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Lecture Structure 
•  Lecture I 

–  What is Machine Learning 
–  Linear Regression and Classification 
–  Fitting a model: Cost Functions, Regularization, Gradient Descent 

•  Lecture II 
–  Intro to Neural Networks 
–  Decision Trees and ensemble methods 
–  Dimensionality reduction 
–  Clustering 

•  Lecture III – Jon Shlens (Google Brain) 
–  Deep Learning, basics and current research 

•  Topics we won’t be able to cover in such a short time 
–  SVM 
–  Gaussian Processes 
–  Variational Inference 
–  Sequence modeling, Hidden Markov Models 
–  … 

2	



What is Machine Learning? 3	



What is Machine Learning? 

•  Giving computers the ability to learn without 
explicitly programming them (Arthur Samuel, 1959) 

•  Statistics + Algorithms 

•  Computer Science + Probability + Optimization 
Techniques 

•  Fitting data with complex functions 

•  Mathematical models learnt from data that 
characterize the patterns, regularities, and 
relationships amongst variables in the system  
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Where is ML Used, an Incomplete List 
•  Natural Language Processing 
•  Speech and handwriting 

recognition 
•  Object recognition and computer 

vision 
•  Fraud detection 
•  Financial market analysis 
•  Search engines 
•  Spam and virus detection 
•  Medical diagnosis 
•  Robotics control 
•  Automation: energy usage, 

systems control, video games, 
self-driving cars 

•  Advertising 
•  Data Science  
•  … 
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Machine Learning Applied Widely in HEP 
•  In analysis: 

–  Classifying signal from background, especially in 
complex final states 

–  Reconstructing heavy particles and improving the 
energy / mass resolution 

–  … 

•  In reconstruction: 
–  Improving detector level inputs to reconstruction  
–  Particle identification tasks 
–  Energy / direction calibration 
–  … 

•  In the trigger: 
–  Quickly identifying complex final states 
–  … 

•  In computing: 
–  Estimating dataset popularity, and determining how 

number and location of  dataset replicas 
–  … 
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Machine Learning: Models 

•  Key element in machine learning is a mathematical 
model 

– A mathematical characterization of  system(s) of  
interest, typically via random variables 

– Chosen model depends on the task / available data 
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Machine Learning: Models 

•  Key element in machine learning is a mathematical 
model 

– A mathematical characterization of  system(s) of  
interest, typically via random variables 

– Chosen model depends on the task / available data 

– Classification: 
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Machine Learning: Models 

•  Key element in machine learning is a mathematical 
model 

– A mathematical characterization of  system(s) of  
interest, typically via random variables 

– Chosen model depends on the task / available data 

– Regression: 
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Machine Learning: Models 

•  Key element in machine learning is a mathematical 
model 

– A mathematical characterization of  system(s) of  
interest, typically via random variables 

– Chosen model depends on the task / available data 

– Clustering: 
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Machine Learning: Models 

•  Key element in machine learning is a mathematical 
model 

– A mathematical characterization of  system(s) of  
interest, typically via random variables 

– Chosen model depends on the task / available data 

– Dimensionality  
reduction: 
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Machine Learning: Models 

•  Key element in machine learning is a mathematical 
model 

– A mathematical characterization of  system(s) of  
interest, typically via random variables 

– Chosen model depends on the task / available data 

•  Learning: estimate statistical model from data 

•  Prediction and Inference: using statistical model 
to make predictions on new data points and infer 
properties of  system(s)  
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Parametric vs. Non-parametric Models 
•  Parametric Models: models that do 

not grow in complexity with dataset 
size.  Fixed set of  parameters to 
learn 
–  Example: sum of  Gaussians, each with 

mean, variance, and normalization 

•  Non-Parametric Models: models 
that do not have a fixed set of  
parameters, often grow in 
complexity with more data 
–  Example: model predictions of  a new 

data point using nearest known 
datapoint.  The more known 
datapoints, the more complex is the 
model 
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Learning 15	

•  Supervised Learning 
–  Classification 
–  Regression 

•  Unsupervised Learning 
–  Clustering 
–  Dimensionality reduction 
–  … 

•  Reinforcement learning 
[Ravikumar]		



Notation 

•  X ∈ Rmxn 
•  x ∈ Rn(x1) 

•  x ∈ R 
•  X 
•  {xi}1

m 
•  y ∈ I(k) / R(k) 
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Matrices in bold upper case: 
Vectors in bold lower case 

Scalars in lower case, non-bold 
Sets are script 
Sequence of  vectors x1, …, xm 
Labels represented as 

 - Integer for classes, often {0,1}.  E.g. {Higgs, Z} 
 - Real number. E.g electron energy 

•  Variables = features = inputs 
•  Data point x = {x1, …, xn} has n-features 

•  Typically use affine coordinates:  
    y = wTx + w0 →    wTx 
           →    w ={w0, w1, ... , wn} 
           →    x  ={1,   x1, ... ,  xn} 



Probability Review 

•  Joint distribution of  two variables: p(x,y) 

•  Conditional distribution:  

•  Bayes theorem: 

•  Expected value: 

•  Normal distribution: 
– x~N(µ, σ)    →     
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Supervised Learning 

•  Given N examples with features {xi ∈ X} and  
targets {yi ∈  Y}, learn function mapping h(x)=y 

–  Classification: Y is a finite set of  labels (i.e. classes) 
      

     

   Y = {0, 1}  for binary classification,  
      encoding classes, e.g. Higgs vs  Background 

 
 

   Y = {c1, c2, … cn} for multi-class classification 
 

    represent with “one-hot-vector”   
 

      →  yi = (0, 0,…, 1 ,…0)  
 

    were kth element is 1 and all others zero for class ck 
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Supervised Learning 

•  Given N examples with features {xi ∈ X} and  
targets {yi ∈  Y}, learn function mapping h(x)=y 

–  Classification: Y is a finite set of  labels (i.e. classes) 
      

 
–  Regression:    Y = Real Numbers  
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Supervised Learning 

•  Given N examples with features {xi ∈ X} and  
targets {yi ∈  Y}, learn function mapping h(x)=y 

–  Classification: Y is a finite set of  labels (i.e. classes) 
      

 
–  Regression:    Y = Real Numbers  

•  Often these are discriminative models, in which case we model: 
       h(x) = p(y|x) 

•  Sometimes use generative models, estimate joint distribution p(y, x) 
–  Often estimate class conditional density p(x|y) and prior p(y) 
–  Use Bayes theorem to then compute:  
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h(x) = p(y|x) / p(x|y)p(y)



Unsupervised Learning 

•  Given some data D={xi}, but no labels, find 
structure in the data 

– Clustering: partition the data into groups  
D={D1 ∪ D2 ∪ D3 … ∪ Dk} 

– Dimensionality reduction: find a low dimensional 
(less complex) representation of  the data with a 
mapping Z=h(X) 

21	



Reinforcement Learning 

•  Models for agents that take actions depending on 
current state 
•  Actions incur rewards, and affect future states 

(“feedback”)  

•  Learn to make the best sequence of  decisions to 
achieve a given goal when feedback is often delayed 
until you reach the goal 
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Deep Reinforcement Learning with AlphaGo 23	

Nature	529,	484–489	(28	January	2016)	



Supervised Learning: How does it work? 24	



Supervised Learning: How does it work? 

•  Design function with adjustable parameters 

•  Design a Loss function 

•  Find best parameters which minimize loss 
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Y. Le Cun 
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Supervised Learning: How does it work? 

•  Design function with adjustable parameters 

•  Design a Loss function 

•  Find best parameters which minimize loss 
–  Use a labeled training-set to compute loss 

–  Adjust parameters to reduce loss function 

–  Repeat until parameters stabilize 

•  Estimate final performance on test-set 
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Loss	
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Empirical Risk Minimization 

•  Framework to design learning algorithms 
– L(…) is a loss function comparing prediction h(…) with 

target y 

– Ω(w) is a regularizer, penalizing certain values of  w 
•  λ controls how much we penalize, and is a hyperparameter that we 

have to tune 
•  We will come back to this later 

•  Learning is cast as an optimization problem 
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Average	expected	loss	 Model	regularizaZon	

argmin
w

1

N

NX

i=1

L(h(xi;w), yi) + �⌦(w)



Example Loss Functions 

•  Square Error Loss:  
–  Often used in regression 

 

•  Cross entropy: 
–  With y ∈ {0,1} 
–  Often used in classification 

•  Hinge Loss:  
–  With y ∈ {-1,1} 

 

•  Zero-One loss  
–  With h(x; w) predicting label 
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L(h(x;w), y) =
�
h(x;w)� y

�2

L(h(x;w), y) =� y log h(x;w)

� (1� y) log(1� h(x;w))

L(h(x;w), y) = max(0, 1� yh(x;w))

L(h(x;w), y) = 1y 6=h(x;w)

-	Square	Error	
-	Cross	Entropy	
-	Hinge	
-	Zero-one	

[Bishop]		



Maximum Likelihood 

•  Describe a process behind the data 
•  Write down the likelihood of  the observed data 

•  Where second equality holds if  data is independent and 
identically distributed 

•  Often minimize negative-log-likelihood for numerical 
stability 

–  Same as maximizing likelihood since log is monotonic and 
differentiable away from zero 
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L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)



Maximum Likelihood 

•  Describe a process behind the data 
•  Write down the likelihood of  the observed data 

•  Select parameters that make data most likely 
– General strategy for parameter estimation 
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Linear Methods 31	



Least Squares Linear Regression 

•  Set of  input / output pairs D = {xi , yi}i=1…n  
–  xi  ∈ Rm     
–  yi  ∈ R 

•  Assume a linear model       
   h(x; w) = wTx  

•  Squared Loss function: 

•  Find w* = arg minw L(w)   
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L(w) =
1
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i
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Least Squares Linear Regression: Matrix Form 

•  Set of  input / output pairs D = {xi , yi}i=1…n  
–  Design matrix X ∈ Rnxm     
–  Target vector y ∈ Rn 
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•  Rewrite loss: 

•  Minimize w.r.t. w: 

Least Squares Linear Regression: Matrix Form 

•  Set of  input / output pairs D = {xi , yi}i=1…n  
–  Design matrix X ∈ Rnxm     
–  Target vector y ∈ Rn 

34	

L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)



•  Rewrite loss: 

•  Minimize w.r.t. w: 

•  What if  we have correlated variables?  Multi-collinearity 
–  X is close to singular 
–  Inverse is highly sensitive to random errors 

•  Hint: Regularization can help! 

Least Squares Linear Regression: Matrix Form 

•  Set of  input / output pairs D = {xi , yi}i=1…n  
–  Design matrix X ∈ Rnxm     
–  Target vector y ∈ Rn 
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L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)



Linear Regression Example 

•  Reconstructed Jet energy vs. Number of  primary vertices 
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Eur.	Phys.	J.	C	(2015)	75:17	



Linear Regression – Probabilistic Interpretation 

•  Assume yi = mxi + ei 

•  Random error:  
– Noisy measurements, unmeasured variables, … 
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Linear Regression – Probabilistic Interpretation 

•  Assume yi = mxi + ei 

•  Random error:  
– Noisy measurements, unmeasured variables, … 

•  Then  
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Linear Regression – Probabilistic Interpretation 

•  Assume yi = mxi + ei 

•  Random error:  
– Noisy measurements, unmeasured variables, … 

•  Then  

•  Likelihood function: 
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Linear Regression – Probabilistic Interpretation 

•  Assume yi = mxi + ei 

•  Random error:  
– Noisy measurements, unmeasured variables, … 

•  Then  

•  Likelihood function: 
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Squared 
loss function! 
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Why Take a Probabilistic Approach? 

•  Allows us to get calibrated estimates of  p(y|x) 

•  Separates predictions from modeling 

•  A general framework for parameter estimation. 
– Can use to fit other parameters of  the model.  
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Basis Functions 

•  What if  non-linear relationship between y and x? 
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Basis Functions 

•  What if  non-linear relationship between y and x? 

•  Can choose basis functions φ(x) to form new features 
 
      yi = wTφ(xi) 

–  Polynomial basis φ(x) ~ {1, x, x2, x3, …},  
Gaussian basis, … 

–  Linear regression on new features φ(x)  
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Basis Functions 

•  What if  non-linear relationship between y and x? 

•  Can choose basis functions φ(x) to form new features 
 
      yi = wTφ(xi) 

–  Polynomial basis φ(x) ~ {1, x, x2, x3, …},  
Gaussian basis, … 

–  Linear regression on new features φ(x)  

•  What basis functions to choose? Overfit with too much flexibility? 
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What is Overfitting 

•  What models allow us to do is generalize from data 

•  Different models generalize in different ways 
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Bias Variance Tradeoff  

•  generalization error = systematic error + sensitivity of  prediction 
        (bias)      (variance) 
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Bias Variance Tradeoff  

•  generalization error = systematic error + sensitivity of  prediction 
        (bias)      (variance) 

•  Simple models under-fit: will deviate from data (high 
bias) but will not be influenced by peculiarities of  data 
(low variance).  
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Bias Variance Tradeoff  

•  generalization error = systematic error + sensitivity of  prediction 
        (bias)      (variance) 

•  Simple models under-fit: will deviate from data (high 
bias) but will not be influenced by peculiarities of  data 
(low variance).  

•  Complex models over-fit: will not deviate systematically 
from data (low bias) but will be very sensitive to data 
(high variance).  
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Bias Variance Tradeoff  
•  Model h(x), defined over dataset, modeling random variable output y 
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Bias Variance Tradeoff  
•  Model h(x), defined over dataset, modeling random variable output y 
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E[y] = ȳ

E[h(x)] = h̄(x)

•  Examining generalization error at x, w.r.t. possible training datasets 
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= noise + (bias)

2
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Intrinsic	noise	in	system	or	measurements	
Can	not	be	avoided	or	improved	with	modeling	
Lower	bound	on	possible	noise	



Bias Variance Tradeoff  
•  Model h(x), defined over dataset, modeling random variable output y 
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E[y] = ȳ

E[h(x)] = h̄(x)

•  Examining generalization error at x, w.r.t. possible training datasets 

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))
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]

= noise + (bias)

2
+ variance

•  The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be.  



Bias Variance Tradeoff  
•  Model h(x), defined over dataset, modeling random variable output y 
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E[y] = ȳ

E[h(x)] = h̄(x)

•  Examining generalization error at x, w.r.t. possible training datasets 

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

•  The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be.  

•  More Complexity will make the model "move" more to capture the 
data points, and hence its variance will be larger. 



Bias Variance Tradeoff  
•  Model h(x), defined over dataset, modeling random variable output y 
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E[y] = ȳ

E[h(x)] = h̄(x)

•  Examining generalization error at x, w.r.t. possible training datasets 

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

•  The more complex the model h(x) is, the more data points it will 
capture, and the lower the bias will be.  

•  More Complexity will make the model "move" more to capture the 
data points, and hence its variance will be larger. 
–  As dataset size grows, can reduce variance! Can use more complex model 
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Regularization 

•  Can control the complexity of  a model by placing 
constraints on the model parameters 
– Trading some bias to reduce model variance 

•  L2 norm: 

–  “Ridge regression”, enforcing weights not too large 
– Equivalent to Gaussian prior over weights 

•  L1 norm: 

–  “Lasso regression”, enforcing sparse weights 

•  Elastic net → L1 + L2 constraints 
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Regularized Linear Regression 

•  L2 keeps weights small,  L1 keeps weights sparse! 

•  But how to choose hyperparameter α?  
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L(w) =
1

2
(y�Xw)2 + ↵⌦(w)

L2 : ⌦(w) = ||w||2 L1 : ⌦(w) = ||w||

h'p://scikit-learn.org/		
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How to Measure Generalization Error? 

•  Split dataset into multiple parts 

•  Training set  
–  Used to fit model parameters 

•  Validation set  
–  Used to check performance on 

independent data and tune 
hyper parameters 

•  Test set  
–  final evaluation of  performance 

after all hyper-parameters fixed 
–  Needed since we tune, or “peek”, 

performance with validation set 
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Training	set	 ValidaZon	set	 Test	set	

[Murray]		



How to Measure Generalization Error? 58	

ValidaZon	Sample	



Cross Validation 

•  Especially when dataset is small, split training set into K-folds 
–  Train on (K-1) folds, validate on 1 fold, then iterate 
–  Use average estimated performance on K-folds 
–  Allows for estimate of  performance RMS 

•  Even when dataset not small, useful technique to estimate 
variance of  expected performance, and for comparing different 
models / hyperparameters 
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Training	set	

ValidaZon	set	

[Bishop]	



Classification 

•  Learn a function to separate 
different classes of  data 

•  Avoid over-fitting: 
– Learning too fined details about 

your training sample that will not 
generalize to unseen data 
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Linear	discriminant	 Nonlinear	discriminant	Rectangular	cuts	
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[H. Voss] 



Linear Decision Boundaries 
•  Separate two classes: 

–  xi  ∈ Rm     
–  yi  ∈ {-1,1} 

•  Linear discriminant model 
  h(x; w) = wTx 

61	
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Linear Decision Boundaries 
•  Separate two classes: 

–  xi  ∈ Rm     
–  yi  ∈ {-1,1} 

•  Linear discriminant model 
  h(x; w) = wTx 
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h(x) 

h(x) < 0 

h(x) = 0 

h(x) > 0 

•  Decision boundary defined by hyperplane 
 
  h(x; w) = wTx = 0 

–  Boundary is perpendicular to weight vector w 

•  Classifier Score(xi) = h(xi; w) 

•  Class predictions: Predict class 0 if  h(xi ; w) < 0, else class 1 

[Bishop]	



Linear Classifier with Least Squares? 

•  Why not use least squares loss with binary targets? 
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Linear Classifier with Least Squares? 

•  Why not use least squares loss with binary targets? 
–  Penalized even when predict class correctly 
–  Least squares is very sensitive to outliers 
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Linear Classifier with Least Squares? 

•  Why not use least squares loss with binary targets? 
–  Penalized even when predict class correctly 
–  Least squares is very sensitive to outliers 

•  Use only class labels? 
–  Perceptron algorithm (not covered here) 

 
•  A probabilistic approach? 
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Logistic Regression for Classification 

•  Set of  input / output pairs D = {xi , yi}i=1…n  
–  xi  ∈ Rm     
–  yi  ∈ {0, 1} 

•  Linear discriminant: h(x; w) = wTx 
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Logistic Regression for Classification 

•  Set of  input / output pairs D = {xi , yi}i=1…n  
–  xi  ∈ Rm     
–  yi  ∈ {0, 1} 

•  Linear discriminant: h(x; w) = wTx 

•  Model per example probability:   
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NOTE:	
Not	a	random	choice,	
Natural	choice	for	large	
class	of	models	
	
See	backups	for	more	info	
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Logistic Regression for Classification 

•  Set of  input / output pairs D = {xi , yi}i=1…n  
–  xi  ∈ Rm     
–  yi  ∈ {0, 1} 

•  Linear discriminant: h(x; w) = wTx 

•  Model per example probability:  

–  The farther from boundary wTx=0, the more certain about class 

–  Class decision rule: choose class 0 if  pi<0.5, else choose class 1 
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p(y = 1|x) ⌘ pi =
1

1 + e�w

T
x



Logistic Regression for Classification 

•  Set of  input / output pairs D = {xi , yi}i=1…n  
–  xi  ∈ Rm     
–  yi  ∈ {0, 1} 

•  Linear discriminant: h(x; w) = wTx 

•  Model per example probability:  

–  The farther from boundary wTx=0, the more certain about class 

–  Class decision rule: choose class 0 if  pi<0.5, else choose class 1 

•  Concisely write p(y|x) as Bernoulli random variable: 
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P (yi = y|xi) = Bernoulli(pi) = (pi)
yi
(1� pi)

1�yi
=

pi       if  yi=1 
1-pi    if  yi=0 

p(y = 1|x) ⌘ pi =
1

1 + e�w

T
x



Logistic Regression 

•  Negative log-likelihood 
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� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
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Logistic Regression 

•  Negative log-likelihood 
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binary	cross	entropy	loss	funcZon!		� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)
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Logistic Regression 

•  Negative log-likelihood 
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•  No closed form solution to w* = arg minw  -ln L 

•  How to solve for w? 

binary	cross	entropy	loss	funcZon!		� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)



Gradient Descent 

•  Many methods to solve, lets us Gradient Descent 

•  Minimize loss by repeated gradient steps (when no closed 
form) 

–  Compute gradient w.r.t. parameters: 

–  Update parameters 

–  η is called the learning rate, controls 
how big of  a gradient step to take 
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w0  w� ⌘
@L(w)

@w

@L(w)

@w



Stochastic Gradient Descent and Variants  
•  Gradient descent is computationally 

costly (since we compute gradient 
over full training set) 

•  Stochastic gradient descent 
–  Compute gradient on one event at a 

time (in practice a small batch) 
–  Noisy estimates average out 
–  Stochastic behavior can allow “jumping” 

out of  bad critical points 

–  Scales well with dataset and model size 
–  But can have some convergence 

difficulties 

–  Improvements include: 
Momentum, RMSprop, AdaGrad, … 
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w2	

w1	

w2	

w1	h'p://danielnouri.org/notes/category/deep-learning/		



Gradient Descent for Logistic Regression 

•  Derivative of  sigmoid: 

•  Derivative of  Loss: 

•  Update rule: 

•  Repeat until parameters stable 
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L(w) = � lnL(w) = �
X

i

yi ln(�(w
T
x)) + (1� yi) ln(1� �(wT
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@�(z)
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Gradient Descent 

•  Loss is convex 
– Single global minimum 

•  Iterations lower loss and move toward minimum 
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Logistic Regression Example 77	

p(y=1	|	x)	
0	 1	

h'ps://triangleinequality.wordpress.com/2013/12/02/logisZc-regression/		



Estimating a Classifier Performance 78	

Confusion	Matrix	
Classifying	tau	decays	

arXiv:1702.00414	arXiv:1512.05955	

Receiver	OperaZng	CharacterisZc	(ROC)	Curve	
classifying	quarks	vs.	gluons		

(S
ig
na
l	e
ffi
ci
en

cy
)	

(Background	efficiency)	



Multiclass Classification? 79	

•  What if  there is more than two classes? 



Multiclass Classification? 
•  What if  there is more than two classes? 

 
•  Softmax → multi-class generalization of  logistic loss 

–  Have N classes {c1, …, cN} 
–  Model target yk = (0, …, 1, …0) 

	

–  Gradient descent for each of  the weights wk 
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kth	element	in	vector	

p(ck|x) =
exp(wkx)P
j exp(wjx)



Summary of  Today 
•  Machine learning uses mathematical and statistical models 

learned from data to characterize patterns and relations 
between inputs, and use this for inference / prediction 

•  Machine learning comes in many forms, much of  which has 
probabilistic and statistical foundations and interpretations 
(i.e. Statistical Machine Learning) 

•  Discussed linear models today 
–  Many forms of  linear models, we only touched the surface! 

•  Next time, some nonlinear models and unsupervised 
learning 
–  Decision trees and ensemble methods 
–  Neural network (intro) 
–  Clustering 
–  Dimensionality reduction 
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Advertisements 

•  Friday’s lecture on deep learning and computer 
vision from Jon Shlens from Google Brain! 

•  Data Science @ HEP workshop on machine 
learning in high energy physics 
– May 8-12, 2017 at Fermilab 
– https://indico.fnal.gov/conferenceDisplay.py?

ovw=True&confId=13497  
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Recommended Materials 

•  Many excellent books (many available free online) 
–  Introduction to Statistical Learning 
–  Elements of  Statistical Learning 
–  Pattern Recognition and Machine learning (Bishop) 
–  … 

•  Many excellent courses and documentation available online 
–  Andre Ng’s machine learning course on Coursera 
–  University course material online: Stanford CS229, Harvard CS181, … 
–  Lectures from Machine Learning Summer School (MLSS) 
–  Lectures from Yandex Machine learning in HEP summer schools 
–  Scikit Learn documentation 
–  … 

•  References: 
–  I used / borrowed from many of  these references to make these lectures! 
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Bayesian vs. Frequentist Models 

•  Mathematical models in ML typically described via random 
variables — in which case they are also called statistical 
models  

•  Statistical models typically specified by unknown 
parameters (to be learnt from data)  

•  Frequentist: there exist a “ground-truth” set of  unknown 
parameters that are constant (i.e. not random)  

•  Bayesian: model parameters are themselves random, and 
typically specified by their own distribution/statistical 
model, with their own unknown “hyperparameters”  
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Probabilistic Motivation 

•  Posterior probability: 

 

•  Log-probability ratio: 
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a(x) = ln
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0)

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)

=
1

1 + e�a(x)
= �(a(x))

•  In a large class of  models a(x) is linear 
  
      a(x) = wTx 

–  When class-conditional density p(x|y) is in the exponential family of  
Generalized Linear Models, 

•  Includes Gaussian, Exponential, Poisson, Beta, …  

•  Have linear discriminant and estimate of  per-class probability 

•  Even if  p(x|y) unknown, motivation to model p(y|x) with logistic sigmoid 

Logistic sigmoid 



Regularization 88	

L1	Contours	 L2	Contours	

Loss 



Support Vector Machines 89	



Linear Separability 90	



Decision Boundaries – Which is Best? 91	



Maximum Margin Classifiers 

•  Many possible solutions to separating classes 
–  Depends on the loss function chosen 

•  Assuming classes are linearly separable, what if  we wanted 
to solution with the maximum distance between the 
decision boundary and the nearest data point? 
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Maximum Margin Classifier 

•  Assume we have: 
–  x in Rd 
–  y in {-1, 1} 

•  Linear classifier: h(x; w) = wTx + w0 

•  Distance of  data point, xi, to decision boundary 

•  Optimization problem: 

–  Can solve with gradient descent methods! 
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What if  points not linearly separable? 94	

•  Add a smearing to the margin, ξ ≥0 
–  If  ξ =0, example correctly classifier 
–  If  0< ξ <1, example correctly 

classified, but in margin 
–  If  ξ >1, example incorrectly classified 

•  Add regularizer to problem to constrain ξi not too large 
–  C is the regularization hyperparameter that controls how much 

“softening” of  the boundary is allowed, thus how big is margin 

arg min

w,w0

1

2

w

T
w + C

X

i

⇠i

s. t. yi(w
T
xi + w0) � 1� ⇠i for all i

and ⇠i � 0



What if  points not linearly separable? 95	

•  Add a smearing to the margin, ξ ≥0 

•  Add regularizer to problem to 
constrain ξi not too large 

 

•  C is the regularization 
hyperparameter 
–  Controls how much “softening” of  the 

boundary is allowed, thus how big is margin 

arg min

w,w0

1

2

w

T
w + C

X

i

⇠i

s. t. yi(w
T
xi + w0) � 1� ⇠i for all i

and ⇠i � 0



Soft Margin Formulation 96	

C=infinity,	hard	margin	 C=10,	sol	margin	



Dual Formulation 
•  Use Lagrange multipliers (remember those!) to write a 

loss function for hard margin: 
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L(w, w0,a) =
1

2
w

T
w �

X

i

ai{yi(wT
xi + w0)� 1}

s. t. {ai � 0}

–  Where a are Lagrange multipliers 
–  Minimize L w.r.t. w and w0: 

•  Dual form of  optimization 
–  Solve for a and w0 using gradient methods, or SMO algorithm 

@L

@w
= 0,

@L

@w0
= 0

! w =
X

i

aiyixi

!
X

i

aiyi = 0

max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjx
t
ixj

s. t.
X

i

aiyi = 0

ai � 0 for all i

h(x;a, w0) =
X

i

aiyix
t
ix+ w0

Discriminant	FuncZon	



Support Vector Machines 

•  Only examples on margin will have ai>0!  
–  Follows from KKT conditions of  constrained optimization 

•  Sum is only over a small number of  examples on margin,  
the support vectors 
–  Note: also only depends on inner produce! More later 

•  Margin on data = 1/||w|| 
–  At least one constraint will hold 
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h(x;a, w0) =
X

i

aiyix
t
ix+ w0



Support Vector Machines: Recap 

•  Maximum Margin Optimization: 
–  Dual formulation 
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max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjx
t
ixj

s. t.
X

i

aiyi = 0

ai � 0 for all i

•  Discriminant function: 

–  Sum is only over a small  
number of  examples on 
 margin called  
the support vectors 

 

h(x;a, w0) =
X

i

aiyix
t
ix+ w0

Data	always	in	
inner	product	



Basis Functions Revisited 

•  When data is not 
linearly separable, can 
use basis functions 

10
0	

•  Where φ is a map from Rm → Rk 

•  But if  k>>m   (or if  k infinite), inner product 
can be expensive to compute 

•  But we don’t need the mapping φ, only inner 
products… 
 

h(x;a, w0) =
X

i

aiyi�(xi)
T�(x) + w0



Kernels and the Kernel Trick 
•  A kernel function K(x,x’)=φ(x)φ(x’) is an inner 

product where φ is a mapping Rm → Rk 

•  Kernelized discriminant and optimization problem 
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h(x;a, w0) =
X

i

aiyiK(xi,x) + w0 max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjK(xi,xj)

s. t.
X

i

aiyi = 0

ai � 0

•  Kernel Trick: compute the Kernel K(x, x’) without 
computing φ(x)!  
–  So we just need to engineer the Kernel, not the exact 

features or exact mapping 



Kernels 

•  Linear Kernel: K(x,x’) = xTx’ 

•  Polynomial Kernel:  K(x,x’) = (1 + xTx’)q 

•  Gaussian Kernal: K(x,x’) =  

•  As long as the Kernel matrix Kij = φ(xi) φ(xj) is a 
positive semi-definite matrix, it is a valid Kernel 
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SVM 10
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Gaussian	Kernel	with	σ=1	 Gaussian	Kernel	with	σ=0.25	


