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Lecture Structure /

* Lecturel
— What 1s Machine Learning
— Linear Regression and Classification
— Fitting a model: Cost Functions, Regularization, Gradient Descent

* Lecture Il
— Intro to Neural Networks
— Decision Trees and ensemble methods
— Dimensionality reduction
— Clustering

* Lecture III — Jon Shlens (Google Brain)

— Deep Learning, basics and current research

* Topics we won’t be able to cover in such a short time
— SVM
— Gausslan Processes
— Variational Inference
— Sequence modeling, Hidden Markov Models



What is Machine Learning?




What is Machine Learning?

Giving computers the ability to learn without
explicitly programming them (Arthur Samuel, 1959)

Statistics + Algorithms

Computer Science + Probability + Optimization
Techniques

Fitting data with complex functions
Mathematical models learnt from data that

characterize the patterns, regularities, and
relationships amongst variables in the system




Where 1s ML Used, an Incomplete Llst /

P Natural Language Processing

* Speech and handwriting
recognition

* Object recognition and computer

vision | ’
° Fr au d d eteCth n Predicted Land Usage U ie:#;: s '::E::c e a.,z:::‘,?.z,f:a:?

* Financial market analysis
* Search engines

* Spam and virus detection
* Medical diagnosis

* Robotics control

10000

* Automation: energy usage,
systems control, video games,
self-driving cars

* Advertising
e Data Science
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Minor elliptical axis (y) against Major
elliptical axis (x) for stars (red) and
galaxies (blue). (Amos storkey)

http://www-wfau.roe.ac.uk/sss/




Machine Learning Applied Widely in HEP
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complex final states 00 E
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— Reconstructing heavy particles and improving the 200 2

100 =

energy / mass resolution

* Inreconstruction:
— Improving detector level inputs to reconstruction
— Particle 1dentification tasks
— Energy / direction calibration

* In the trigger:
Quickly 1dentifying complex final states

* In computing:
Estimating dataset popularity, and determining how
number and location ot dataset replicas
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Machine Learning: Models /

* Key element in machine learning 1s a mathematical
model

— A mathematical characterization of system(s) of
interest, typically via random variables

— Chosen model depends on the task / available data



Machine Learning: Models /

* Key element in machine learning 1s a mathematical
model

— A mathematical characterization of system(s) of
interest, typically via random variables

— Chosen model depends on the task / available data

— Classification:

[Rogozhnikov]



Machine Learning: Models /

* Key element in machine learning 1s a mathematical
model

— A mathematical characterization of system(s) of
interest, typically via random variables

— Chosen model depends on the task / available data

— Regression:
\7\\\ V= wxtw,
y | I
| .




Machine Learning: Models A

* Key element in machine learning 1s a mathematical
model

— A mathematical characterization of system(s) of
interest, typically via random variables

— Chosen model depends on the task / available data

— Clustering:

O

(g

[Bishop] -2 0 2 -2 0



Machine Learning: Models /

* Key element in machine learning 1s a mathematical
model

— A mathematical characterization of system(s) of
interest, typically via random variables

— Chosen model depends on the task / available data

y

— Dimensionality
reduction:

» X

https://lazyprogrammer.me/tutorial-principal-components-analysis-pca/




Machine Learning: Models A

* Key element in machine learning 1s a mathematical
model

— A mathematical characterization of system(s) of
interest, typically via random variables

— Chosen model depends on the task / available data

* Learning: estimate statistical model from data

* Prediction and Inference: using statistical model
to make predictions on new data points and infer
properties of system(s)



Parametric vs. Non-parametric Models A

Parametric Models: models that do
not grow in complexity with dataset
size. Fixed set of parameters to
learn

— Example: sum of Gaussians, each with
mean, variance, and normalization

Non-Parametric Models: models
that do not have a tixed set of
parameters, often grow In
complexity with more data

— Example: model predictions of a new
data point using nearest known
datapoint. The more known
datapoints, the more complex is the
model

>

Binary kNN Classification (k=1)

X2

x1

http://bdewilde.github.io/blog/blogger/
2012/10/26/classification-of-hand-written-digits-3/
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[Ravikumar]



Learning A
4 ) T .
e rain
Training
— | Model
Data - ~
~ 7 " Test
Data
e Supervised Learning Test " Y
— Classification
— Regression
* Unsupervised Learning v
— Clustering - ~
— Dimensionality reduction MOdel
Evaluation
e Reinforcement learning - J

[Ravikumar]



Notation A

¢« X & Rmxn Matrices in bold upper case:

¢ x € R(xY) Vectors in bold lower case

e xER Scalars in lower case, non-bold
« X Sets are script

° {x.}," Sequence of vectors X, ..., X,

y €1/ RK Labels represented as

- Integer for classes, often {0,1}. E.g. {Higgs, Z}
- Real number. E.g electron energy

Variables = teatures = inputs

* Data pointx = {x,, ..., X} has n-features
* Typically use affine coordinates:
y=wix+w,—= wix
- W :{WO’ Wl’ ? Wn}
— x ={1, X,.., X,



Probability Review /

* Joint distribution of two variables: p(x,y)

* Conditional distribution: p(y|x) =

(x\y) ( )

* Bayes theorem: p(y|z) =

* Expected value: / f(x

e Normal distribution: |

—x-N(w o) — p(1)= —Z=exp (-




Supervised Learning A

* Given N examples with features {x. € X} and
targets {y, € Y}, learn function mapping h(x)=y

— Classification: Y is a finite set of labels (i.e. classes)

Y = {0, 1} for binary classification,
encoding classes, e.g. Higgs vs Background

Y= {c,c, ... c,} for multi-class classification
represent with “one-hot-vector”
— vy.=(0,0,...,1,...0)

were k' element is 1 and all others zero for class Cy.



Supervised Learning

S

* Given N examples with features {x. € X} and
targets {y, € Y}, learn function mapping h(x)=y

— Classification: Y is a finite set of labels (i.e. classes)

— Regression: Y = Real Numbers



Supervised Learning A

* Given N examples with features {x. € X} and
targets {y, € Y}, learn function mapping h(x)=y

— Classification: Y is a finite set of labels (i.e. classes)

— Regression: Y = Real Numbers

* Often these are discriminative models, in which case we model:

h(x) = p(y|x)

* Sometimes use generative models, estimate joint distribution p(y, x)
— Often estimate class conditional density p(x|y) and prior p(y)
— Use Bayes theorem to then compute:

h(x) = p(y|x) < p(x|y)p(y)



Unsupervised Learning

* Given some data D={x.}, but no labels, find
structure 1n the data

— Clustering: partition the data into groups
D={D,UD,UD,...UD,}

— Dimensionality reduction: find a low dimensional
(less complex) representation of the data with a

mapping Z=h(X)



Reinforcement Learning A

Agent
state (s[t]) Policy m: S—A
action (aft])

reward (r[t+1])
—[ Environment ]% [Ravikumar]

* Models for agents that take actions depending on
current state

* Actions Incur rewards, and aftect tuture states

(“teedback”)

* Learn to make the best sequence of decisions to
achieve a given goal when feedback 1s often delayed
until you reach the goal



Deep Reinforcement Learning with AlphaGo A
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Supervised Learning: How does it work? A




Supervised Learning: How does 1t work? A

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction
with true Loss
True labels: label
Higgs =1 S
Bkg=0
* Design function with adjustable parameters
Y. Le Cun
* Design a Loss tunction
. . .. A
* Find best parameters which minimize loss L(W.X)

Ny




Supervised Learning: How does 1t work? A

> h(x; w) > Loss
Function with Function
adjustable
parameters Compare
prediction 1
with true 055
True labels: label
Higgs =1 S
Bkg=0
* Design function with adjustable parameters
Y. Le Cun
* Design a Loss tunction
. . .. A
* Find best parameters which minimize loss L(W.X)

— Use a labeled training-set to compute loss
— Adjust parameters to reduce loss function /—&/

— Repeat until parameters stabilize

* Estimate final performance on test-set W



Empirical Risk Minimization /

N
o1
arg min — Z L(h(x:; W), y;) + AQ(w)
L =1 v J Y 1

Average expected loss Model regularization

* Framework to design learning algorithms

— L(...) 1s a loss function comparing prediction h(...) with
target y

— QQ(w) 1s a regularizer, penalizing certain values of w

* A controls how much we penalize, and is a hyperparameter that we
have to tune

e We will come back to this later

* Learning 1s cast as an optimization problem



Example Loss Functions A

* Square Error Loss: L(h(x;w),y) = (h(x;w) — y)2
— Often used 1n regression
* Cross entropy: L(h(x;w),y) = — ylog h(x; w)
— With y € {0,1} — (1 —y)log(l — h(x;w))

— Often used 1n classification

* Hinge Loss:
- Square Error

— With J = {_1’1} - Cross Entropy
L(h(x;w),y) = max(0,1 — yh(x; w)) _Hinge

- Zero-one

* Zero-One loss
— With h(x; w) predicting label ~

L(h(X7 W)7 y) — 1y;éh(x;w)

[Bishop]




Maximum Likelihood

A

* Describe a process behind the data
e Write down the likelihood ot the observed data

L(w) = p(y|X; w) Hp Yi|Xi; W

* Where second equality holds 1f data i1s independent and
1dentically distributed

* Often minimize negative-log-likelihood for numerical
stability

— Same as maximizing likelihood since log 1s monotonic and
differentiable away from zero



Maximum Likelihood A

* Describe a process behind the data
e Write down the likelihood ot the observed data

L(w) = p(y|X;w) Hp YilXi; W

* Select parameters that make data most likely

— General strategy for parameter estimation

%%

w* = argmax L(w) = arg m“i’n —In L(w) = arg mvin — Z In p(y;|xi; w)



Linear Methods

i




Least Squares Linear Regression A

* Set of input / output pairs D = {x.,y.}._,

— yl E R 1000} | |
* Assume a linear model g
h(x; w) = wlx L
* Squared Loss function: oL
1 2
L(w) = 5 E (yi — h(x;; w))
i

* Find w" = arg min_ L(w)



Least Squares Linear Regression: Matrix Form A

* Set of input / output pairs D = {x.,y.}._,
— Design matrix X € Rmm

— Target vector y € R"
11 T12  Tim Y1
21 T22 ' Tam Y2
X = y =




Least Squares Linear Regression: Matrix Form A

* Set of input / output pairs D = {x.,y.}._,
— Design matrix X € Rmm

— Target vector y € R"
: 1
* Rewrite loss: L(w) = 5(y — Xw)! (y — Xw)
e Minimize w.r.t. w: W= (XTX)_leY = arg min L(w)

wW



Least Squares Linear Regression: Matrix Form A

* Set of input / output pairs D = {x.,y.}._,
— Design matrix X € Rmm

— Target vector y € R"
: 1
* Rewrite loss: L(w) = 5(y — Xw)! (y — Xw)
e Minimize w.r.t. w: W= (XTX)_leY = arg min L(w)

wW

What it we have correlated variables? Multi-collinearity
— X 1s close to singular

— Inverse 1s highly sensitive to random errors

Hint: Regularization can help!



Linear Regression Example A

;l 50 (T T T | T T T [ T T T ] T T T [ T T 1 ] Eur Phys. J. C(2015) 75:17
) ~ ATLAS Simulation ]
(2. 45:_—0— 20< ptTrmh<25 GeV \s=7TeV —:
- - —=—25<p"<30GeV Pythia Dijet, anti-k R=0.4 7
8 40 —+—30<p™"<35GeV | <21,75<u <85
o - —»— 35< ptTrlJth <40 GeV N
35 o 40<p"" < 45 GeV —
- Average Slope = 0.288%0.003 GeV/N,, 7
30 o
RSP .
E X \ - = A E
1 O _l | | I | | | | | | | | | | | I | | | I | ]

2 4 6 8 10

Number of primary vertices (NPV)

* Reconstructed Jet energy vs. Number of primary vertices



Linear Regression — Probabilistic Interpretation /

* Assume y. = mx, + e,

1 e?
 Random error: e; ~N(0,0) — p(e;) x exp (5 0—22)
— Noisy measurements, unmeasured variables, ...



Linear Regression — Probabilistic Interpretation A

* Assume y. = mx, + e,

1 €2
 Random error: e; ~N(0,0) — p(e;) x exp (5 0_22)

— Noisy measurements, unmeasured variables, ...

1 (y; — max;)?
* Then yi~N(mxzi,0) = p(yilzi;m) o« exp (§(y 2 ) )




Linear Regression — Probabilistic Interpretation A

* Assume y. = mx, + e,
1 6?
 Random error: e; ~N(0,0) — p(e;) x exp >

° . 0-2
— Noisy measurements, unmeasured variables, ...

1 (yi — mﬂ?z‘)z)

e Then i ~N(mzio) — plyilesm) o exp (—

2 o2

e [.ikelihood function:
L(m) = p(y|X;m) Hp yilTi;m

— —log L(m) ~ Z(yz — ma;)’

1



Linear Regression — Probabilistic Interpretation A

* Assume y. = mx, + e,

1 €2
 Random error: e; ~N(0,0) — p(e;) x exp (5 0_7,2)

— Noisy measurements, unmeasured variables, ...
2
1 (y; — mx;) )

 Then i~ Amri,0) = plosfeism) ox exp (32

e [.ikelihood function:

L(m) = p(y|X;m) Hp yilwi;m
Squared

— —log L(m) N Z(yz - mxi)Q loss function!

1



Why Take a Probabilistic Approach? A

* Allows us to get calibrated estimates of p(y|x)

* Separates predictions from modeling

* A general framework for parameter estimation.

— Can use to tit other parameters ot the model.



Basis Functions

0 1

* What if non-linear relationship between y and x?



Basis Functions

0 !
* What if non-linear relationship between y and x?

* Can choose basis functions ¢(x) to form new features

yi = Wio(x;)

— Polynomial basis ¢(x) ~ {1, x, x?, x°, ...},
Gaussian basis, ...

— Linear regression on new features ¢(x)



Basis Functions

N =100 1

0 !
* What if non-linear relationship between y and x?

* Can choose basis functions ¢(x) to form new features

yi = wWho(x)

— Polynomial basis ¢(x) ~ {1, x, x?, x°, ...},
Gaussian basis, ...

— Linear regression on new features ¢(x)

* What basis functions to choose? Overfit with too much flexibility?



What is Overfitting A

Degree 1 Degree 4 Degree 15

—  Model —  Model —  Model
True function True function True function
B ee s Samples eees Samples ee e Samples

Underfitting Overfitting

http://scikit-learn.org/

* What models allow us to do 1s generalize from data

* Difterent models generalize in different ways



Bias Variance Tradeoff A

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)



Bias Variance Tradeoft A

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)

* Simple models under-fit: will deviate from data (high

bias) but will not be influenced by peculiarities of data
(low variance).



Bias Variance Tradeoft A

* generalization error = systematic error + sensitivity of prediction
(bias) (variance)

* Simple models under-fit: will deviate from data (high
bias) but will not be influenced by peculiarities of data

(low variance).

¢ Complex models over-fit: will not deviate systematically
from data (low bias) but will be very sensitive to data
(high variance).




Bias Variance Tradeoft A

* Model h(x), defined over dataset, modeling random variable output y

Elyl =y
E[h(z)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

El(y — h(=))"] = El(y — )]

= noise

(7= h(x)*  + El(h(z) - h(z))’]

+ (y—nh
+ (bias) + variance



Bias Variance Tradeoft A

* Model h(x), defined over dataset, modeling random variable output y

Elyl =1y
E[h(z)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

El(y — h(=))"] = El(y — )]

= noise

|

Intrinsic noise in system or measurements
Can not be avoided or improved with modeling
Lower bound on possible noise

(7= h(x)*  + El(h(z) - h(z))’]

_|_
+ (bias) + variance




Bias Variance Tradeoft A

* Model h(x), defined over dataset, modeling random variable output y

Elyl =y
E[h(z)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@)*] =Elly—9)°| + |@—h@)*| + E[(h(z)-h(=))’]
)2

= noise + | (bias + variance

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.



Bias Variance Tradeoft A

* Model h(x), defined over dataset, modeling random variable output y

Elyl =y
E[h(z)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@))*] =Elly—9)°| + |@—h@)*| + E[(h(z) - h(=))’]
)2

= noise + | (bias

-+ |variance

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.

* More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.



Bias Variance Tradeoft A

* Model h(x), defined over dataset, modeling random variable output y

Elyl =y
E[h(z)] = h(x)

* Examining generalization error at x, w.r.t. possible training datasets

Elly —h(@))*] =Elly—9)°| + |@—h@)*| + E[(h(z) - h(=))’]
)2

= noise + | (bias

-+ |variance

* The more complex the model h(x) 1s, the more data points 1t will
capture, and the lower the bias will be.

* More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.



Bias Variance Tradeoff

S

Total Error

Variance

Optimum Model Complexity

Error

Model Complexity

& -



Regularization

Can control the Complexitly of a model by placing
constraints on the model parameters

— Trading some bias to reduce model variance
.2 norm: Q(w) = ||w||? = Z W;

— “Ridge regression”, enforcmg welghts not too large
— Equivalent to Gaussian prior over weights

L1 norm: Q(w) = [[w|| = |w]

— “Lasso regression”, enforcing sparse weights

Elastic net = 1.1 + L2 constraints



Regularized Linear Regression

A

L(w) = 3y — Xw)’ + af(w)

L2: Q(w) = |lwl|” L1: Q(w) = [|w]]

Ridge coefficients as a function of the regularization Lasso and Elastic-Net Paths

25+

200 1 20 1

15+

/
100 - i

v 10t
(5] c
i 8
2 S
[ =

2 @ Of
0 — S

- oL

-5t

-100 |
—10H — Lasso
— - Elastic-Net
1072 1073 10 107 106 107 10°8 107 1010 -1.5 -1.0 -0.5 0.0 0.5
alpha -Log(alpha)
Less regularization > Less regularization >

* L2 keeps weights small, L.1 keeps weights sparse!

* But how to choose hyperparameter o.?

http://scikit-learn.org/




How to Measure Generalization Error? %

Training set Validation set Test set

Split dataset into multiple parts

Training set
— Used to fit model parameters

y, output

Validation set

— Used to check performance on x, input

independent data and tune

hyper parameters 5 10 . .
5 —e— validation
 Test set 2 ; rain
. 3 \a 7]
— final evaluation of performance 3
after all hyper-parameters fixed S
— Needed since we tune, or “peek”, = o0 *

performance with validation set 0 5 10 15

p, polynomial order
[Murray]



How to Measure Generalization Error?

Prediction Error

High Bias Low Bias
Low Variance High Variance
- ——————— e e e —— .

Validation Sample

/

/

Training Sample

Low High
Model Complexity



Cross Validation A

run 1
Training set
run 2
Validation set
run 3
[Bishop]
run 4

* Especially when dataset 1s small, split training set into K-folds
— Train on (K-1) folds, validate on 1 fold, then iterate
— Use average estimated performance on K-folds

— Allows for estimate of performance RMS

* Even when dataset not small, useful technique to estimate
varlance of expected performance, and for comparing different
models / hyperparameters



Classification

Rectangular cuts Linear discriminant

* Learn a function to separate x| sl e
difterent classes of data

* Avoid over-fitting: /

— Learning too fined details about
your training sample that will not
generalize to unseen data X,




Linear Decision Boundaries

* Separate two classes: 9> 0
h(x) =0
— Xi = Rm h(x) <0
-y €{-1,1}
e Linear discriminant model

h(x; w) = wix

[Bishop]



Linear Decision Boundaries A

* Separate two classes: =0 a2}
h(x) =0
— Xi = Rm h(x) <0 » R1
2 [ ]
— i E{_lal} ‘,.. ¢
[ ] X

e [.inear discriminant model g

h(x; w) = wix “

* Decision boundary defined by hyperplane

[Bishop]
Ix =0

h(x; w)=w
— Boundary 1s perpendicular to weight vector w

* Classifier Score(x.) = h(x; w)

* Class predictions: Predict class 0 if h(x; ; w) < 0, else class 1



Linear Classifier with Least Squares? A

[Bishop]

* Why not use least squares loss with binary targets?



Linear Classifier with Least Squares?

* Why not use least squares loss with binary targets?
— Penalized even when predict class correctly
— Least squares 1s very sensitive to outliers

[Bishop]



Linear Classifier with Least Squares? A

[Bishop]

* Why not use least squares loss with binary targets?
— Penalized even when predict class correctly
— Least squares 1s very sensitive to outliers

* Use only class labels?
— Perceptron algorithm (not covered here)

* A probabilistic approach?



Logistic Regression for Classification A

* Set of input / output pairs D = {x,, y;}
- x, ER™
— i = {07 1}

1=1...n

T

* Linear discriminant: h(x; w) = w'x



Logistic Regression for Classification A

* Set of input / output pairs D = {x., y.}._,
- x, ER™
-y €1{0, 1}

* Linear discriminant: h(x; w) = w

e Model

1

09

0.8

0.7

per example probability: p(y = 1|x) = p; =

T

Logistic Sigmoid
1

1+ e—h(x;w)
1

1 +eW'x

NOTE:

Not a random choice,
Natural choice for large
class of models

See backups for more info



Logistic Regression for Classification A

* Set of input / output pairs D = {x., y.}._,
- x, ER™
-y €1{0, 1}

* Linear discriminant: h(x; w) = wlx
1

B 1 +eW'x

* Model per example probability: p(y = 1|x) = p;
— The farther from boundary w'x=0, the more certain about class

— Class decision rule: choose class 0 it p.<0.5, else choose class 1



Logistic Regression for Classification A

* Set of input / output pairs D = {x., y.}._,
- x, ER™
-y €1{0, 1}

* Linear discriminant: h(x; w) = wlx

1

B 1 +eW'x

* Model per example probability: p(y = 1|x) = p;
— The farther from boundary w'x=0, the more certain about class

— Class decision rule: choose class 0 it p.<0.5, else choose class 1

* Concisely write p(y|x) as Bernoulli random variable:

P(y; = ylz;) = Bernoulli(p;) = (p;)¥ (1 — p;)* ¥ :{Ilji—pi ﬁ?:



Logistic Regression

/s

* Negative log-likelihood

—InL=—In][@)¥Q-p)¥

7



Logistic Regression

* Negative log-likelihood

_ NYi(1 — . )1~V
o ln L - ln H(pz) ’ (1 pz) ’ binary cross entropy loss function!

-

= — Zyz In(p;) + (1 — y;) In(1 — p;)

-log(p;) f
-log(1-p) ;




Logistic Regression A
* Negative log-likelihood

— ln L = — ln H(}%)yz <1 _ pz) 1_yi binary cross entropy loss function!
= = Zyz In(p;) + (1 —yi) In(1 — p;)

=Y Tyl +e™ X) + (1 —y,) In(1+ eV ¥)

* No closed form solution to w* = arg min_, -In L

e How to solve tor w?



Gradient Descent A

* Many methods to solve, lets us Gradient Descent

* Minimize loss by repeated gradient steps (when no closed

form)
— Compute gradient w.r.t. parameters: aL(W)
ow
/ OL(w)
— Update parameters W < W — 1 -

— 1 1s called the learning rate, controls
how big of a gradient step to take




Stochastic Gradient Descent and Variants

* Gradient descent 1s computationally

costly (since we compute gradient — w

over full training set)

* Stochastic gradient descent —— AN

— Compute gradient on one event at a
time (in practice a small batch)

— Noisy estimates average out

: : «:* . ” 41# “‘ !
— Stochastic behavior can allow “jumping .
o« o . 1
out of bad critical points 2 ,
/ —  sgd
. . w, 1 - momentum [}
— Scales well with dataset and model size | — nag
- adagrad ‘
— But can have some convergence 1} adadelta |
. . N
difficulties - rmsprop x

-3
— Improvements include: /

-4
Momentum, RMSprop, AdaGrad, ...

http://danielnouri.org/notes/category/deep-learning/

I

-5




Gradient Descent for Logistic Regression A

Liw)=—InL(w Zyz In(o )+ (1 =) In(1 — o(w!x))

* Derivative of sigmoid: ag(j) = o(2)(1 — o(2))

* Derivative of Loss: OL(w) _ D (o(w'x) = yi)x;

* Update rule:

wew 2 S (w0

* Repeat until parameters stable



Gradient Descent A

Starting

L(W)A / Point

\\ lteration 3

Loss

\ Iteration 4

Convergence

(w)

min

[ I l 1
et —t—1 — HH > 0 200 400 600 800 1000

w Iterations

e J.oss 1s convex

— Single global minimum

e Jterations lower loss and move toward minimum



Logistic Regression Example -

p(y=1[x)
25 1] L
e o
20 §
® o
15 I R
101 y
o
® N True decision boundary
° e === Fitted decision boundary ©® - .
@%e Out 1 = Fitted decision boundary
o utcome ) ) -
@89 Outcome 0 00@ Predicted probability
5—1 0 1 2 3 - 5 6 -1 0 1 2 3 - 5 6

https://triangleinequality.wordpress.com/2013/12/02/logistic-regression/




Estimating a Classifier Performance

78

Predicted

Positive

Negative

Positive

True Positives (TP)

False Negatives (FN)

o
=
=

Confusion Matrix
Classifying tau decays

Negative

False Positives (FP)

| |
ATLAS Simulation

0}
'8 B Zly*>tr |
e Tau Particle Flow Diagonal fraction: 74.7%
>
®
B3nt212— 0.2 2.5 3.6 5.3 56.6 —| ©
o — =
> ©
3 :
© 3n*— 0.2 0.6 0.3 92.5 40.2 — 2 o
> 2 =2
= E =
1% TR
c — O
S h*>27°— 0.4 6.0 35.4 0.1 0.4 — A+
(¢} 20 o
o o 3
|_
hz°— 9.4 74.8 56.3 0.9 25 —
ht= 89.7 16.0 4.3 1.2 0.3 —
| | | | |
H* h* 70 h>27° 3h* 3h*217°

arXiv:1512.05955

Generated decay mode

0.8

0.6

0.4

D o¥7 —— WeaKly supervised NN, AUC=0.89
iy o 60(0/ —— Fully supervised NN, AUC=0.89
. ’,’ S s - - - Feature 1, auc=0.78 ]
p 7 Feature 2, auc=0.71
’:' 7 - - - Feature 3, auc=0.78 I
|

True Negatives (TN)

Receiver Operating Characteristic (ROC) Curve

classifying quarks vs. gluons
1.0

0.4 0.6
False Positive Rate
(Background efficiency)

0.8 1.0

arXiv:1702.00414



Multiclass Classification?

79

e What if there 1s more than two classes?

5000 T -
=
°
=
4500} " ]
e ]
e 0o o ° am ¥ g
®
= 4000} F % = ]
] ° "
- K
£ 8 " a
c ° u c
3500} - ]
5 [ ] &
2
2 . "
U 3000 @ Wearingin °
A Working smoothly
25004 W Need replacement
2000
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Time in service (in days)



Multiclass Classification?

e What if there 1s more than two classes?

5000,

o

@ Wearingin

A Working smoothly

W Need replacement

|

0 20 40 60 80 100 120 140 160 180
Time in service (in days)

* Softmax — multi-class generalization of logistic loss

— Have N classes {c,, ..., ¢y}
— Model targety, = (0, ..., 1, ...0)

kth element in vector

exp(Wgx)
D exp(w;z)

— Gradient descent for each of the weights w,

p(cklr) =



Summary of Today A

* Machine learning uses mathematical and statistical models
learned from data to characterize patterns and relations
between inputs, and use this for inference / prediction

* Machine learning comes in many forms, much of which has
probabilistic and statistical foundations and interpretations
(1.e. Statistical Machine Learning)

* Discussed linear models today
— Many forms of linear models, we only touched the surtace!

* Next time, some nonlinear models and unsupervised
learning

— Decision trees and ensemble methods
— Neural network (intro)

— Clustering

— Dimensionality reduction



Advertisements

S

* Friday’s lecture on deep learning and computer
vision from Jon Shlens from Google Brain!

* Data Science (@ HEP workshop on machine
learning 1n high energy physics
— May 8-12, 2017 at Fermilab

— https://indico.tnhal.gov/conferenceDisplay.py?
ovw=True&confld=13497




Recommended Materials A

* Many excellent books (many available free online)
— Introduction to Statistical Learning
— FElements of Statistical Learning
— Pattern Recognition and Machine learning (Bishop)

* Many excellent courses and documentation available online
— Andre Ng’s machine learning course on Coursera
— University course material online: Stanford CS229, Harvard CS181, ...
— Lectures from Machine Learning Summer School (MLSS)
— Lectures from Yandex Machine learning in HEP summer schools

— Scikit Learn documentation

e References:

— T used / borrowed from many of these references to make these lectures!



References A

* http://scikit-learn.org/

* [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
* [ESLT Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani & Friedman 2009

* [Murray]| Introduction to machine learning, Murray

— http://videolectures.net/bootcamp2010 murray iml/

* [Ravikumar] What is Machine Learning, Ravikumar and Stone
— http://www.cs.utexas.edu/sites/default/files/legacy files/research/documents/MILSS-
Intro.pdf
* [Parkes] CS181, Parkes and Rush, Harvard University

— http://cs181.fas.harvard.edu

* [[Ng7] CS229, Ng, Stanford University
—  http://cs229.stanford.edu/

* [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
— https://indico.cern.ch/event/497368/







Bayesian vs. Frequentist Models A

* Mathematical models in ML typically described via random
varlables — 1n which case they are also called statistical
models

 Statistical models typically specified by unknown
parameters (to be learnt from data)

* Frequentist: there exist a “ground-truth” set of unknown
parameters that are constant (l.e. not random)

* Bayesian: model parameters are themselves random, and
typically specified by their own distribution/statistical
model, with their own unknown “hyperparameters”



Probabilistic Motivation

p(xly=1)p(y = 1)

: Titv: = 1|x) =
Posterior probability: (¥ %) p(xly = Dply = 1) + p(x[y = 0)p(y = 0)

p(xly=1)p(y = 1)
p(xly = 0)p(y = 0)

Log-probability ratio: a(x) = In

In a large class of models a(x) 1s linear
a(x) = wix

— When class-conditional density p(x|y) is in the exponential family of
Generalized Linear Models,

* Includes Gaussian, Exponential, Poisson, Beta, ...

Have linear discriminant and estimate of per-class probability

Even it p(x|y) unknown, motivation to model p(y|x) with logistic sigmoid



Regularization A
W2 5 Contours of Loss W2
W*

L1 Contours

Contours of L. regularizer > |w;|”

L2 Contours

Pattern Recognition and Machine Learning C. M. Bishop (2006)



Support Vector Machines




Linear Separability

A
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Decision Boundaries — Which 1s Best?
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Maximum Margin Classifiers A

* Many possible solutions to separating classes

— Depends on the loss function chosen

* Assuming classes are linearly separable, what 1f we wanted
to solution with the maximum distance between the

decision boundary and the nearest data point?

y=-1
y=20
y=1

Margin o



Maximum Margin Classifier A

e Assume we have:
— x in R4

— yin {-1, 1}

* Linear classifier: h(x; w) = wix + w,

: : . (wlx.
* Distance of data point, x,, to decision boundary Yi (W Xi + wo)
wl'w
* Optimization problem:
! iny; (w!x; + wo) arg min 1WTW
arg max min y; (W* x; +w —
gW7 wo \/WTW 7 y 0 gW,wo

s. t. yi(wix; +wg) > 1 for all

— Can solve with gradient descent methods!



What if points not linearly separable? A

N
arg min S w- w + C’Zﬁi

W,Wo

s. t. yi(WTXi -+ w()) 2 1 — fz for all 2
and & >0

* Add a smearing to the margin, § >0
— It § =0, example correctly classifier

— It 0< § <1, example correctly
classified, but in margin

— If € >1, example incorrectly classitied

* Add regularizer to problem to constrain & not too large

— C 1s the regularization hyperparameter that controls how much
“softening” of the boundary 1s allowed, thus how big 1s margin



What if points not linearly separable? A

1

: T
- O Z.
arg vrglgé SW W + Z;f
s. t. yi(WTXi +wg) > 1—=¢&; for all ¢
and & >0
* Add a smearing to the margin, & >0 6

* Add regularizer to problem to
constrain & not too large

* C s the regularization
hyperparameter

— Controls how much “softening” of the 4 °
boundary is allowed, thus how big is margin




Soft Margin Formulation o

C=infinity, hard margin C=10, soft margin

08

06

04

02

0.2

04

06

08



Dual Formulation A

* Use Lagrange multipliers (remember thosel) to write a

loss function for hard margin:

1
L(w, wo,a) = §WTW - Zai{yi(WTxi + wp) — 1}

1

s. t. {a; >0}

— Where a are Lagrange multipliers — W = Z AiYiLq
— Minimize L w.r.t. w and w,;: Z
— Z a;y; = 0
i

— Solve for a and w,, using gradient methods, or SMO algorithm

* Dual form of optimization

! t
max Z =5 Z Z Ai0jYiYjXiX; Discriminant Function
i T
° — . . t
s. t. Zaiyi =0 h(Xv a, wO) — E :azsziX -+ Wo
i 1
a; > 0 for all ¢




Support Vector Machines A

wix+b=0

. o t ’_ __‘_ ................... >
h(x;a, wy) = E a;Y; X; X + Wo <

* Only examples on margin will have a,>0!
— Follows from KR'T conditions ot constrained optimization

* Sum 1s only over a small number of examples on margin,
the support vectors

— Note: also only depends on inner produce! More later

* Margin ondata=1/||w]| |
— At least one constraint will hold



Support Vector Machines: Recap A
* Maximum Margin Optimization: max Z @i~ 5 Z Z aiajyiy
J

— Dual formulation i

1
s. t. Za- =0
- 4 Data always in
(2

inner product

a; > 0 for all ¢ /
. . . . v
* Discriminant function: h(x;a,wy) = Z ai Wo
@

. ®
— Sum 1s only over a small A o ebeo
-
number of examples on . e
. b H
margin called . Tl S e
the support vectors s N S e .
Support Vecto.l.'.@’ @gupport Vector °
° °
]
o



Basis Functions Revisited 10

. b i; — ig R2 - R3

e When data i1s not (%) (f)
linearly separable, can R
use basis functions

0

* Where ¢ is a map from R™ — Rk

* Butif k>>m (orif k infinite), inner product
can be expensive to compute

* But we don’t need the mapping ¢, only inner
products...



Kernels and the Kernel Trick 10

* A kernel function K(x,x")=¢(x)¢(x’) 1s an mnner
product where ¢ is a mapping R™ — Rk

* Kernelized discriminant and optimization problem

1
h(x;a,wy) = Z a;y; K(x;,x) + wq mgxzai ~ 3 Z Zaz’ajyiyjK(Xian)
1 7 Jj

s. t. Zaiyi =0

)

CL@EO

* Kernel Trick: compute the Kernel K(x, x’) without
computing ¢(x)!
— So we just need to engineer the Kernel, not the exact
features or exact mapping



Kernels 10

* Linear Kernel: K(x,x") = xx’

* Polynomial Kernel: K(x,x") = (1 + x!x’)d

(x - x’>2)

. b 1
* Gaussian Rernal: R(x,x’) = exp ( 5 >
o)

* Aslong as the Rernel matrix R;; = ¢(x;) ¢(x;) 1s a

positive semi-definite matrix, it 1s a valid Kernel



SVM

Gaussian Kernel with o=1

Gaussian Kernel with 0=0.25




