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Lecture Topics 
•  Recap of  last time 
– What is Machine Learning 
– Linear Regression 
– Logistic Regression 
– Over fitting and Regularization 
– Training procedures and cross validation 
– Gradient descent 

•  This Lecture 
– Neural Networks → Just an intro, more on this tomorrow! 
– Decision Trees and Ensemble Methods 
– Unsupervised Learning 

•  Dimensionality reduction 
•  Clustering 

– No Free Lunch and Practical Advice 
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Neural Networks 3	



Reminder of  Logistic Regression 
•  Input output pairs {xi, yi}, with 

–  xi  ∈ Rm     
–  yi  ∈ {0,1} 
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•  Linear decision boundary  h(x;w) = w

T
x

h(x) 

h(x) < 0 

h(x) = 0 

h(x) > 0 

[Bishop]	



Reminder of  Logistic Regression 
•  Input output pairs {xi, yi}, with 

–  xi  ∈ Rm     
–  yi  ∈ {0,1} 
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•  Linear decision boundary  

•  Distance from decision boundary 
is converted to class probability 
using logistic sigmoid function 

h(x;w) = w

T
x

p(y = 1|x) = �(h(x,w))

=
1

1 + e�w

T
x

Logis0c	Sigmoid	

�(z) =
1

1 + e�z



Logistic Regression 6	

p(y = 1|x) = �(h(x,w))

=
1

1 + e�w

T
x



Adding non-linearity 

•  What if  we want a non-linear decision boundary? 
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Adding non-linearity 

•  What if  we want a non-linear decision boundary? 
–  Choose basis functions, e.g:     φ(x) ~ {x2, sin(x), log(x), …} 
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p(y = 1|x) = 1

1 + e�w

T�(x)



Adding non-linearity 

•  What if  we want a non-linear decision boundary? 
–  Choose basis functions, e.g:     φ(x) ~ {x2, sin(x), log(x), …} 

     

•  What if  we don’t know what basis functions we want? 
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p(y = 1|x) = 1

1 + e�w

T�(x)



Adding non-linearity 

•  What if  we want a non-linear decision boundary? 
–  Choose basis functions, e.g:     φ(x) ~ {x2, sin(x), log(x), …} 

     

•  What if  we don’t know what basis functions we want? 

•  Learn the basis functions directly from data 
 
      φ(x; u)      Rm → Rd  

–  Where u is a set of  parameters for the transformation 
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p(y = 1|x) = 1

1 + e�w

T�(x)



Adding non-linearity 

•  What if  we want a non-linear decision boundary? 
–  Choose basis functions, e.g:     φ(x) ~ {x2, sin(x), log(x), …} 

     

•  What if  we don’t know what basis functions we want? 

•  Learn the basis functions directly from data 
 
      φ(x; u)      Rm → Rd  

–  Where u is a set of  parameters for the transformation 

–  Combines basis selection and learning 
–  Several different approaches, focus here on neural networks 
–  Complicates the optimization 
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p(y = 1|x) = 1

1 + e�w

T�(x)



Neural Networks 

•  Define the basis functions j = {1…d} 

φj(x; u) = σ(uj
Tx) 
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Neural Networks 

•  Define the basis functions j = {1…d} 

φj(x; u) = σ(uj
Tx) 

•  Put all uj ∈ R1xm vectors into matrix U  

    φ(x; U) = σ(Ux) =                   ∈  Rd  
 
– σ is a pointwise sigmoid acting on each vector element  
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σ(u1Tx)	
σ(u2Tx)	
…	

σ(udTx)	



Neural Networks 

•  Define the basis functions j = {1…d} 

φj(x; u) = σ(uj
Tx) 

•  Put all uj ∈ R1xm vectors into matrix U  

    φ(x; U) = σ(Ux) =                   ∈  Rd  
 
– σ is a pointwise sigmoid acting on each vector element  

•  Full model becomes 
   h(x; w, U) = wTφ(x; U) 
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σ(u1Tx)	
σ(u2Tx)	
…	

σ(udTx)	



Feed Forward Neural Network 15	

�(x) = �(Ux)

h(x) = w

T�(x)

U 

Hidden	layer	
Composed	of	neurons	

φ(…)	oGen	called	the		
ac0va0on	func0on	



Multi-layer Neural Network 

•  Multilayer NN 
– Each layer adapts basis based on previous layer 

16	

U V 



Universal approximation theorem 

•  Feed-forward neural network with a single hidden 
layer containing a finite number of  neurons can 
approximate continuous functions arbitrarily well on 
a compact space of  Rn  

– Only mild assumptions on non-linear activation function 
needed.  Sigmoid functions work, as do others 
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Universal approximation theorem 

•  Feed-forward neural network with a single hidden 
layer containing a finite number of  neurons can 
approximate continuous functions arbitrarily well on 
a compact space of  Rn  

– Only mild assumptions on non-linear activation function 
needed.  Sigmoid functions work, as do others 

•  But no information on how many neurons needed, or 
how much data! 
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Universal approximation theorem 

•  Feed-forward neural network with a single hidden 
layer containing a finite number of  neurons can 
approximate continuous functions arbitrarily well on 
a compact space of  Rn  

– Only mild assumptions on non-linear activation function 
needed.  Sigmoid functions work, as do others 

•  But no information on how many neurons needed, or 
how much data! 

•  How to find the parameters, given a dataset, to 
perform this approximation? 
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Neural Network Optimization Problem 

•  Neural Network Model: 

•  Classification: Cross-entropy loss function 

20	

h(x) = w

T�(Ux)

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)



Neural Network Optimization Problem 

•  Neural Network Model: 

•  Classification: Cross-entropy loss function 

•  Regression: Square error loss function 
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h(x) = w

T�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)



Neural Network Optimization Problem 

•  Neural Network Model: 

•  Classification: Cross-entropy loss function 

•  Regression: Square error loss function 

•  Minimize loss with respect to weights w, U 
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h(x) = w

T�(Ux)

L(w,U) =
1

2

X

i

(yi � h(xi))
2

pi = p(yi = 1|xi) = �(h(xi))

L(w,U) = �
X

i

yi ln(pi) + (1� yi) ln(1� pi)



Gradient Descent 

•  Minimize loss by repeated gradient steps 

–  Compute gradient w.r.t. parameters: 

–  Update parameters: 

23	

w0  w� ⌘
@L(w)

@w

@L(w)

@w



Gradient Descent 

•  Minimize loss by repeated gradient steps 

–  Compute gradient w.r.t. parameters: 

–  Update parameters: 
 

•  Now we need gradients w.r.t. w and U 

•  Gradients will depend on loss and network architecture 

•  Loss function is non-convex  
(many local minimum / saddle points) 
–  Gradient descent may not find  

global minimum 
–  Can be a major issue! 
–  Variants of  stachastic gradient descent 

can be helpful! 
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w0  w� ⌘
@L(w)

@w

@L(w)

@w



Chain Rule 

•  Derivative of  sigmoid: 

•  Chain rule to compute gradient w.r.t. w 

•  Chain rule to compute gradient w.r.t. uj 
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L(w,U) = �
X

i

yi ln(�(h(xi))) + (1� yi) ln(1� �(h(xi)))

@�(x)

@x

= �(x)(1� �(x))

@L

@uj
=

@L

@h

@h

@�

@�

@uj
=

=
X

i

yi(1� �(h(xi)))wj�(ujxi)(1� �(ujxi))xi

+ (1� yi)�(h(xi))wj�(ujxi)(1� �(ujxi))xi

@L

@w
=

@L

@h

@h

@w
=

X

i

yi(1� �(h(xi)))�(Ux) + (1� yi)�(h(x))�(Uxi)



Backpropagation 

•  Loss function composed of  layers of  nonlinearity 
26	

L(�a(...�1(x)))



Backpropagation 

•  Loss function composed of  layers of  nonlinearity 

•  Forward step (f-prop) 
– Compute and save intermediate computations 

27	

�a(...�1(x))

L(�a(...�1(x)))



Backpropagation 

•  Loss function composed of  layers of  nonlinearity 

•  Forward step (f-prop) 
– Compute and save intermediate computations 

•  Backward step (b-prop) 
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�a(...�1(x))

L(�a(...�1(x)))

@L

@�a
=

X

j

@�(a+1)
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@�a
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@L
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Backpropagation 

•  Loss function composed of  layers of  nonlinearity 

•  Forward step (f-prop) 
– Compute and save intermediate computations 

•  Backward step (b-prop) 

•  Compute parameter gradients 
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Training 

•  Repeat gradient update of  weights reduce loss  
– Each iteration through dataset is called an epoch 

•  Use validation set to examine for overtraining, and 
determine when to stop training  

30	

[graphic	from	H.	Larochelle]	



Regularization 31	

•  L2 regularization: add Ω(w) = ||w||2 to loss 
– Also called “weight decay” 
– Gaussian prior on weights, keep weights from getting too 

large and saturating activation function 

•  Regularization inside network, example: Dropout  
– Randomly remove nodes during training 
– Avoid co-adaptation of  nodes 
– Essentially a large model averaging procedure  

arXiv:1207.0580	



Activation Functions 

•  Vanishing gradient problem 
–  Derivative of  sigmoid: 

 
–  Nearly 0 when x is far from 0! 
–  Gradient descent difficult! 

32	

∂σ (x)
∂x

=σ (x)(1−σ (x))

•  Rectified Linear Unit (ReLU) 
–  ReLU(x) = max{0, x} 
–  Derivative is constant! 

–  ReLU gradient doesn’t vanish 

∂ReLU(x)
∂x

= 1
0

when x > 0
otherwise

"
#
$

%$



Neural Network Decision Boundaries 33	

x1	

x2	

4-class	classifica0on	
2-hidden	layer	NN	
ReLU	ac0va0ons	
L2	norm	regulariza0on	

2-class	classifica0on	
1-hidden	layer	NN	
L2	norm	regulariza0on	

One	neuron	 Two	neuron	

Three	neurons	 Four	neurons	

Five	neurons	 Twenty	neurons	

FiGy	neurons	

hXp://www.wildml.com/2015/09/implemen0ng-a-neural-network-from-scratch/		 hXp://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r		



Deep Neural Networks 

•  As data complexity grows, need exponentially large number of  neurons in 
a single-hidden-layer network to capture all the structure in the data 

•  Deep neural networks have many hidden layers 
–  Factorize the learning of  structure in the data across many layers 

•  Difficult to train, only recently possible with large datasets, fast computing 
(GPU) and new training procedures / network structures (like dropout)   
→ More next time 
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Neural Network Architectures 

•  Structure of  the networks, 
and the node connectivity 
can be adapted for problem 
at hand 

•  Convolutions: shared 
weights of  neurons, but each 
neuron only takes subset of  
inputs 

35	

[Bishop]	 hXp://www.asimovins0tute.org/neural-network-zoo/		



Neural Networks in HEP 36	

Jets	at	the	LHC	 Neutrino	iden0fica0on	
Example:	NOνA	



What do neural networks learn? 
•  Can visualize weights: neutrino decay classification 
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Image	Y-view	 Weights	of	First	layer		 Output	of	convolu0on	

•  Find inputs that 
most activate a 
neuron: 
–  Separating boosted 

W-jets from quark/
gluon jets 

arXiv:1604.01444	

hXps://arxiv.org/abs/1511.05190		



Decision Tree Models 38	



Decision Trees 

•  Partition data based on a sequence of  thresholds 

•  In a given partition, estimate the class probability from Nm examples 
in partition m and Nk of  the examples in partition from class k: 

39	

pmk =
Nk

Nm



Single Decision Trees: Pros and Cons 

•  Pros: 
–  Simple to understand, can visualize a tree 
– Requires little data preparation, and can use continuous 

and categorical inputs 

•  Cons: 
– Can create complex models that overfit data 
– Can be unstable to small variations in data 
– Training a tree is an NP-complete problem  

•  Hard to find a global optimum of  all data partitionings 
•  Have to use heuristics like greedy optimization where locally 

optimal decisions are made 

•  We will discuss the ways to overcome these Cons, 
including early stopping of  training, and ensembles 
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Greedy Training of  a Decision Tree 

•  Greedy Training: instead of  optimizing all 
splittings at the same time, optimize them one-by-
one, then move onto next splitting 

41	



Greedy Training of  a Decision Tree 

•  Greedy Training: instead of  optimizing all 
splittings at the same time, optimize them one-by-
one, then move onto next splitting 

•  Given Nm examples in a node, for a candidate 
splitting θ=(xj , tm) for feature xj and threshold tm  

42	



Greedy Training of  a Decision Tree 

•  Greedy Training: instead of  optimizing all 
splittings at the same time, optimize them one-by-
one, then move onto next splitting 

•  Given Nm examples in a node, for a candidate 
splitting θ=(xj , tm) for feature xj and threshold tm  

•  If  data partitioned into subsets Qleft and Qright , 
compute: 

– Where H() is an impurity function 

43	

G(Q, ✓) =
nleft

Nm
H(Qleft(✓)) +

nright

Nm
H(Qright(✓))



Greedy Training of  a Decision Tree 

•  Greedy Training: instead of  optimizing all 
splittings at the same time, optimize them one-by-
one, then move onto next splitting 

•  Given Nm examples in a node, for a candidate 
splitting θ=(xj , tm) for feature xj and threshold tm  

•  If  data partitioned into subsets Qleft and Qright , 
compute: 

– Where H() is an impurity function 

•  Choose splitting θ using: 

44	

G(Q, ✓) =
nleft

Nm
H(Qleft(✓)) +

nright

Nm
H(Qright(✓))

✓⇤ = argmin
✓

G(Q, ✓)



Impurity Functions 

•  Classification 
– Proportion of  class k in node m:  

– Gini: 

– Cross entropy:  

– Miss-classification: 

•    Regression 
– Continuous target y, in region estimate: 

–  Square error: 

45	

pmk =
Nk

Nm

H(Xm) =
X

k

pmk(1� pmk)

H(Xm) = �
X

k

pmk log(pmk)

H(Xm) = 1�max

k
(pmk)

cm =
1

Nm

X

i2Nm

yi

H(Xm) =
1

Nm

X

i2Nm

(yi � cm)2



When to stop splitting? 46	

•  In principle, can keep splitting until every event is 
properly classified… 



When to stop splitting? 

•  In principle, can keep splitting until every event is 
properly classified… 

47	

Va
ria

bl
e	
2	

Variable	1	

•  Single decision trees can quickly overfit 
•  Especially when increasing the depth of  the tree 

[Rogozhnikov]		



When to stop splitting? 

•  In principle, can keep splitting until every event is 
properly classified… 

•  Can stop splitting early.  Many criteria: 
– Fixed tree depth 
– Information gain is not enough 
– Fix minimum samples needed in node 
– Fix minimum number of  samples needed to split node 

– Combinations of  these rules work as well 
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Mitigating Overfitting 49	

[Rogozhnikov]		



Ensemble Methods 

•  Can we reduce the variance of  a model without 
increasing the bias? 

50	



Ensemble Methods 

•  Can we reduce the variance of  a model without 
increasing the bias? 

•  Yes! By training several slightly different models 
and taking majority vote (classification) or 
average (regression) prediction 

– Bias does not largely increase because the average 
ensemble performance is equal to the average of  its 
members 

– Variance decreases because a spurious pattern picked 
up by one model may not be picked up by other 

51	



Ensemble Methods 

•  Combining several weak learners (only small correlation 
with target value) with high variance can be extremely 
powerful 

•  Can be used with decision trees to overcome their 
problems of  overfitting! 
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Individual	Models	 Average	Model	

Green	=	true	func0on		

[Bishop]		



Bagging and Boosting 

•  Bootstrap Aggregating (Bagging):  
–  Sample dataset D with replacement N-times, and train a 

separate model on each derived training set 
– Classify example with majority vote, or compute average 

output from each tree as model output 

•  Boosting: 
– Train N models in sequence, giving more weight to 

examples not correctly classified by previous models 
– Take weighted vote to classify examples 

– Boosting algorithms include:  
AdaBoost, Gradient boost, XGBoost 

53	

h(x) =
1

Ntrees

NtreesX

i=1

hi(x)

h(x) =

PNtrees

i=1 ↵ihi(x)PNtrees

i=1 ↵i



Random Forest 

•  One of  the most commonly used algorithms in 
industry is the Random Forest 

– Use bagging to select random example subset 

– Train a tree, but only use random subset of  features 
(√m features) at each split. This increases the variance  

54	



Ensembles of  Trees 
•  Tree Ensembles 

tend to work well  

–  Relatively simple 

–  Relatively easy to 
train 

–  Tend not to overfit 
(especially random 
forests) 

–  Work with different 
feature types: 
continuous, 
categorical, etc. 

55	

[Rogozhnikov]		Random	Forest	



CMS h→γγ (8 TeV) – Boosted decision tree 56	

Eur.	Phys.	J.	C	74	(2014)	3076	



Decision Tree Ensembles in HEP 57	

•  Decision tree ensembles, 
especially with boosting, are 
used very widely in HEP! 
 

https://arxiv.org/abs/1512.05955 	

JHEP	01	(2016)	064		

JINST	10	P08010	2015	



Unsupervised Learning 

•  Learning without targets/labels,  
find structure in data 
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Dimensionality Reduction 

•  Find a low dimensional (less complex) 
representation of  the data with a mapping 
Z=h(X) 

59	



Principle Components Analysis 

•  Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of  data? 
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Principle Components Analysis 

•  Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of  data? 

•  Data covariance: 

61	

S =
1

N

NX

i=1

(xi � x̄)2



Principle Components Analysis 

•  Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of  data? 

•  Data covariance: 

•  Let u1 be the projected direction, we can solve:  

62	

u⇤
1 = argmax

u1

uT
1 Su1 + �(1� uT

1 u1)

! Su1 = �u1

S =
1

N

NX

i=1

(xi � x̄)2

Variance	of	projected	data	 Unit	length	vector	constraint	



Principle Components Analysis 

•  Given data {xi}i=1…N can we find a directions in 
features space that explain most variation of  data? 

•  Data covariance: 

•  Let u1 be the projected direction, we can solve:  

•  Principle components are the eigenvectors of  the data 
covariance matrix! 
– Eigenvalues are the variance explained by that component 

63	

u⇤
1 = argmax

u1

uT
1 Su1 + �(1� uT

1 u1)

! Su1 = �u1

S =
1

N

NX

i=1

(xi � x̄)2

Variance	of	projected	data	 Unit	length	vector	constraint	



PCA Example 64	

[Ng]	



PCA Example 65	

First	principle	component,	projects	on	to	this	axis	have	large	variance	
[Ng]	



PCA Example 66	

Second	principle	component,	projects	have	small	variance	
[Ng]	



Fisher Discriminant 
•  Suppose our {xi, yi}i=1…N is separated in two classes, 

we want a projection to maximize the separation 
between the two classes. 

67	



Fisher Discriminant 
•  Suppose our {xi, yi}i=1…N is separated in two classes, 

we want a projection to maximize the separation 
between the two classes. 

– Want means (mi) of  two classes (Ci) to be as far apart as 
possible → large between-class variation 

68	

SB = (m2 �m1)
T (m2 �m1)



Fisher Discriminant 
•  Suppose our {xi, yi}i=1…N is separated in two classes, 

we want a projection to maximize the separation 
between the two classes. 

– Want means (mi) of  two classes (Ci) to be as far apart as 
possible → large between-class variation 

– Want each class tightly clustered, as little overlap as 
possible → small within-class variation 

69	

SW =
X

i2C1

(xi �m1)
T (xi �m1) +

X

i2C2

(xi �m2)
T (xi �m2)

SB = (m2 �m1)
T (m2 �m1)



Fisher Discriminant 
•  Suppose our {xi, yi}i=1…N is separated in two classes, 

we want a projection to maximize the separation 
between the two classes. 

– Want means (mi) of  two classes (Ci) to be as far apart as 
possible → large between-class variation 

– Want each class tightly clustered, as little overlap as 
possible → small within-class variation 

•  Maximize Fisher criteria 
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SW =
X

i2C1

(xi �m1)
T (xi �m1) +

X

i2C2

(xi �m2)
T (xi �m2)

SB = (m2 �m1)
T (m2 �m1)

J(w) =
wTSBw

wTSWw
! w / SW (m2 �m1)



Fisher Discriminant  71	

[Bishop]		



Comparing Techniques 72	

Projected	plane	is	perpendicular	
To	decision	line	



Fisher Discriminant  73	
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hXp://arxiv.org/abs/1407.5675		



Clustering 

•  Partition the data into groups  D={D1 ∪ D2  … ∪ Dk} 

•  What is a good clustering? 
•  One where examples within a cluster are more “similar” than to 

examples in other clusters 

•  What does similar mean?  Use distance metric, e.g. 

74	

d(x,x0) =

sX

i

(xi � x

0
i)

2



K-means 

•  Data xi  ∈ Rm which you want placed in K clusters 

•  Associate each example to a cluster by minimizing 
within-class variance 

75	



K-means 

•  Data xi  ∈ Rm which you want placed in K clusters 

•  Associate each example to a cluster by minimizing 
within-class variance 
– Give each cluster Sk a prototype µk∈ Rm where k=1…K 
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K-means 

•  Data xi  ∈ Rm which you want placed in K clusters 

•  Associate each example to a cluster by minimizing 
within-class variance 
– Give each cluster Sk a prototype µk∈ Rm where k=1…K 

– Assign each example to a cluster Sk 

77	



K-means 

•  Data xi  ∈ Rm which you want placed in K clusters 

•  Associate each example to a cluster by minimizing 
within-class variance 
– Give each cluster Sk a prototype µk∈ Rm where k=1…K 

– Assign each example to a cluster Sk 

– Find prototypes and assignments to minimize 

•  This is an NP-hard problem, with many local minimum! 
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L(S, µ) =
KX

k=1
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K-means algorithm 

•  Initialize the µk at random (typically using K-means++ initialization) 

•  Repeat until convergence: 
–  Assign each example to closest prototype 

–  Update prototypes 
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Hierarchical Agglomerative Clustering  

•  Algorithm 
–  Start with each example xi as its own cluster 
– Take pairwise distance between examples  
– Merge closest pair into a new cluster 
– Repeat until one cluster 

•  Doesn’t require choice of  number of  clusters 
•  Clusters can have arbitrary shape 
•  Clusters have intrinsic heirarchy 
•  No random initialization 

•  What distance metric to use?  
– Here use Euclidean distance between cluster centroid 

(average of  examples in cluster) 
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Jet Algorithms 

•  Sequential pairwise jet clustering algorithms  
are hierarchical clustering, and are  
a form of  unsupervised learning 

•  Compute distance between pseudojets i and j  

•  Distance between pseudojet and beam 

•  Find smallest distance between pseudojets dij or diB 
– Combine (sum 4-momentum) of  two  

pseudojets if  dij smallest 
–  If  diB is smallest, remove pseudojet i,  

call it a jet 
– Repeat until all pseudojets are jets 
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What To Use? So Many Choices 

•  Once you know what you want to do…  
 
WHAT algorithm should you use? 
– Linear model 
– Nearest Neighbors 
–  (Deep?) Neural network 
– Decision tree ensemble 
– Support vector machine 
– Gaussian processes 
– … and so many more … 

89	



No Free Lunch - Wolpert (1996) 

•  In the absence of  prior knowledge, there is no a priori 
distinction between algorithms, no algorithm that will 
work best for every supervised learning problem 
– You can not say algorithm X will be better without knowing 

about the system 

– A model may work really well on one problem, and really 
poorly on another 

– This is why data scientists have to try lots of  algorithms! 

•  But there are some empirical heuristics that have been 
observed… 
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Practical Advice – Empirical Analysis 

•  Test 179 classifiers (no deep neural networks) on 121 datasets 
http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf    

–  The classifiers most likely to be the bests are the random forest (RF) versions, 
the best of  which (…) achieves 94.1% of  the maximum accuracy 
overcoming 90% in the 84.3% of  the data sets 

From Kaggle 
•  For Structured data: “High level” features that have meaning 

–  Winning algorithms have been lots of  feature engineering + random 
forests, or more recently XGBoost (also a decision tree based 
algorithm) 

•  Unstructured data: “Low level” features, no individual meaning 
–  Winning algorithms have been deep learning based, Convolutional 

NN for image classification, and Recurrent NN for text and speech 

91	



More general advice 

•  You will likely need to try many algorithms… 
–  Start with something simple! 
–  Use more complex algorithms as needed 
–  Use cross validation to check for overcomplexity / overtraining 

•  Check the literature 
–  If  you can cast your (HEP) problem as something in the ML / 

data science domain, there may be guidance on how to proceed 

•  Hyperparameters can be hard to tune 
–  Use cross validation to compare models with different 

hyperparameter values! 

•  Use a training / validation / testing split of  your data 
–  Don’t use training or validation set to determine final 

performance 
–  And use cross validation as well! 
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Debugging Learning Algorithms 

•  Is my model working properly? 
– Where do I stand with respect to bias and variance? 
– Has my training converged? 
– Did I choose the right model / objective? 
– Where is the error in my algorithm coming from? 
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Typical learning curve for high variance 

•  Performance is not reaching desired level 
•  Error still decreasing with training set size 

–  suggests to use more data in training 
•  Large gap between training and validtaion error 

–  Some gap is expected (inherint bias towards training set) 
•  Better: Large Cross-validation RMS, large performance variation in trainings 
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Typical learning curve for high bias 

•  Training error is unacceptably high 
•  Small gap between training and validation error 
•  Cross validation RMS is small 
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Potential Fixes 

•  Fixes to try: 
–  Get more training data      Fixes high variance 
–  Try smaller feature set size     Fixes high variance 
–  Try larger feature set size      Fixes high bias 
–  Try different features       Fixes high bias 

•  Did the training converge? 
–  Run gradient descent a few more iterations  Fixes optimization algorithm 

•  or adjust learning rate 
–  Try different optimization algorithm   Fixes optimization algorithm 

•  Is it the correct model / objective for the problem? 
–  Try different regularization parameter value  Fixes optimization objective 
–  Try different model       Fixes optimization objective 

•  You will often need to come up with your own diagnostics to 
understand what is happening to your algorithm 
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Conclusions 
•  Machine learning uses mathematical and statistical models 

learned from data to characterize patterns and relations between 
inputs, and use this for inference / prediction 

•  Machine learning provides a powerful toolkit to analyze data 
–  Linear methods can help greatly in understanding data 

–  Complex models like NN and decision trees can model intricate patterns 
•  Care needed to train them and ensure they don’t overfit 

	
–  Unsupervised learning can provide powerful tools to understand data, 

even when no labels are available 

–  Choosing a model for a given problem is difficult, but there may be some 
guidance in the literature 
•  Keep in mind the bias-variance tradeoff  when building an ML model 

•  Deep learning is an exciting frontier and powerful paradigm in 
ML research 
–  We will hear more about it tomorrow! 
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Advertisements 

•  Tomorrow’s lecture on deep learning and 
computer vision from Jon Shlens from Google 
Brain! 

•  Data Science @ HEP workshop on machine 
learning in high energy physics 
– May 8-12, 2017 at Fermilab 
– https://indico.fnal.gov/conferenceDisplay.py?

ovw=True&confId=13497  
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Useful Python ML software 
•  Anaconda / Conda  → easy to setup python ML / scientific computing 

environments 
–  https://www.continuum.io/downloads  
–  http://conda.pydata.org/docs/get-started.html  

•  Integrating ROOT / PyROOT into conda 
–  https://nlesc.gitbooks.io/cern-root-conda-recipes/content/index.html  
–  https://conda.anaconda.org/NLeSC  

•  Converting ROOT trees to python numpy arrays / panda dataframes 
–  https://pypi.python.org/pypi/root_numpy/  
–  https://github.com/ibab/root_pandas  

•  Scikit-learn → general ML library 
–  http://scikit-learn.org/stable/  

•  Deep learning frameworks / auto-differentiation packages 
–  https://www.tensorflow.org/  
–  http://deeplearning.net/software/theano/  

•  High level deep learning package build on top of  Theano / Tensorflow 
–  https://keras.io/  
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Example 

•  Classifying hand written digits 
–  10-class classification 
– Right plot shows projection of  10-class output onto 2 

dimensions  
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Error Analysis 

•  Anti-spam classifier using logistic regression.   
•  How much did each component of  the system help? 
•  Remove each component one at a time to see how it 

breaks 
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Ensemble Methods 

•  Combine many decision trees, use the ensemble for prediction 

•  Averaging: 

–  Random Forest, averaging combined with: 
•  Bagging: Only use a subset of  events for each tree training 
•  Feature subsets: Only use a subset of  features for each tree 

•  Boosting (weighted voting): 

–  Weight computed such that events in  
current tree have higher weight misclassified in previous trees  

–  Several boosting algorithms 
•  AdaBoost 
•  Gradient Boosting 
•  XGBoost 
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Non-Linear Activations 

•  The activation function in the NN must be a non-linear function 
–  If  all the activations were linear, the network would be linear:  

f(X) = Wn( Wn-1 (… W1 X)) = UX,        where U = Πi Wi 

•  Linear functions can only correctly classify linearly separable data! 

•  For complex datasets, need nonlinearities to properly learn data 
structure 
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Neural Networks and Local Minima 

•  Large NN’s difficult to train…trapping in local minimum? 

•  Not in large neural networks https://arxiv.org/abs/1412.0233  
–  Most local minima equivalent, and resonable 
–  Global minima may represent overtraining 
–  Most bad (high error) critical points are saddle points (different than 

small NN’s) 

10
6	



Weight Initializations and Training Procedures 
•  Used to set weights to some small 

initial value 
–  Creates an almost linear classifier 

•  Now initialize such that node outputs 
are normally distributed 

•  Pre-training with auto-encoder 
–  Network reproduces the inputs 
–  Hidden layer is a non-linear 

dimensionality reduction 
–  Learn important features of  the input 
–  Not as common anymore, except in 

certain circumstances… 

•  Adversarial training, invented 2014 
–  Will potential HEP applications later 
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ReLU Networks 

•  Sparse propagation of  activations and gradients in a network of  rectifier 
units. The input selects a subset of  active neurons and computation is 
linear in this subset. 

•  Model is “linear-by-parts”, and can thus be seen as an exponential 
number of  linear models that share parameters 

•  Non-linearity in model comes from path selection 
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Convolutions in 2D 

•  Scan the filters over the 2D image, producing the 
convolved images 
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Max Pooling 

•  Down-sample the input by taking MAX or 
average over a region of  inputs 
– Keep only the most useful information 
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Daya Bay Neutrino Experiment 

•  Aim to reconstruct inverse β-decay interactions from 
scintillation light recorded in 8x24 PMT’s 

•  Study discrimination power using CNN’s 
–  Supervised learning  → observed excellent performance (97% 

accuracy) 
–  Unsupervised learning: ML learns itself  what is interesting! 
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Jet tagging using jet substructure 11
4	

•  Typical approach: 
Use physics inspired variables to 
provide signal / background 
discrimination 

•  Typical physics inspired variables 
exploit differences in: 

•  Jet mass  
•  N-prong structure:  

o  1-prong (QCD)  
o  2-prong (W,Z,H) 
o  3-prong (top) 

•  Radiation pattern: 
o  Soft gluon emission 
o  Color flow 
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Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely
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invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely
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cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.
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therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that
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Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that
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Figure 2: Distributions of (a) τ1 and (b) τ2 for boosted W and QCD jets. For these plots, we
impose an invariant mass window of 65 GeV < mjet < 95 GeV on jets of R = 0.6, pT > 300 GeV,
and |η| < 1.3. By themselves, the τN do not offer that much discriminating power for boosted
objects beyond the invariant mass cut.
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Figure 3: (a): Distribution of τ2/τ1 for boosted W and QCD jets. The selection criteria are the
same as in Fig. 2. One sees that the τ2/τ1 ratio gives considerable separation between W jets and
QCD jets beyond the invariant mass cut. (b): Density plot in the τ1–τ2 plane. Marker sizes are
proportional to the number of jets in a given bin. In principle, a multivariate cut in the τ1–τ2 plane
would give further distinguishing power.

to have large τ1, QCD jets with a diffuse spray of large angle radiation can also have large

τ1, as shown in Fig. 2(a). However, those QCD jets with large τ1 typically have large values

of τ2 as well, so it is in fact the ratio τ2/τ1 which is the preferred discriminating variable.

As seen in Fig. 3(a), W jets have smaller τ2/τ1 values than QCD jets. Of course, one can

also use the full set of τN values in a multivariate analysis, as suggested by Fig. 3(b), and

we will briefly explore this possibility in Sec. 3.4.

As mentioned in the introduction, N -subjettiness is adapted from the similar quantity

N -jettiness introduced in Ref. [28]. There are three important differences: the sum over

k only runs over the hadrons in a particular jet and not over the entire event, we do not

have candidate (sub)jets corresponding to the beam directions, and our distance measure
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N-subje6ness	

•  Typical approach: 
Use physics inspired variables to 
provide signal / background 
discrimination 

•  Typical physics inspired variables 
exploit differences in: 

•  Jet mass  
•  N-prong structure:  

o  1-prong (QCD)  
o  2-prong (W,Z,H) 
o  3-prong (top) 

•  Radiation pattern: 
o  Soft gluon emission 
o  Color flow 

	



Mass
60 70 80 90 100 110

N
or

m
al

iz
ed

 to
 U

ni
ty

0

0.05

0.1

0.15

0.2

0.25

0.3
No pixelation

Only pixelation

0.75)×Pix+Translate (naive) (

Pix+Translate

Pix+Translate+Flip

/2 RotationπPix+Translate+

170)× norm (2
T

Pix+Translate+p

 = 13 TeVsPythia 8, 
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

Pre-processing and space-time symmetries 

Pre-processing steps 
may not be Lorentz 
Invariant 
 
•  Translations in η are 

Lorentz boosts along z-axis  
–  Do not preserve the pixel 

energies  
–  Use pT rather than E as pixel 

intensity 
 
 
 

•  Jet mass is not invariant 
under Image normalization  
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