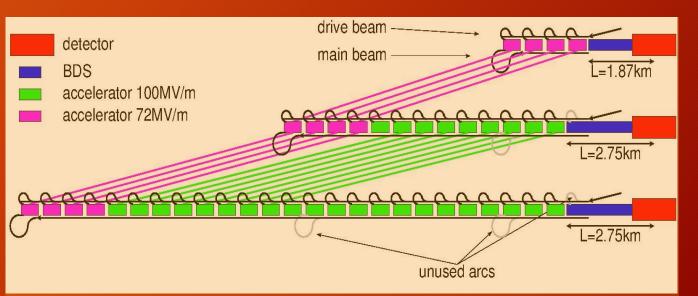
Accelerator


Structures

Modulator

Klystrons

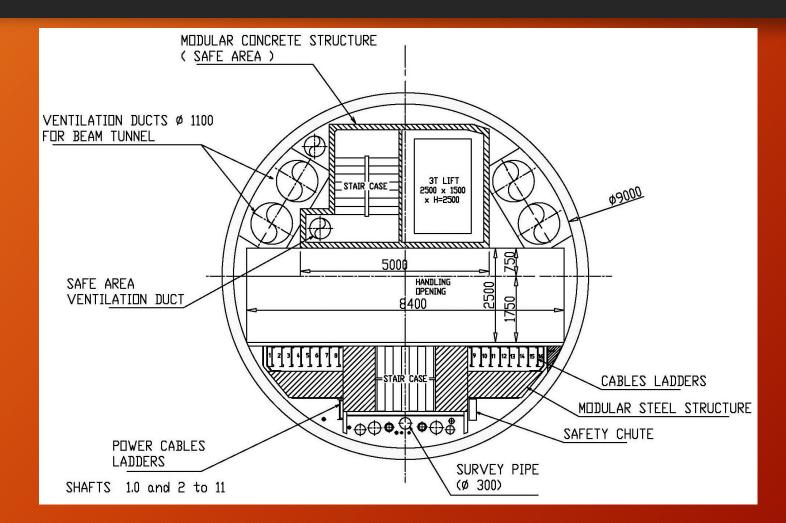
Klystron Layout


- Double tunnel one for the accelerator and one for the klystrons.
- Accelerator tunnel How does this
- Are the connections between the tunnels compatible with the current design?
- ID of the accelerator to be 5.6m not 3m

Summary

- 380 GeV Klystron design compatible with upgrades. Double tunnel or single tunnel required.
- Tunnel Optimisation Tool kick off meeting to be held on the 22nd of May
- Civil Drawings are to be produced by Civil Draughtsmen - new drawings to be produced for the Klystron design and existing drive beam design drawings to be changed.
- Next meeting on the 16th of June.

Thank You For Your Attention



Extra Slides

Shaft Layout



Original CLIC

- 13 turnarounds and accelerator sections either side of the Interaction Region - 1 redundant turnaround
- 2.75 km Beam Delivery System
- Total length of 29km
- Shafts every 5km
- Central Injector Complex, one drive beam Located on CERN land

