
Machine Learning:
Lecture I

Michael Kagan

SLAC

CERN Academic Training Lectures

April 26-28, 2017

Lecture Structure
•  Lecture I

–  What is Machine Learning
–  Linear Regression and Classification
–  Fitting a model: Cost Functions, Regularization, Gradient Descent

•  Lecture II
–  Intro to Neural Networks
–  Decision Trees and ensemble methods
–  Dimensionality reduction
–  Clustering

•  Lecture III – Jon Shlens (Google Brain)
–  Deep Learning, basics and current research

•  Topics we won’t be able to cover in such a short time
–  SVM
–  Gaussian Processes
–  Variational Inference
–  Sequence modeling, Hidden Markov Models
–  …

2	

What is Machine Learning? 3	

What is Machine Learning?

•  Giving computers the ability to learn without
explicitly programming them (Arthur Samuel, 1959)

•  Statistics + Algorithms

•  Computer Science + Probability + Optimization
Techniques

•  Fitting data with complex functions

•  Mathematical models learnt from data that
characterize the patterns, regularities, and
relationships amongst variables in the system

4	

Where is ML Used, an Incomplete List
•  Natural Language Processing
•  Speech and handwriting

recognition
•  Object recognition and computer

vision
•  Fraud detection
•  Financial market analysis
•  Search engines
•  Spam and virus detection
•  Medical diagnosis
•  Robotics control
•  Automation: energy usage,

systems control, video games,
self-driving cars

•  Advertising
•  Data Science
•  …

5	

h'p://www-wfau.roe.ac.uk/sss/		

[ESL]		

Machine Learning Applied Widely in HEP
•  In analysis:

–  Classifying signal from background, especially in
complex final states

–  Reconstructing heavy particles and improving the
energy / mass resolution

–  …

•  In reconstruction:
–  Improving detector level inputs to reconstruction
–  Particle identification tasks
–  Energy / direction calibration
–  …

•  In the trigger:
–  Quickly identifying complex final states
–  …

•  In computing:
–  Estimating dataset popularity, and determining how

number and location of dataset replicas
–  …

6	

JHEP	01	(2016)	064		

JINST	10	P08010	2015	

arXiv:1512.05955	

Machine Learning: Models

•  Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

7	

Machine Learning: Models

•  Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

– Classification:

8	

[Rogozhnikov]		

Machine Learning: Models

•  Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

– Regression:

9	

x	

y	

Machine Learning: Models

•  Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

– Clustering:

10	

[Bishop]		

Machine Learning: Models

•  Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

– Dimensionality
reduction:

11	

h'ps://lazyprogrammer.me/tutorial-principal-components-analysis-pca/		

Machine Learning: Models

•  Key element in machine learning is a mathematical
model

– A mathematical characterization of system(s) of
interest, typically via random variables

– Chosen model depends on the task / available data

•  Learning: estimate statistical model from data

•  Prediction and Inference: using statistical model
to make predictions on new data points and infer
properties of system(s)

12	

Parametric vs. Non-parametric Models
•  Parametric Models: models that do

not grow in complexity with dataset
size. Fixed set of parameters to
learn
–  Example: sum of Gaussians, each with

mean, variance, and normalization

•  Non-Parametric Models: models
that do not have a fixed set of
parameters, often grow in
complexity with more data
–  Example: model predictions of a new

data point using nearest known
datapoint. The more known
datapoints, the more complex is the
model

13	

h'p://bdewilde.github.io/blog/blogger/
2012/10/26/classificaZon-of-hand-wri'en-digits-3/		

Learning 14	

[Ravikumar]		

Learning 15	

•  Supervised Learning
–  Classification
–  Regression

•  Unsupervised Learning
–  Clustering
–  Dimensionality reduction
–  …

•  Reinforcement learning
[Ravikumar]		

Notation

•  X ∈ Rmxn
•  x ∈ Rn(x1)

•  x ∈ R
•  X
•  {xi}1

m
•  y ∈ I(k) / R(k)

16	

Matrices in bold upper case:
Vectors in bold lower case

Scalars in lower case, non-bold
Sets are script
Sequence of vectors x1, …, xm
Labels represented as

 - Integer for classes, often {0,1}. E.g. {Higgs, Z}
 - Real number. E.g electron energy

•  Variables = features = inputs
•  Data point x = {x1, …, xn} has n-features

•  Typically use affine coordinates:
 y = wTx + w0 → wTx
 → w ={w0, w1, ... , wn}
 → x ={1, x1, ... , xn}

Probability Review

•  Joint distribution of two variables: p(x,y)

•  Conditional distribution:

•  Bayes theorem:

•  Expected value:

•  Normal distribution:
– x~N(µ, σ) →

17	

p(x) =

1p
2⇡�

exp

⇣
� 1

2

(x� µ)

2

�

2

⌘
2	

E[f(x)] =

Z
f(x)p(x)dx

p(y|x) = p(x|y)p(y)
p(x)

p(y|x) = p(x, y)

p(x)

Supervised Learning

•  Given N examples with features {xi ∈ X} and
targets {yi ∈ Y}, learn function mapping h(x)=y

–  Classification: Y is a finite set of labels (i.e. classes)

 Y = {0, 1} for binary classification,
 encoding classes, e.g. Higgs vs Background

 Y = {c1, c2, … cn} for multi-class classification

 represent with “one-hot-vector”

 → yi = (0, 0,…, 1 ,…0)

 were kth element is 1 and all others zero for class ck

18	

Supervised Learning

•  Given N examples with features {xi ∈ X} and
targets {yi ∈ Y}, learn function mapping h(x)=y

–  Classification: Y is a finite set of labels (i.e. classes)

–  Regression: Y = Real Numbers

19	

Supervised Learning

•  Given N examples with features {xi ∈ X} and
targets {yi ∈ Y}, learn function mapping h(x)=y

–  Classification: Y is a finite set of labels (i.e. classes)

–  Regression: Y = Real Numbers

•  Often these are discriminative models, in which case we model:
 h(x) = p(y|x)

•  Sometimes use generative models, estimate joint distribution p(y, x)
–  Often estimate class conditional density p(x|y) and prior p(y)
–  Use Bayes theorem to then compute:

20	

h(x) = p(y|x) / p(x|y)p(y)

Unsupervised Learning

•  Given some data D={xi}, but no labels, find
structure in the data

– Clustering: partition the data into groups
D={D1 ∪ D2 ∪ D3 … ∪ Dk}

– Dimensionality reduction: find a low dimensional
(less complex) representation of the data with a
mapping Z=h(X)

21	

Reinforcement Learning

•  Models for agents that take actions depending on
current state
•  Actions incur rewards, and affect future states

(“feedback”)

•  Learn to make the best sequence of decisions to
achieve a given goal when feedback is often delayed
until you reach the goal

22	

[Ravikumar]		

Deep Reinforcement Learning with AlphaGo 23	

Nature	529,	484–489	(28	January	2016)	

Supervised Learning: How does it work? 24	

Supervised Learning: How does it work?

•  Design function with adjustable parameters

•  Design a Loss function

•  Find best parameters which minimize loss

25	

h(x;	w)	
FuncZon	with	
adjustable	
parameters	

Loss	
FuncZon	

	
Compare	
predicZon	
with	true	
label	

Loss	
True	labels:	
Higgs	=	1	
Bkg	=	0	

Y. Le Cun

L(W,X)	

Supervised Learning: How does it work?

•  Design function with adjustable parameters

•  Design a Loss function

•  Find best parameters which minimize loss
–  Use a labeled training-set to compute loss

–  Adjust parameters to reduce loss function

–  Repeat until parameters stabilize

•  Estimate final performance on test-set

26	

h(x;	w)	
FuncZon	with	
adjustable	
parameters	

Loss	
FuncZon	

	
Compare	
predicZon	
with	true	
label	

Loss	
True	labels:	
Higgs	=	1	
Bkg	=	0	

Y. Le Cun

L(W,X)	

Empirical Risk Minimization

•  Framework to design learning algorithms
– L(…) is a loss function comparing prediction h(…) with

target y

– Ω(w) is a regularizer, penalizing certain values of w
•  λ controls how much we penalize, and is a hyperparameter that we

have to tune
•  We will come back to this later

•  Learning is cast as an optimization problem

27	

Average	expected	loss	 Model	regularizaZon	

argmin
w

1

N

NX

i=1

L(h(xi;w), yi) + �⌦(w)

Example Loss Functions

•  Square Error Loss:
–  Often used in regression

•  Cross entropy:
–  With y ∈ {0,1}
–  Often used in classification

•  Hinge Loss:
–  With y ∈ {-1,1}

•  Zero-One loss
–  With h(x; w) predicting label

28	

L(h(x;w), y) =
�
h(x;w)� y

�2

L(h(x;w), y) =� y log h(x;w)

� (1� y) log(1� h(x;w))

L(h(x;w), y) = max(0, 1� yh(x;w))

L(h(x;w), y) = 1y 6=h(x;w)

-	Square	Error	
-	Cross	Entropy	
-	Hinge	
-	Zero-one	

[Bishop]		

Maximum Likelihood

•  Describe a process behind the data
•  Write down the likelihood of the observed data

•  Where second equality holds if data is independent and
identically distributed

•  Often minimize negative-log-likelihood for numerical
stability

–  Same as maximizing likelihood since log is monotonic and
differentiable away from zero

29	

L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)

Maximum Likelihood

•  Describe a process behind the data
•  Write down the likelihood of the observed data

•  Select parameters that make data most likely
– General strategy for parameter estimation

30	

L(w) = p(y|X;w) =
Y

i

p(yi|xi;w)

w

⇤
= argmax

w
L(w) = argmin

w
� lnL(w) = argmin

w
�
X

i

ln p(yi|xi;w)

Linear Methods 31	

Least Squares Linear Regression

•  Set of input / output pairs D = {xi , yi}i=1…n
–  xi ∈ Rm
–  yi ∈ R

•  Assume a linear model
 h(x; w) = wTx

•  Squared Loss function:

•  Find w* = arg minw L(w)

32	

L(w) =
1

2

X

i

�
yi � h(xi;w)

�2

Least Squares Linear Regression: Matrix Form

•  Set of input / output pairs D = {xi , yi}i=1…n
–  Design matrix X ∈ Rnxm
–  Target vector y ∈ Rn

33	

•  Rewrite loss:

•  Minimize w.r.t. w:

Least Squares Linear Regression: Matrix Form

•  Set of input / output pairs D = {xi , yi}i=1…n
–  Design matrix X ∈ Rnxm
–  Target vector y ∈ Rn

34	

L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)

•  Rewrite loss:

•  Minimize w.r.t. w:

•  What if we have correlated variables? Multi-collinearity
–  X is close to singular
–  Inverse is highly sensitive to random errors

•  Hint: Regularization can help!

Least Squares Linear Regression: Matrix Form

•  Set of input / output pairs D = {xi , yi}i=1…n
–  Design matrix X ∈ Rnxm
–  Target vector y ∈ Rn

35	

L(w) =
1

2
(y�Xw)T (y�Xw)

w⇤ = (XTX)�1XTy = argmin
w

L(w)

Linear Regression Example

•  Reconstructed Jet energy vs. Number of primary vertices

36	

Eur.	Phys.	J.	C	(2015)	75:17	

Linear Regression – Probabilistic Interpretation

•  Assume yi = mxi + ei

•  Random error:
– Noisy measurements, unmeasured variables, …

37	

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

Linear Regression – Probabilistic Interpretation

•  Assume yi = mxi + ei

•  Random error:
– Noisy measurements, unmeasured variables, …

•  Then

38	

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)
2

�

2

◆

Linear Regression – Probabilistic Interpretation

•  Assume yi = mxi + ei

•  Random error:
– Noisy measurements, unmeasured variables, …

•  Then

•  Likelihood function:

39	

L(m) = p(y|X;m) =

Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)
2

�

2

◆

Linear Regression – Probabilistic Interpretation

•  Assume yi = mxi + ei

•  Random error:
– Noisy measurements, unmeasured variables, …

•  Then

•  Likelihood function:

40	

Squared
loss function!

L(m) = p(y|X;m) =

Y

i

p(yi|xi;m)

! � logL(m) ⇠
X

i

(yi �mxi)
2

ei ⇠ N (0,�) ! p(ei) / exp

✓
1

2

e2i
�2

◆

yi ⇠ N (mxi,�) ! p(yi|xi;m) / exp

✓
1

2

(yi �mxi)
2

�

2

◆

Why Take a Probabilistic Approach?

•  Allows us to get calibrated estimates of p(y|x)

•  Separates predictions from modeling

•  A general framework for parameter estimation.
– Can use to fit other parameters of the model.

41	

Basis Functions

•  What if non-linear relationship between y and x?

42	

Basis Functions

•  What if non-linear relationship between y and x?

•  Can choose basis functions φ(x) to form new features

 yi = wTφ(xi)

–  Polynomial basis φ(x) ~ {1, x, x2, x3, …},
Gaussian basis, …

–  Linear regression on new features φ(x)

43	

Basis Functions

•  What if non-linear relationship between y and x?

•  Can choose basis functions φ(x) to form new features

 yi = wTφ(xi)

–  Polynomial basis φ(x) ~ {1, x, x2, x3, …},
Gaussian basis, …

–  Linear regression on new features φ(x)

•  What basis functions to choose? Overfit with too much flexibility?

44	

What is Overfitting

•  What models allow us to do is generalize from data

•  Different models generalize in different ways

45	

h'p://scikit-learn.org/		

Bias Variance Tradeoff

•  generalization error = systematic error + sensitivity of prediction
 (bias) (variance)

46	

Bias Variance Tradeoff

•  generalization error = systematic error + sensitivity of prediction
 (bias) (variance)

•  Simple models under-fit: will deviate from data (high
bias) but will not be influenced by peculiarities of data
(low variance).

47	

Bias Variance Tradeoff

•  generalization error = systematic error + sensitivity of prediction
 (bias) (variance)

•  Simple models under-fit: will deviate from data (high
bias) but will not be influenced by peculiarities of data
(low variance).

•  Complex models over-fit: will not deviate systematically
from data (low bias) but will be very sensitive to data
(high variance).

48	

Bias Variance Tradeoff
•  Model h(x), defined over dataset, modeling random variable output y

49	

E[y] = ȳ

E[h(x)] = h̄(x)

•  Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

Bias Variance Tradeoff
•  Model h(x), defined over dataset, modeling random variable output y

50	

E[y] = ȳ

E[h(x)] = h̄(x)

•  Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

Intrinsic	noise	in	system	or	measurements	
Can	not	be	avoided	or	improved	with	modeling	
Lower	bound	on	possible	noise	

Bias Variance Tradeoff
•  Model h(x), defined over dataset, modeling random variable output y

51	

E[y] = ȳ

E[h(x)] = h̄(x)

•  Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

•  The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

Bias Variance Tradeoff
•  Model h(x), defined over dataset, modeling random variable output y

52	

E[y] = ȳ

E[h(x)] = h̄(x)

•  Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

•  The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

•  More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.

Bias Variance Tradeoff
•  Model h(x), defined over dataset, modeling random variable output y

53	

E[y] = ȳ

E[h(x)] = h̄(x)

•  Examining generalization error at x, w.r.t. possible training datasets

E[(y � h(x))

2
] = E[(y � ȳ)

2
] + (ȳ � ¯

h(x))

2
+ E[(h(x)� ¯

h(x))

2
]

= noise + (bias)

2
+ variance

•  The more complex the model h(x) is, the more data points it will
capture, and the lower the bias will be.

•  More Complexity will make the model "move" more to capture the
data points, and hence its variance will be larger.
–  As dataset size grows, can reduce variance! Can use more complex model

Bias Variance Tradeoff 54	

Regularization

•  Can control the complexity of a model by placing
constraints on the model parameters
– Trading some bias to reduce model variance

•  L2 norm:

–  “Ridge regression”, enforcing weights not too large
– Equivalent to Gaussian prior over weights

•  L1 norm:

–  “Lasso regression”, enforcing sparse weights

•  Elastic net → L1 + L2 constraints

55	

⌦(w) = ||w||2 =
X

i

w2
i

⌦(w) = ||w|| =
X

i

|wi|

Regularized Linear Regression

•  L2 keeps weights small, L1 keeps weights sparse!

•  But how to choose hyperparameter α?

56	

L(w) =
1

2
(y�Xw)2 + ↵⌦(w)

L2 : ⌦(w) = ||w||2 L1 : ⌦(w) = ||w||

h'p://scikit-learn.org/		

Less	regularizaZon	 Less	regularizaZon	

How to Measure Generalization Error?

•  Split dataset into multiple parts

•  Training set
–  Used to fit model parameters

•  Validation set
–  Used to check performance on

independent data and tune
hyper parameters

•  Test set
–  final evaluation of performance

after all hyper-parameters fixed
–  Needed since we tune, or “peek”,

performance with validation set

57	

Training	set	 ValidaZon	set	 Test	set	

[Murray]		

How to Measure Generalization Error? 58	

ValidaZon	Sample	

Cross Validation

•  Especially when dataset is small, split training set into K-folds
–  Train on (K-1) folds, validate on 1 fold, then iterate
–  Use average estimated performance on K-folds
–  Allows for estimate of performance RMS

•  Even when dataset not small, useful technique to estimate
variance of expected performance, and for comparing different
models / hyperparameters

59	

Training	set	

ValidaZon	set	

[Bishop]	

Classification

•  Learn a function to separate
different classes of data

•  Avoid over-fitting:
– Learning too fined details about

your training sample that will not
generalize to unseen data

60	

Linear	discriminant	 Nonlinear	discriminant	Rectangular	cuts	

y=0	

y=1	

x1	

x2	

x1	

x2	 y=0	

y=1	

x1	

x2	

y=0	

y=1	

x1	

x2	

y=0	

y=1	

[H. Voss]

Linear Decision Boundaries
•  Separate two classes:

–  xi ∈ Rm
–  yi ∈ {-1,1}

•  Linear discriminant model
 h(x; w) = wTx

61	

h(x)

h(x) < 0

h(x) = 0

h(x) > 0

[Bishop]	

Linear Decision Boundaries
•  Separate two classes:

–  xi ∈ Rm
–  yi ∈ {-1,1}

•  Linear discriminant model
 h(x; w) = wTx

62	

h(x)

h(x) < 0

h(x) = 0

h(x) > 0

•  Decision boundary defined by hyperplane

 h(x; w) = wTx = 0

–  Boundary is perpendicular to weight vector w

•  Classifier Score(xi) = h(xi; w)

•  Class predictions: Predict class 0 if h(xi ; w) < 0, else class 1

[Bishop]	

Linear Classifier with Least Squares?

•  Why not use least squares loss with binary targets?

63	

L(w) =
1

2

X

i

(yi �w

T
xi)

2

[Bishop]	

Linear Classifier with Least Squares?

•  Why not use least squares loss with binary targets?
–  Penalized even when predict class correctly
–  Least squares is very sensitive to outliers

64	

L(w) =
1

2

X

i

(yi �w

T
xi)

2

What	you	want	

What	you	get	

[Bishop]	

Linear Classifier with Least Squares?

•  Why not use least squares loss with binary targets?
–  Penalized even when predict class correctly
–  Least squares is very sensitive to outliers

•  Use only class labels?
–  Perceptron algorithm (not covered here)

•  A probabilistic approach?

65	

L(w) =
1

2

X

i

(yi �w

T
xi)

2

What	you	want	

What	you	get	

[Bishop]	

Logistic Regression for Classification

•  Set of input / output pairs D = {xi , yi}i=1…n
–  xi ∈ Rm
–  yi ∈ {0, 1}

•  Linear discriminant: h(x; w) = wTx

66	

Logistic Regression for Classification

•  Set of input / output pairs D = {xi , yi}i=1…n
–  xi ∈ Rm
–  yi ∈ {0, 1}

•  Linear discriminant: h(x; w) = wTx

•  Model per example probability:

67	

NOTE:	
Not	a	random	choice,	
Natural	choice	for	large	
class	of	models	
	
See	backups	for	more	info	

LogisZc	Sigmoid	
�(z) =

1

1 + e�z

p(y = 1|x) ⌘ pi =
1

1 + e�h(x;w)

=
1

1 + e�w

T
x

Logistic Regression for Classification

•  Set of input / output pairs D = {xi , yi}i=1…n
–  xi ∈ Rm
–  yi ∈ {0, 1}

•  Linear discriminant: h(x; w) = wTx

•  Model per example probability:

–  The farther from boundary wTx=0, the more certain about class

–  Class decision rule: choose class 0 if pi<0.5, else choose class 1

68	

p(y = 1|x) ⌘ pi =
1

1 + e�w

T
x

Logistic Regression for Classification

•  Set of input / output pairs D = {xi , yi}i=1…n
–  xi ∈ Rm
–  yi ∈ {0, 1}

•  Linear discriminant: h(x; w) = wTx

•  Model per example probability:

–  The farther from boundary wTx=0, the more certain about class

–  Class decision rule: choose class 0 if pi<0.5, else choose class 1

•  Concisely write p(y|x) as Bernoulli random variable:

69	

P (yi = y|xi) = Bernoulli(pi) = (pi)
yi
(1� pi)

1�yi
=

pi if yi=1
1-pi if yi=0

p(y = 1|x) ⌘ pi =
1

1 + e�w

T
x

Logistic Regression

•  Negative log-likelihood

70	

� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)

Logistic Regression

•  Negative log-likelihood

71	

binary	cross	entropy	loss	funcZon!		� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)

Lo
ss
	

-log(pi)	
-log(1-pi)	
	

pi	

Logistic Regression

•  Negative log-likelihood

72	

•  No closed form solution to w* = arg minw -ln L

•  How to solve for w?

binary	cross	entropy	loss	funcZon!		� lnL = � ln
Y

i

(pi)
yi(1� pi)

1�yi

= �
X

i

yi ln(pi) + (1� yi) ln(1� pi)

=
X

i

yi ln(1 + e�w

T
x) + (1� yi) ln(1 + ew

T
x)

Gradient Descent

•  Many methods to solve, lets us Gradient Descent

•  Minimize loss by repeated gradient steps (when no closed
form)

–  Compute gradient w.r.t. parameters:

–  Update parameters

–  η is called the learning rate, controls
how big of a gradient step to take

73	

w0 w� ⌘
@L(w)

@w

@L(w)

@w

Stochastic Gradient Descent and Variants
•  Gradient descent is computationally

costly (since we compute gradient
over full training set)

•  Stochastic gradient descent
–  Compute gradient on one event at a

time (in practice a small batch)
–  Noisy estimates average out
–  Stochastic behavior can allow “jumping”

out of bad critical points

–  Scales well with dataset and model size
–  But can have some convergence

difficulties

–  Improvements include:
Momentum, RMSprop, AdaGrad, …

74	

w2	

w1	

w2	

w1	h'p://danielnouri.org/notes/category/deep-learning/		

Gradient Descent for Logistic Regression

•  Derivative of sigmoid:

•  Derivative of Loss:

•  Update rule:

•  Repeat until parameters stable

75	

L(w) = � lnL(w) = �
X

i

yi ln(�(w
T
x)) + (1� yi) ln(1� �(wT

x))

@�(z)

@z
= �(z)(1� �(z))

@L(w)

@w
=

X

i

(�(wT
x)� yi)xi

w w� ⌘
@L(w)

@w
= w� ⌘

X

i

(�(wT
x)� yi)xi

Gradient Descent

•  Loss is convex
– Single global minimum

•  Iterations lower loss and move toward minimum

76	

Lo
ss
	

L(w)	

Lmin(w)	

IteraZons	w	

Logistic Regression Example 77	

p(y=1	|	x)	
0	 1	

h'ps://triangleinequality.wordpress.com/2013/12/02/logisZc-regression/		

Estimating a Classifier Performance 78	

Confusion	Matrix	
Classifying	tau	decays	

arXiv:1702.00414	arXiv:1512.05955	

Receiver	OperaZng	CharacterisZc	(ROC)	Curve	
classifying	quarks	vs.	gluons		

(S
ig
na
l	e
ffi
ci
en

cy
)	

(Background	efficiency)	

Multiclass Classification? 79	

•  What if there is more than two classes?

Multiclass Classification?
•  What if there is more than two classes?

•  Softmax → multi-class generalization of logistic loss

–  Have N classes {c1, …, cN}
–  Model target yk = (0, …, 1, …0)

	

–  Gradient descent for each of the weights wk

80	

kth	element	in	vector	

p(ck|x) =
exp(wkx)P
j exp(wjx)

Summary of Today
•  Machine learning uses mathematical and statistical models

learned from data to characterize patterns and relations
between inputs, and use this for inference / prediction

•  Machine learning comes in many forms, much of which has
probabilistic and statistical foundations and interpretations
(i.e. Statistical Machine Learning)

•  Discussed linear models today
–  Many forms of linear models, we only touched the surface!

•  Next time, some nonlinear models and unsupervised
learning
–  Decision trees and ensemble methods
–  Neural network (intro)
–  Clustering
–  Dimensionality reduction

81	

Advertisements

•  Friday’s lecture on deep learning and computer
vision from Jon Shlens from Google Brain!

•  Data Science @ HEP workshop on machine
learning in high energy physics
– May 8-12, 2017 at Fermilab
– https://indico.fnal.gov/conferenceDisplay.py?

ovw=True&confId=13497

82	

Recommended Materials

•  Many excellent books (many available free online)
–  Introduction to Statistical Learning
–  Elements of Statistical Learning
–  Pattern Recognition and Machine learning (Bishop)
–  …

•  Many excellent courses and documentation available online
–  Andre Ng’s machine learning course on Coursera
–  University course material online: Stanford CS229, Harvard CS181, …
–  Lectures from Machine Learning Summer School (MLSS)
–  Lectures from Yandex Machine learning in HEP summer schools
–  Scikit Learn documentation
–  …

•  References:
–  I used / borrowed from many of these references to make these lectures!

83	

References
•  http://scikit-learn.org/
•  [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
•  [ESL] Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani & Friedman 2009
•  [Murray] Introduction to machine learning, Murray

–  http://videolectures.net/bootcamp2010_murray_iml/

•  [Ravikumar] What is Machine Learning, Ravikumar and Stone
–  http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-

Intro.pdf

•  [Parkes] CS181, Parkes and Rush, Harvard University
–  http://cs181.fas.harvard.edu

•  [Ng] CS229, Ng, Stanford University
–  http://cs229.stanford.edu/

•  [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
–  https://indico.cern.ch/event/497368/

84	

85	

Bayesian vs. Frequentist Models

•  Mathematical models in ML typically described via random
variables — in which case they are also called statistical
models

•  Statistical models typically specified by unknown
parameters (to be learnt from data)

•  Frequentist: there exist a “ground-truth” set of unknown
parameters that are constant (i.e. not random)

•  Bayesian: model parameters are themselves random, and
typically specified by their own distribution/statistical
model, with their own unknown “hyperparameters”

86	

Probabilistic Motivation

•  Posterior probability:

•  Log-probability ratio:

87	

a(x) = ln
p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0)

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)

=
1

1 + e�a(x)
= �(a(x))

•  In a large class of models a(x) is linear

 a(x) = wTx

–  When class-conditional density p(x|y) is in the exponential family of
Generalized Linear Models,

•  Includes Gaussian, Exponential, Poisson, Beta, …

•  Have linear discriminant and estimate of per-class probability

•  Even if p(x|y) unknown, motivation to model p(y|x) with logistic sigmoid

Logistic sigmoid

Regularization 88	

L1	Contours	 L2	Contours	

Loss

Support Vector Machines 89	

Linear Separability 90	

Decision Boundaries – Which is Best? 91	

Maximum Margin Classifiers

•  Many possible solutions to separating classes
–  Depends on the loss function chosen

•  Assuming classes are linearly separable, what if we wanted
to solution with the maximum distance between the
decision boundary and the nearest data point?

92	

Maximum Margin Classifier

•  Assume we have:
–  x in Rd
–  y in {-1, 1}

•  Linear classifier: h(x; w) = wTx + w0

•  Distance of data point, xi, to decision boundary

•  Optimization problem:

–  Can solve with gradient descent methods!

93	

yi(wT
xi + w0)p
w

T
w

arg max

w, w0

⇢
1p
w

T
w

min

i
yi(w

T
xi + w0)

�
arg min

w,w0

1

2

w

T
w

s. t. yi(w
T
xi + w0) � 1 for all i

What if points not linearly separable? 94	

•  Add a smearing to the margin, ξ ≥0
–  If ξ =0, example correctly classifier
–  If 0< ξ <1, example correctly

classified, but in margin
–  If ξ >1, example incorrectly classified

•  Add regularizer to problem to constrain ξi not too large
–  C is the regularization hyperparameter that controls how much

“softening” of the boundary is allowed, thus how big is margin

arg min

w,w0

1

2

w

T
w + C

X

i

⇠i

s. t. yi(w
T
xi + w0) � 1� ⇠i for all i

and ⇠i � 0

What if points not linearly separable? 95	

•  Add a smearing to the margin, ξ ≥0

•  Add regularizer to problem to
constrain ξi not too large

•  C is the regularization
hyperparameter
–  Controls how much “softening” of the

boundary is allowed, thus how big is margin

arg min

w,w0

1

2

w

T
w + C

X

i

⇠i

s. t. yi(w
T
xi + w0) � 1� ⇠i for all i

and ⇠i � 0

Soft Margin Formulation 96	

C=infinity,	hard	margin	 C=10,	sol	margin	

Dual Formulation
•  Use Lagrange multipliers (remember those!) to write a

loss function for hard margin:

97	

L(w, w0,a) =
1

2
w

T
w �

X

i

ai{yi(wT
xi + w0)� 1}

s. t. {ai � 0}

–  Where a are Lagrange multipliers
–  Minimize L w.r.t. w and w0:

•  Dual form of optimization
–  Solve for a and w0 using gradient methods, or SMO algorithm

@L

@w
= 0,

@L

@w0
= 0

! w =
X

i

aiyixi

!
X

i

aiyi = 0

max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjx
t
ixj

s. t.
X

i

aiyi = 0

ai � 0 for all i

h(x;a, w0) =
X

i

aiyix
t
ix+ w0

Discriminant	FuncZon	

Support Vector Machines

•  Only examples on margin will have ai>0!
–  Follows from KKT conditions of constrained optimization

•  Sum is only over a small number of examples on margin,
the support vectors
–  Note: also only depends on inner produce! More later

•  Margin on data = 1/||w||
–  At least one constraint will hold

98	

h(x;a, w0) =
X

i

aiyix
t
ix+ w0

Support Vector Machines: Recap

•  Maximum Margin Optimization:
–  Dual formulation

99	

max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjx
t
ixj

s. t.
X

i

aiyi = 0

ai � 0 for all i

•  Discriminant function:

–  Sum is only over a small
number of examples on
 margin called
the support vectors

h(x;a, w0) =
X

i

aiyix
t
ix+ w0

Data	always	in	
inner	product	

Basis Functions Revisited

•  When data is not
linearly separable, can
use basis functions

10
0	

•  Where φ is a map from Rm → Rk

•  But if k>>m (or if k infinite), inner product
can be expensive to compute

•  But we don’t need the mapping φ, only inner
products…

h(x;a, w0) =
X

i

aiyi�(xi)
T�(x) + w0

Kernels and the Kernel Trick
•  A kernel function K(x,x’)=φ(x)φ(x’) is an inner

product where φ is a mapping Rm → Rk

•  Kernelized discriminant and optimization problem

10
1	

h(x;a, w0) =
X

i

aiyiK(xi,x) + w0 max

a

X

i

ai �
1

2

X

i

X

j

aiajyiyjK(xi,xj)

s. t.
X

i

aiyi = 0

ai � 0

•  Kernel Trick: compute the Kernel K(x, x’) without
computing φ(x)!
–  So we just need to engineer the Kernel, not the exact

features or exact mapping

Kernels

•  Linear Kernel: K(x,x’) = xTx’

•  Polynomial Kernel: K(x,x’) = (1 + xTx’)q

•  Gaussian Kernal: K(x,x’) =

•  As long as the Kernel matrix Kij = φ(xi) φ(xj) is a
positive semi-definite matrix, it is a valid Kernel

10
2	

exp

✓
� 1

2

(x� x

0
)

2

�2

◆

SVM 10
3	

Gaussian	Kernel	with	σ=1	 Gaussian	Kernel	with	σ=0.25	

