Machine Learning:
Lecture 11

Michael Kagan

SLLAC

CERN Academic Training Lectures
April 26-28, 2017

Lecture Topics /

* Recap of last time
— What 1s Machine Learning
— Linear Regression

— Logistic Regression

— Over fitting and Regularization

— Training procedures and cross validation
— Gradient descent

e This Lecture

— Neural Networks — Just an intro, more on this tomorrow!
— Decision Trees and Ensemble Methods

— Unsupervised Learning
* Dimensionality reduction
* Clustering

— No Free Lunch and Practical Advice

Neural Networks

Reminder of Logistic Regression

* Input output pairs {x, y;}, with

— Y €10,1§
* Linear decision boundary h(x;w) =w!x
h(x) >0 2]
h(x) = 0 R
<0 1
h(x) Ry .
® ® ¢ PY
® o
® ° X
7 1
lIwli
X1
) S 371:

[Bishop]

Reminder of Logistic Regression

* Input output pairs {x, y;}, with

- x, ER™
— Y €10,1§

* Linear decision boundary

* Distance from decision boundary p(y = 1|x)
1s converted to class probability
using logistic sigmoid function

Logistic Sigmoid

—

T1x)

p(y=

=

h(x;w) =w' X

= o(h(x,w))
B 1
1 4+ e—W'x

= Fitted decision boundary

0@¢ Predicted probability

6

Logistic Regression

Adding non-linearity /

* What it we want a non-linear decision boundary?

Adding non-linearity /

* What it we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢(x) ~ {x? sin(x), log(x), ...}

1

py = 1|x) =

1+ e_WT¢(X)

Adding non-linearity /

* What it we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)

py = 1|x) =

e What if we don’t know what basis functions we want?

Adding non-linearity A

* What it we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)

ply = 1|x) =
e What if we don’t know what basis functions we want?

* Learn the basis functions directly from data
d(x;u) Rm— R4

— Where u 1s a set of parameters for the transtormation

Adding non-linearity

S

* What it we want a non-linear decision boundary?
— Choose basis functions, e.g: ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)

ply = 1|x) =
* What if we don’t know what basis functions we want?
* Learn the basis functions directly from data
d(x;u) Rm— R4
— Where u 1s a set of parameters for the transtformation

— Combines basis selection and learning
— Several different approaches, focus here on neural networks
— Complicates the optimization

Neural Networks

* Define the basis functions j = {1...d}

Oi(x; u) = O'(uJ-TX)

Neural Networks

* Define the basis functions j = {1...d}

¢;(x; u) = o(u;'x)

e Put all u; & RX™ yectors into matrix U

o(x; U) = o(Ux) = [owXn| & Rd

o(u™)

— O 1s a pointwise sigmold acting on each vector element

A

Neural Networks

S

* Define the basis functions j = {1...d}

0i(x; u) = o(u, 'x)

e Put all u; & RX™ yectors into matrix U

o(u,'x)
o(x; U) = o(Ux) = |ow™| & Rd

o(u™)

— O 1s a pointwise sigmold acting on each vector element

 Full model becomes

h(x; w, U) = wl¢(x; U)

Feed Forward Neural Network A

— Hidden layer

Composed of neurons

¢(...) often called the
activation function

Multi-layer Neural Network

* Multilayer NN

— Each layer adapts basis based on previous layer

Universal approximation theorem /

* Feed-forward neural network with a single hidden
layer containing a finite number of neurons can
approximate continuous functions arbitrarily well on
a compact space of R”

— Only mild assumptions on non-linear activation function
needed. Sigmoid functions work, as do others

Universal approximation theorem A

* Feed-forward neural network with a single hidden
layer containing a finite number of neurons can
approximate continuous functions arbitrarily well on
a compact space of R”

— Only mild assumptions on non-linear activation function
needed. Sigmoid functions work, as do others

* But no information on how many neurons needed, or
how much data!

Universal approximation theorem A

* Feed-forward neural network with a single hidden
layer containing a finite number of neurons can
approximate continuous functions arbitrarily well on
a compact space of R”

— Only mild assumptions on non-linear activation function
needed. Sigmoid functions work, as do others

* But no information on how many neurons needed, or
how much data!

* How to find the parameters, given a dataset, to
perform this approximation?

Neural Network Optimization Problem A

* Neural Network Model: h(x) = w! o(Ux)

* Classification: Cross-entropy loss function

pi = p(yi = 1]x;) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — y;) In(1 — p;)

Neural Network Optimization Problem /
* Neural Network Model: h(x) = w! o(Ux)

* Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — y;) In(1 — p;)

* Regression: Square error loss function

L(w,U) = o 3" (i — h(x,))?

1

Neural Network Optimization Problem A
* Neural Network Model: h(x) = w! o(Ux)

* Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — y;) In(1 — p;)

* Regression: Square error loss function

L(w,U) = o 3" (i — h(x,))?

1

* Minimize loss with respect to weights w, U

Gradient Descent

/e

* Minimize loss by repeated gradient steps

— Compute gradient w.r.t. parameters:

— Update parameters: W' < w — 7

ow

OL(w)
ow
OL(w)

451+

35t /

251

15}

10

N\ p

N\

.\.,
@‘N ‘L

/
/
p,
/

/
/
d
1 1 L

)
20

1
25

30

35

40

45

50

Gradient Descent

* Minimize loss by repeated gradient steps

— Compute gradient w.r.t. parameters: OL(w)
ow
, OL(w)
— Update parameters: w' <~ w — 7 T

* Now we need gradients w.r.t. wand U
* Gradients will depend on loss and network architecture

* Loss function 1s non-convex
(many local minimum / saddle points)

— Gradient descent may not find
global minimum

— Can be a major issue!

— Variants of stachastic gradient descent

can be helptul!

Chain Rule

— Zyi In(o(h(x;))) + (1 —y;) In(1 — o(h(x;)))

* Derivative of sigmoid: 6255) = o(z)(1 — o(x))

* Chain rule to compute gradient wr.t. w

ngv - gi gv}:r Zy@ (1 =0 (h(x4)))o(Ux) + (1 = y;)o(h(x))o(Ux;)

* Chain rule to compute gradient w.r.t. u;
OL _ OLOh do
811]' N Oh Oo (911j N

= w1 — o (hx))wjo(wyax) (1 — o (wja))x;

+ (1 = gi)o(h(x))wjo (uxi) (1 — o(u;x;))x;

Backpropagation A

* Loss function composed ot layers of nonlinearity

L(¢"(...¢" (x)))

Backpropagation A

* Loss function composed ot layers of nonlinearity
L(¢"(...¢" (x)))
* Forward step (f-prop)

— Compute and save intermediate computations

(-0 (%))

Backpropagation A

* Loss function composed ot layers of nonlinearity
L(¢"(...¢" (x)))
* Forward step (f-prop)

— Compute and save intermediate computations

(-0 (%))

* Backward step (b-prop) OL :Z j OL

Backpropagation A

* Loss function composed ot layers of nonlinearity
L(¢"(...¢" (x)))
* Forward step (f-prop)

— Compute and save intermediate computations

(-0 (%))

* Backward step (b-prop) OL :Z j OL

. OL
* Compute parameter gradients 3ya Z Owe D

\ Training A

* Repeat gradient update of weights reduce loss
— Each iteration through dataset 1s called an epoch

* Use validation set to examine for overtraining, and
determine when to stop training

O Training ‘O Validation
0.5
0.4 underfitting overfitting
0.3
0.2
0.1
0.0

number of epochs

[graphic from H. Larochelle]

Regularization A

* L2 regularization: add Q(w) = | |w] |® to loss
— Also called “weight decay”

— Gaussian prior on weights, keep weights from getting too
large and saturating activation function

* Regularization inside network, example: Dropout
— Randomly remove nodes during training
— Avoid co-adaptation of nodes
— Essentially a large model averaging procedure

a) Standard Neural Net (b) After applying dropout. arXiv:1207.0580

Activation Functions /

ReLU(z)
1/(14e")
tanh(x)

-3 -2 -1 0 1 2 3

* Vanishing gradient problem * Rectified Linear Unit (ReLU)

— Derivative of sigmoid: — ReLU(x) = max {0, x}
90 (x — Derivative 1s constant!
Y s@-ow)
ox oReLU(x) | 1 whenx>0
— Nearly 0 when x 1s far from 0! dx 0 otherwise

— Gradient descent difficult! — ReLU gradient doesn’t vanish

Neural Network Decision Boundaries .

20

One neuron

20

Two neuron

15

10

05

00

-05

15

10

05

00

-05

-1 0 1 2

Three neurons

Four neurons

-1 0 1 2

Five neurons

1 0 1 2

Twenty neurons

15

10

05

00

-05

Fifty neurons

-2

http://ww

o o
. .
. _‘-2 et
. S,
A
. o e
o d 5 . .“;'.
DR | 3 0
e
0,
o, 00
o o o8
o .'{"‘-‘. o
Y :f .
°® ®
=5

"

w.wildml.com/2015/09/implementing-a-neural-network-from-scratch/

4-class classification
2-hidden layer NN
RelLU activations

L2 norm regularization

X2 . ..:!... [] @ .
'..°‘o o . :.. gt e
(:;Q “‘.o.:. .&0.. oz.o.
e ® ® o LR o
N .:‘.o S.‘.:... u@"‘.’. ‘“ Q:’o
3 o:.: 0:” ® 0.’. ...“.. ®,
o Yoo ..o'? o .w o"‘g. ‘:\’
4 ® ° €, ° ° o
o o0% ®.2 ‘ol o @ s
oot 188" o Vo W e Qs
e L2 PPN L4 o 8 O
LY . 0: e ‘ ’{ﬁ - ° o.to.
* A :'.‘.;.0:.0(. 3'0.:.
®08 o, 0 g 0“....:0..0
PP YA

2-class classification
1-hidden layer NN
L2 norm regularization

http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

Deep Neural Networks A

hidden layer 1 hidden layer 2 hidden layer 3
)

et . ~A

input layver

- 25 < output layer

a
P

—/

* As data complexity grows, need exponentially large number of neurons in
a single-hidden-layer network to capture all the structure in the data

* Deep neural networks have many hidden layers
— Factorize the learning of structure in the data across many layers

* Ditticult to train, only recently possible with large datasets, tast computing
(GPU) and new training procedures / network structures (hke dropout)
— More next time

Neural Network Architectures

A mostly complete chart of

* Structure of the networks, ows Neural Networks

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org .
\‘//K
Ay

an d th e n O d e C O n n e C tiVity & Noisy Input Cell Perceptron (P) Feed Forward (FF) ~ Radial Basis Network (RBF) \\"/

IR \\
@ tiidden Cell 0:.""”":;(
e o , %
can be adapted for problem ® s e T

ROmAR
QR
. Spiking Hidden Cell

v\
at hand © e

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
[[[)) o)

NS R
BB NN
© watchinput Output Cell
58 R e
. Recurrent Cell TS YN\

© vemoryceu Auto Encoder (A€) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

* Convolutions: shared & e

Kernel

welghts of neurons, but each °=
neuron only takes subset of wee s s s oo

PE=IS IS

SESES

. (@)
: OSBRI S
o KX R XL X
Inputs et om0 %
@)
o
Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
~ —~ N ~
= >< ~ \O/ = >< \O/ \O/
& G QNG o oD
N ~ & % ~
\\
: Generative Adversarial Network (GAN) Liquid State Machine (LSM) ~ Extreme Learning Machine (ELM) Echo State Network (ESN)

3% Al a4

Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (SVM) Neural Turing Machine (NTM)

Input image Convolutional layer Sub-sampling %) % . g ;;

layer

[Bishop] http://www.asimovinstitute.org/neural-network-zoo/

Neural Networks in HEP

36

Jets at the LHC

ATLAS

EXPERIMENT

Run Number: 2. ent Number: 17:

Date: T

3D schematic of
NOVA particle detector

Neutrino

from
Fermilab

Neutrino identification
Example: NOVA

View from the top Particle 1

Interaction
Point

Particle 2
Neutrino

from
Fermilab

Particle 3

PVC cell filled with
liquid scintillator

View from the side Particle 2

\}

Particle 1

Interaction
Point

Neutrino
from
Fermilab

1 meter

Particle 3

What do neural networks learn?

/s

* Find inputs that

most activate a
neuron:

— Separating boosted

W-jets from quark/
gluon jets

e | A2 I

L R L

e SN
Plane

Image Y-view === \Weights of First layer

99.33% signal

99.33% signal

Can visualize weights: neutrino decay classification

arXiv:1604.01444

=) Qutput of convolution

https://arxiv.org/abs/1511.05190
99.00% sigqal 99.33% sigqal 99.33% sigqal

99.34% signal

.hlll

FUMEONE

()]

1.608% signal

Decision Tree Models

/e

Decision Trees

A

no

A

p(blue)=0/7

yes

no

A o

p(blue)=1/7

p(blue)=8/9

A p(blue)=8/9
[
A L
@]
[
A‘L ’
[
A " A .
A
A A
A A a
p(blue)=0/7 p(blue)=1/7
>
C1 331

* Partition data based on a sequence ot thresholds

* In a given partition, estimate the class probability from N _ examples

in partition m and N, of the examples in partition from class £:
N,
Nm

Pmk —

Single Decision Trees: Pros and Cons A

* Pros:
— Simple to understand, can visualize a tree

— Requires little data preparation, and can use continuous
and categorical inputs

— Can create complex models that overfit data
— Can be unstable to small variations in data

— Training a tree 1s an NP-complete problem
* Hard to find a global optimum of all data partitionings

* Have to use heuristics like greedy optimization where locally
optimal decisions are made

* We will discuss the ways to overcome these Cons,
including early stopping of training, and ensembles

Greedy Training of a Decision Tree A

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting

Greedy Training of a Decision Tree A

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting

* Given N _ examples in a node, for a candidate

splitting 0=(x; , t,) for teature x; and threshold t,,

Greedy Training of a Decision Tree A

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting

* Given N _ examples in a node, for a candidate

splitting b= (%, t,,) tor feature x; and threshold t,,

* If data partitioned into subsets Q,,, and Q
compute:

G(Q.0) = S H(Quen(0)) + 22 H Qg (6)

right

— Where H() 1s an impurity function

Greedy Training of a Decision Tree A

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting

* Given N _ examples in a node, for a candidate

splitting b= (%, t,,) tor feature x; and threshold t,,

* If data partitioned into subsets Q,,, and Q
compute:

G(Q.0) = S H(Quen(0)) + 22 H Qg (6)

right

— Where H() 1s an impurity function

* Choose splitting 0 using: 0" = arg m@in G(Q,0)

Impurity Functions A

e (lassification

: : Ny
— Proportion of class k£ 1n node m: pmr = 57—

— GiInt: H(Xm) = ZPmk(l — Pmk)
k
— Cross entropy: H(Xm) == pmk 10g(Pmk)
k
— Miss-classification: H(X,,)=1- mkaX(pmk)
* Regression .
— Continuous target y, In region estimate: ¢m = N Yi
€N
— Square error: H(X,,) = L D> (g —cm)?

When to stop splitting? A

* In principle, can keep splitting until every event 1s
properly classified...

When to stop splitting? %

* In principle, can keep splitting until every event 1s
properly classitied...

Variable 2

[Rogozhnikov]

Variable 1

* Single decision trees can quickly overfit

* Especially when increasing the depth of the tree

When to stop splitting? A

* In principle, can keep splitting until every event 1s
properly classified...

* Can stop splitting early. Many criteria:
— Fixed tree depth
— Information gain 1s not enough
— Fix minimum samples needed in node

— Fix minimum number ot samples needed to split node

— Combinations of these rules work as well

Mitigating Overfitting

-0.5 00 05 10

no pre-stopping

00 05 10 15

min # of samples in leaf

-1.0

05 10

max_depth

-05 00 05 10 15

maximal number of leaves

[Rogozhnikov]

Ensemble Methods A

e Can we reduce the variance of' a model without
increasing the bias?

Ensemble Methods A

e Can we reduce the variance ot a model without
increasing the bias?

* Yes! By training several slightly different models
and taking majority vote (classification) or
average (regression) prediction

— Bias does not largely increase because the average
ensemble performance 1s equal to the average of 1its
members

— Variance decreases because a spurious pattern picked

up by one model may not be picked up by other

Ensemble Methods A

Individual Models Average Model

Green = true function

0 1 0 1 [Bishop]

* Combining several weak learners (only small correlation
with target value) with high variance can be extremely

powertul

e (Can be used with decision trees to overcome their
problems of overtitting!

Bagging and Boosting A

* Bootstrap Aggregating (Bagging):
— Sample dataset D with replacement N-times, and train a
separate model on each derived training set

— Classify example with majority vote, or compute average
output from each tree as model output Ny

* Boosting:
— Train N models in sequence, giving more weight to
examples not correctly classified by previous models

— Take weighted vote to classity examples N
h _ Zizl ol (X)
(X) - Nt'rees .
— Boosting algorithms include: 2= o

AdaBoost, Gradient boost, XGBoost

Random Forest A

* One of the most commonly used algorithms in
industry 1s the Random Forest

— Use bagging to select random example subset

— Train a tree, but only use random subset of tfeatures
(\/m features) at each split. This increases the variance

Ensembles of Trees

e Tree Ensembles
tend to work well

— Relatively simple

e Bates Lt
PR P b

— Relatively easy to
train

— Tend not to overfit data
(especially random
forests)

— Work with difterent
feature types:
continuous,
categorical, etc.

50 trees 2000 trees

Random Forest [Rogozhnikov]

CMS h—yy (8 TeV) — Boosted decision tree

56

Events / GeV

- CcMms

Eur. Phys. J. C 74 (2014) 3076

19.7 o' (8 TeV) + 5.1 fb' (7 TeV)

30
o5 Ccms 8 TeV Untagged 0
¢ Data
— S+Bfit
20 | e B component
W 1o
------ +2¢
15 w
101 AN ‘
ol
i N
0 1 1] L 1 Il l
100 120 140 160 180
m,, (GeV)

19.7 b (8 TeV) + 5.1 fb" (7 TeV)

8 TeV Untagged 1

Data

S4B fit

B component
o

20

| I

19.7 fb" (8 TeV
o 10° ()105
o ¢ Data T
o —— MC Background i
~ —— Hoyy(m, =125 GeV) 1045
o 19710 (8 TeV) +5.1 1" (7 TeV) = —f-e o
% cMS g) [WHzH 3 @
(0] [8 TeV Untagged 4 o [tH 10 3
i 5 g =
E ~~~~~~ B:;on:(ponenl 8 102 g
0>J 3 = 1o N
uJ i2°
2 -
1_
0 1 1 1 l 1 L 1 I 1 1 L l 1 1 1 0 1
100 120 140 160 180 0.2 1
m,, (eV)e J/
19.7 b (8 TeV) + 5.1 fb' (7 TeV 19.7 b (8 TeV) + 5.1 o' (7 TeV
>x‘03 9.7fb" (8B TeV) + 5.1 b (7 TeV) >X103 9.7fb" (8 TeV)+ 5.1 fb" (7 TeV) >400
8 28 CMS 8 TeV Untagged 3 8 1.2 i CmS 8 TeV Untagged 2 8
~ ¢ Data ~ g ¢ Data ~
1%} — S4Bfit JZ I — S4Bt 0 300
cC 2H8 e B component c X e B component —
g’ 3 tio 0>) 3 tio q>)
w 120 Lu 08_ 120 IJJ
1.5 - 200+
0.6
1 I
041 s00k
0 L 1 l 1 1 l L J 1 L 0 L 1 1 L 1 1 L l L 1 0
100 120 140 160 180 100 120 140 160 180 100
m,, (GeV) m,, (GeV)

120 140

160
m,, (G

Decision Tree Ensembles in HEP

57

* Decision tree ensembles,
especlally with boosting, are
used very widely in HEP!

5 8 TeV
‘v_10=§"|"'|"'|"'|"'|"'|"iz
o - CMS Barrel 3
%104 ESImU/atlon H_>YvaT>25 GeV =
‘q&; - ¢ Photons 3
Ll>J 10° 3 —— Sum of pdfs E
10°F E
10:5
1
) JINST 10 P08010 2015
10-1 PR SN T T N TN T M A S N N |

08 1 12 14 18 18 2

Etrue/ Eraw

Events / 0.05

Data/Pred.

700
600
500
400
300
200
100

Reconstructed decay mode

https. //arxiv.org/abs/1512.05955

| \
| ATLAS Simulation

Zly*—>tT |
Tau Particle Flow Diagonal fraction: 74.7%
3h*217°— 0.2 2.5 3.6 5.3 56.6 —
3pt— 0.2 0.6 0.3 92.5 40.2 —
h*>27°— 0.4 6.0 35.4 0.1 04 —
hz°— 9.4 74.8 56.3 0.9 25 —
h*= 89.7 16.0 4.3 1.2 0.3 —
| | \ | |
h* h* 70 h*>27° 3h* 3h*217°
Generated decay mode
L B B L B B
ATLAS ¢ Data
=8TeV, 20.3 fb" Wt
+ 1-jet 1-tag It
Il Others

72 Uncertainty

0.3

202 -0.1 0

0.1

02 03 0.4
BDT Response

Unsupervised Learning

* Learning without targets/labels,
find structure 1in data

Dimensionality Reduction

* Find a low dimensional (less complex)

representation of the data with a mapping
Z=h(X)

Principle Components Analysis A

* Given data {x.}._, ycan we find a directions In
features space that explain most variation ot data?

Principle Components Analysis A

* Given data {x.}._, ycan we find a directions In
features space that explain most variation ot data?

N
: 1
* Data covariance: S = N ;(Xz — 5_()2

Principle Components Analysis

S

* Given data {x.}._, ycan we find a directions In
features space that explain most variation of data?

N
: 1
* Data covariance: S = N ;(Xz — 5_()2

Let u, be the projected direction, we can solve:

Variance of projected data Unit length vector constraint

A A

| | |

u} = argmax ul Su; +)\(1 —uluy)
uj

— Su; = \uy

Principle Components Analysis A

* Given data {x.}._, ycan we find a directions In
features space that explain most variation of data?

N
: 1
* Data covariance: S = N ;(Xz — 5_()2

* Let u, be the projected direction, we can solve:

Variance of projected data Unit length vector constraint

A A

[| \

u; = arg max uj 1Su; +)\(1 — u{ul)
uj

— Su; = \uy

* Princtple components are the eigenvectors ot the data
covariance matrix!
— Eigenvalues are the variance explained by that component

PCA Example

[Ng]

PCA Example

A

First principle component, projects on to this axis have large variance

[Ng]

PCA Example

66

Second principle component, projects have small variance

[Ng]

Fisher Discriminant A

* Suppose our {X;, ¥i}i_; x 1S separated In two classes,
we want a projection to maximize the separation
between the two classes.

Fisher Discriminant A

* Suppose our {X;, ¥i}i_; x 1S separated In two classes,
we want a projection to maximize the separation
between the two classes.

— Want means (m,) of two classes (C,) to be as far apart as
possible — large belween-class variation

SB — (m2 — ml)T(mQ — ml)

Fisher Discriminant A

* Suppose our {X;, ¥i}i_; x 1S separated In two classes,
we want a projection to maximize the separation
between the two classes.

— Want means (m,) of two classes (C,) to be as far apart as
possible — large belween-class variation

SB — (m2 — ml)T(mQ — ml)

— Want each class tightly clustered, as little overlap as
possible — small within-class variation

SW: Z(Xz'—ml) X; — 1M1 —I—Z —m2 Xi—mg)

1e(Cq 1€Cy

Fisher Discriminant A

* Suppose our {X;, ¥i}i_; x 1S separated In two classes,
we want a projection to maximize the separation
between the two classes.

— Want means (m,) of two classes (C,) to be as far apart as
possible — large belween-class variation

SB — (m2 — ml)T(mQ — ml)

— Want each class tightly clustered, as little overlap as
possible — small within-class variation

SW: Z(Xz'—ml) X; — 1M1 —I—Z —m2 Xi—mg)

1e(Cq 1€Cy

e Maximize Fisher criteria

T
J(w) = W' Spw

W X Sy (ms — my)

~N

wiSyw

Fisher Discriminant

of.
L ..'.

° . © .0 Ao.~ .
. .: OV‘Q‘O..-t e

% =

[Bishop]

/

Comparing Techniques

72

10 T T T T T T
sl Projected plane is perpendicular |
To decision line
6 * 1
. 0.0 > :
. P g - X
4 - ° :. . ‘: .
& :: ':.Oo‘. . o .
o o, e o°° o ° .
2+ 0.. °® ° o - ® Y ° .. Ll -
o L] .. [. ° R] o ® 4
2 ° L] ° ¢ . ‘ °
o P o
0_ . ® . L[] L] . . .'... .:." . 1
° . - .: ..: ‘o Py L Y
< Discriminating Planes
—2r — Class Mean Difference
— Fisher Discriminant
—4r — First PCA Component |7
—— Second PCA Component
k] 0 1 2 3 4 5 6
030 Class Mean Difference Projection 030 IFirstI PCAI Corrluponlent Plrojecltionl 12 Seclond PCIA ComlponentI Projecfion 16 : : Fis:\er P:‘ojectlion : :
0.25 0.25 1.0 1.4
1.2
0.20 0.20 0.8 1.0
0.15 0.15 0.6 0.8
0.10 0.10 0.4 0.6
0.4
0.05 0.05 0.2 0.2
0'00—6 -4-2 0 2 4 6 8 100'00—4 -3-2-10 1 2 3 4 5 0'0—3 -2 -1 0 1 2 3 0'93.92.52.9-1.51.90.50.0 0.51.0

Fisher Discriminant /

http://arxiv.org/abs/1407.5675

Average Boosted W Jet

2.5
12 Plotted weights of Fisher Discriminant
* 10-3 25 i L} | | | T T i
e 10 QCD-like 0.6
< 107° .
1.0 105 W-like 4
1077 20F i 0.
0.5
1078

0.0 107 .‘..I 192
: 25 Cell B o
Coefficient]_ . 5 - O . O

- {02
: 10F 7
Average quark / gluon jet d_04
I I | | | | 107
10-2 05k - —0.6
1073
o 0.8
1075
. 00} .
10 1 1 L L | L —1.0
o 0.0 0.5 1.0 1.5 2.0 2.5 Cell
1078 Coefficient
107 Q2

10 15 20 25 o

Q2 Coeflicient

Clustering A

* Partition the data into groups D={D, U D, ... UD,}

* What 1s a good clustering?

* One where examples within a cluster are more “similar” than to
examples in other clusters

* What does similar mean? Use distance metric, e.g.

d(x,x") = \/Z(x —)2

K-means /

* Data x, € R™ which you want placed in K clusters

* Assoclate each example to a cluster by minimizing
within-class variance

K-means A

* Data x, € R™ which you want placed in K clusters

* Assoclate each example to a cluster by minimizing
within-class variance

— Give each cluster S, a prototype w,& R™ where k=1...K

K-means /

* Data x, € R™ which you want placed in K clusters

* Assoclate each example to a cluster by minimizing
within-class variance

— Give each cluster S, a prototype w,& R™ where k=1...K

— Assign each example to a cluster S,

K-means A

* Data x, € R™ which you want placed in K clusters

* Assoclate each example to a cluster by minimizing
within-class variance

— Give each cluster S, a prototype w,& R™ where k=1...K
— Assign each example to a cluster S,

— Find prototypes and assignments to minimize

L(S,) =) > V(xi—)

k=11€S5

* This 1s an NP-hard problem, with many local minimum!

KR-means algorithm

A

* Initialize the w, at random (typically using K-means++ 1nitialization)

* Repeat until convergence:

— Assign each example to closest prototype

1
— Update prototypes U = — E X
Nk

1E€SL

min
ke{l..K)}

\/(Xz’ — pg)?

[Bishop]

Hierarchical Agglomerative Clustering A

* Algorithm

— Start with each example x. as its own cluster

— Take pairwise distance between examples
— Merge closest pair into a new cluster
— Repeat until one cluster

* Doesn’t require choice of number ot clusters
* Clusters can have arbitrary shape

* Clusters have intrinsic heirarchy

* No random initialization

What distance metric to use?

— Here use Euclidean distance between cluster centroid
(average of examples in cluster)

Hierarchical Agglomerative Clustering A

C

[Parkes]

Hierarchical Agglomerative Clustering A

:

CD

/N

B A E C D

[Parkes]

Hierarchical Agglomerative Clustering A

:

NN

[Parkes]

Hierarchical Agglomerative Clustering A

e
e

NN

[Parkes]

Hierarchical Agglomerative Clustering A

Hierarchical Agglomerative Clustering A

Jet Algorithms

Sequential pairwise jet clustering algorithms
are hierarchical clustering, and are ,,
a form of unsupervised learning £’

Compute distance between pseudojets iand j ..
D

A% = (Y — ;) + (ds — ¢5)°

Distance between pseudojet and beam | d;5 = £27

Find smallest distance between pseudojets dij or d.p

— Combine (sum 4-momentum) of two sew i, e
pseudojets 1f d;; smallest

— It d.; 1s smallest, remove pseudojet i,
call it a jet

— Repeat until all pseudojets are jets

Practical Advice

A

What To Use? So Many Choices

* Once you know what you want to do...

WHAT algorithm should you use?

— Linear model

— Nearest Neighbors

— (Deep?) Neural network
— Decision tree ensemble
— Support vector machine
— Gaussian processes

— ... and so many more ...

No Free Lunch - Wolpert (1996) A

* In the absence of prior knowledge, there 1s no a priori
distinction between algorithms, no algorithm that will
work best for every supervised learning problem

— You can not say algorithm X will be better without knowing
about the system

— A model may work really well on one problem, and really
poorly on another

— This 1s why data scientists have to try lots of algorithms!

* But there are some empirical heuristics that have been
observed...

Practical Advice — Empirical Analysis A

* Test 179 classifiers (no deep neural networks) on 121 datasets
http://jmlr.csail. mit.edu/papers/volumel5/delgado14a/delgado14a.pdf

— The classifiers most likely to be the bests are the random forest (RF’) versions,
the best of which (...) achieves 94.1% of the maximum accuracy
overcoming 90% in the 84.3% of the data sets

From Kaggle

* For Structured data: “High level” features that have meaning

— Winning algorithms have been lots of feature engineering + random
forests, or more recently XGBoost (also a decision tree based
algorithm)

* Unstructured data: “Low level” features, no individual meaning

— Winning algorithms have been deep learning based, Convolutional

NN for image classification, and Recurrent NN for text and speech

More general advice A

* You will likely need to try many algorithms...
— Start with something simplel!
— Use more complex algorithms as needed
— Use cross validation to check for overcomplexity / overtraining

Check the literature

— It you can cast your (HEP) problem as something in the ML /
data science domain, there may be guidance on how to proceed

* Hyperparameters can be hard to tune

— Use cross validation to compare models with different
hyperparameter values!

* Use a training / validation / testing split of your data

— Don’t use training or validation set to determine final
performance

— And use cross validation as well!

Debugging Learning Algorithms A

* Is my model working properly?
— Where do [stand with respect to bias and variance?
— Has my training converged?
— Did I choose the right model / objective?

— Where 1s the error in my algorithm coming from?

Section derived from [Ng]

Typical learning curve for high variance A

Cross validation
Validation error and RMS

error

Desired performance

/ Training error

m (training set size)
* Performance is not reaching desired level
* Error still decreasing with training set size
— suggests to use more data in training

* Large gap between training and validtalon error
— Some gap is expected (inherint bias towards training set)

[Ng]

* Better: Large Cross-validation RMS, large performance variation in trainings

Typical learning curve for high bias A

Cross validation
Validation error and RMS

/ Training error

/ Desired performance

error

[Ng]

m (training set size)
* Training error 1s unacceptably high

* Small gap between training and validation error
* Cross validation RMS 1s small

Potential Fixes A

* Fixes to try:

— Get more training data Fixes high variance
— Try smaller feature set size Fixes high variance
— Try larger feature set size Fixes high bias
— Try difterent features Fixes high bias

* Did the training converge?

— Run gradient descent a few more iterations Iixes optimization algorithm
* or adjust learning rate

— Try different optimization algorithm Fixes optimization algorithm

* Is it the correct model / objective for the problem?
— Try different regularization parameter value Fixes optimization objective

— Try different model Fixes optimization objective

* You will often need to come up with your own diagnostics to

understand what is happening to your algorithm Nl

Conclusions A

* Machine learning uses mathematical and statistical models
learned from data to characterize patterns and relations between
inputs, and use this for inference / prediction

* Machine learning provides a powerful toolkit to analyze data
— Linear methods can help greatly in understanding data

— Complex models like NN and decision trees can model intricate patterns
* Care needed to train them and ensure they don’t overtit

— Unsupervised learning can provide powerful tools to understand data,
even when no labels are available

— Choosing a model for a given problem is difficult, but there may be some
guidance In the literature
* Keep in mind the bias-variance tradeoft when building an ML model

* Deep learning is an exciting frontier and powerful paradigm in
ML research

— We will hear more about 1t tomorrow!

Advertisements

A

* Tomorrow’s lecture on deep learning and
computer vision from Jon Shlens from Google
Brain!

* Data Science (@ HEP workshop on machine
learning in high energy physics
— May 8-12, 2017 at Fermilab

— https://indico.tnal.gov/conferenceDisplay.py?
ovw=True&contld=13497

Useful Python ML software

A

Anaconda / Conda — easy to setup python ML / scientific computing
environments

— https://www.continuum.io/downloads
— http://conda.pydata.org/docs/get-started.html

Integrating ROOT / PyROOT into conda

— https://nlesc.gitbooks.io/cern-root-conda-recipes/content/index.html
— https://conda.anaconda.org/NLeSC

Converting ROOT trees to python numpy arrays / panda dataframes
— https://pypi.python.org/pypi/root numpy/
— https://github.com/ibab/root_pandas

Scikit-learn — general ML library
— http://scikit-learn.org/stable/

Deep learning frameworks / auto-difterentiation packages
— https://www.tensorflow.org/
— http://deeplearning.net/software/theano/

High level deep learning package build on top of Theano / Tensorflow
— https://keras.io/

References

* http://scikit-learn.org/

* [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
* [ESLT Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani & Friedman 2009

* [Murray]| Introduction to machine learning, Murray

— http://videolectures.net/bootcamp2010 murray iml/

* [Ravikumar] What is Machine Learning, Ravikumar and Stone
— http://www.cs.utexas.edu/sites/default/files/legacy files/research/documents/MILSS-
Intro.pdf
* [Parkes] CS181, Parkes and Rush, Harvard University

— http://cs181.fas.harvard.edu

* [[Ng7] CS229, Ng, Stanford University
— http://cs229.stanford.edu/

* [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
— https://indico.cern.ch/event/497368/

Example

10

* Classitying hand written digits

— 10-class classification

— Right plot shows projection of 10-class output onto 2

dimensions
FJ eS8/ 79 beal
675785 b34%s
2790/ 33¥6
L7l 90 /[¢ 8 9 Y
T4l ¥é4d /1560
1759265 %\ 99
A22ddBd34%4§gO0O
03 073857
Ol ¢l bg2yg?d
7/728n04q80/

PCA (16% Variance Expained)

“-OOND DN EWN -

=]

Error Analysis

* Anti-spam classifier using logistic regression.

* How much did each component of the system help?

* Remove each component one at a time to see how 1t

breaks

Component Accuracy
Overall system 99.9%
Spelling correction 99.0
Sender host features 98.9%
Email header features 98.9%
Email text parser features 95%
Javascript parser 94.5%
Features from images 94.0%

Removing text parser
— caused largest drop
in performance

[baseline]

Ensemble Methods 10

* Combine many decision trees, use the ensemble for prediction
1 Ntree
* Averaging: D(x)=—— E d.(x)
tree i=l
— Random Forest, averaging combined with:

* Bagging: Only use a subset of events for each tree training
* Feature subsets: Only use a subset of features for each tree

N,

* Boosting (weighted voting): D(x)= Ereeaidi(x)
i=1
— Weight computed such that events in
current tree have higher weight misclassified in previous trees

— Several boosting algorithms
e AdaBoost

* Gradient Boosting
* XGBoost

Non-Linear Activations 10

 The activation tfunction in the NN must be a non-linear function
— It all the activations were linear, the network would be linear:

fX)=W (W,_ (... W, X))=UX, whereU=II W,

* Linear functions can only correctly classity linearly separable datal!

* For complex datasets, need nonlinearities to properly learn data
structure

Linear Classifier Non-linear Classifier

Neural Networks and Local Minima

* Large NN’s difficult to train...trapping in local minimum?

* Not in large neural networks hups//arzivorg/abs/1412.0233
— Most local minima equivalent, and resonable
— Global minima may represent overtraining

— Most bad (high error) critical points are saddle points (different than
small NN’s)

Weight Initializations and Training Procedures 10

* Used to set weights to some small
initial value

— Creates an almost linear classifier

* Now initialize such that node outputs
are normally distributed

X, —>
* Pre-training with auto-encoder % —>
— Network reproduces the inputs % —>

— Hidden layer 1s a non-linear AN hyy ()

dimensionality reduction
— Learn important features ot the input

X —>

Xs —>

— Not as common anymore, except 1n
certain clrcumstances. ..

Layer L, Layer L3

* Adversarial training, invented 2014
— Will potential HEP applications later

RelLU Networks

Output

Hidden layer 2

Hidden layer 1

Input
http://www.imlr.org/proceedings/papers/v15/glorotlla/glorotlla.pdf
* Sparse propagation of activations and gradients in a network of rectifier
units. The input selects a subset of active neurons and computation is

linear in this subset.

* Model is “linear-by-parts”, and can thus be seen as an exponential
number of linear models that share parameters

* Non-linearity in model comes from path selection

Convolutions 1n 2D 10

Stridg =1

D=4 Shared weights!!!
0O00000O0ooond =
| | Y M R R R OdO00O00000boooddt
| | Y M M R R OO0O00dtoboboodot
OO ooOoOoooondn L=W=5 O0O00oddodOodt
| | o | (| Y R R R OO000oO00Ooocooood
| | | Y R A R OdO00O0000dboooddt
OdO0O00dbobooodtn OdO000000b0ooddt
OJO0O0ddobooodOd OdO0O00ddbooodot
OO00odoodnoondn O0O000Oddoododt
Ooooddobooodot OO0 odot
OdO0O0ddbooododOn OdO0O00ddboooddt
N) OdO00O00000boooddt
N O P 1 OdO0O00ddbooodot

- — L O0O000000000000C
Input image Convolved image

* Scan the filters over the 2D image, producing the
convolved 1mages

Max Pooling 11

8 oo

]
11]
1 11 1 1
‘11111
.-.-.-.- Max Pooling
Layer N Layer N+1

* Down-sample the input by taking MAX or

average over a region of Inputs

— Keep only the most useful information

Daya Bay

Daya Bay Neutrino Experiment 1

arXiv:1601.07621

N O U s WN K= O

0
1
2
3
4
5
6
7

* Aim to reconstruct inverse P-decay interactions from
scintillation light recorded in 8x24 PMT’s

* Study discrimination power using CNN’s

— Supervised learning — observed excellent performance (97%
accuracy)

— Unsupervised learning: ML learns itselt what 1s interesting!

2D distant preserving representation of

10D encoding of events

<—— Reconstructed inputs

AN

q

Nonlinear decoing layers
(using deconvolutions)

|
|
|
|
|
10DencodingTT TT : > O
I
|
|
|

50}

=50+

)

Nonlinear encoding layers }

(using convolutions)
-100}

(KRR EEE N R K

—— Inputs (8x24) S

100

Jet-Images

Jet tagging using jet substructure

* Typical approach:
Use physics inspired variables to

provide signal / background

discrimination

* Typical physics inspired variables
exploit differences in:
* Jet mass

* N-prong structure:

o 1-prong (OCD)
o 2-prong (W,Z,H)

O 38-prong (top)
* Radiation pattern:

Soft gluon emission
o Color tlow

Boosted W Jet, R = 0.6

W-jet

N

\

\

= @
] <

| - . h
! 1
v : L] I
\ /
\] ’
\ ’
N ’
\ ,
~ .

~ -

-0.2

Normalised Entries

0 02 04 06 08 1
n

Boosted QCD Jet, R=0.6

5.6 /,’////”'déjﬁ\jet]

54t /)
.]
1 LI)
5.2 ! - E=
L |

\ - .
e}
5r Y =

4.8

4.6

-12 -1 -08 -06 -04 -02
n

016 LI L I L L B L

| ATLAS Simulation

0.1 41\‘s=8 TeV

: mTruth|<1.2
[200<p. " < e
0.12[-200<p"" <350 GeV
[anti-k, R=1.0 jets
0.1 }Trimmed (f_=5%R_,=02)

0.08- QCD jet

0.06[7 /
0.04/f ¥]

0.02,

-« W jet .

|II\|II\|II\|JI\|III
%% W-ets (in W— WZ)

VR Multijets (leading jet) 7

— Gaussian fit to signal

- - - 1o Fit Window i
e =059 edp = 0.07 —

-------- 68% Window i
cp=0.65¢ei,,=0.1

Jet mass

._\ 1 I‘l 1 11 \- 1 % |:7\1":’-_T‘f§"F
0 20 40 60 80

) TR N
100120 140160180200

arXiv:1510.05821 M [GeV]

Jet tagging using jet substructure 1

* Typical approach:
Use physics inspired variables to
provide signal / background

discrimination

* Typical physics inspired variables
exploit differences in:
* Jet mass

* N-prong structure:
o 1-prong (QCD)
o 2-prong (W,Z,H)

O 38-prong (top)
* Radiation pattern:

o Soft gluon emission
o Color tlow

' = \ . .
! O
\ . |]) 5r
\ , ‘\ | .
\ N / N
\ , N .
AN 4 4.8 N
’, N
N , N
N p N
S . N

5 .
Boosted W Jet, R = 0.6 Boosted QCD Jet, R =0.6
5.8
Wiet 5.6 / QCD jet]
\\ 54 ,// - - L} \\\

. n

)]
- | v _s2 :' . .]5_

. k | -

4.6

0 oz 04 08 o8 1 12 -1 08 -06 -04 -02
n

65 GeV < mj <95 GeV

0.08 ‘
. . - W jets
007 N-subjettiness |—aqcpjets}
g 006 Thaler &
C .
£ 0.05¢ Van Tilburg
(&)
8 0.04}
(0]
=
5 0.03}
i
0.02}
0.01}
O L | i |
0 02 04 .06 0.8 1

172/17] of jet

1 .
TN - d_ E pT,k mln{ARk,axis—l (AR ARk,axis—n }
0

Pre-processing and space-time symmetries A

Pythia 8, /s =13 TeV

240 < pT/GeV <260 GeV, 65 <mass/GeV <95

Pre-processing steps

>

may not be Lorentz £ % m2 = Y EE,(1-cos(6)))

. o oy — No pixelation

InVal’lant _"5 — Only pixelation
&') 0.25 - - Pix+Translate (naive) (x0.75)
‘_é‘ - Pix+Translate

* Translations in 1 are S 02 "~ PoeTranslatesFlp

e Pix+Translate+m/2 Rotation
Lorentz bOOStS along Z-dXI18 —Pix+TransIate+pi norm (x170)
0.15

— Do not preserve the pixel
. P P Naive
energies ,
Translation

Image

normalization

— Use py rather than E as pixel 0.1
Intensity

0.05

e Jet mass 1s not invariant =T
under Image normalization 60 70 80 90 100 110

Restricted phase space 1

2-prong Tyq 1-prong 79 <m < 81 GeV
< > 0.19 <1,,<0.21

o
W jetS Pythia 8, W'—> WZ, Vs =13 TeV Pythla 8, W' WZ, {5 =13 TeV
s 10° s s 10° s s 10° s 3
508 1S S04 108 S 08 S c B
<0 g = o4 g = o 03 o o
g - £ - £ & O —— mass
04 04 04 =
E 10 E 107 »E 107 = -
502 102 502 102 502 10 | | T
5 0 10° 5 o 10° 5 9 10° o 21
2 g [
|E—o.z 10* 5,0_2 104 Eroz 10¢ c 1 5 |
10° 10° 10 > AR
04 . 04 . 0.4 o - A
10° 10° 10
05, 0.4 0.4 =
. 2 7 —— MaxOut
03, 100 0| 100 0 100 S
Bl 10° Bl 10° -1 10° S B
1"08706-04-02 0 0204 0608 1 “08706-04-02 0 02 0.4 0608 1 0570.6-04-02 0 02 04 0608 1
[Translated] Pseudorapidity () [Translated] Pseudorapidity (n) [Translated] Pseudorapidity (1) 2] o — Convnet
~
—or Random
- .
QCD]etS r Pythla s QCD dl]ets (13 Tev Pythia 8, QCD dijets, Vs =13 TeV =
200 < JGeV <200 GeV,039< 1, <01, 79 <massGeV <1
> we s we s s N
- © - ﬂ) - ©
S o8f 0o 3 08 ._I 10° S 308 10° 9
z o2 < 1 10 8 < 0 o
= 5 = | | = = i
508 5 5 06f 5 5 3 08 5
Eos T 2 04 ta 2 04 e
E - 10" E - 10" »‘% - 10"
$9%F 102 SO 102 502 10
g F " £ E a T 3
s 0 10 5 o 10 5 10
S 02k 104 5 0.2 10* 5 02 10%
£-0. : R I. : £, :
-0.4F '05 0.4 ‘Ds -0.4] ‘05
10° 10° 10°
08 -06f -0
107 107 "y 107
08 100 08 100 0 100 -
i o i o § o
Ly os 0405003 04 beoE T 10 105060402 0 02040608 1 1° 108060402 0 0204 0608 1 1° L L L l L L L l L L L
[Translated] Pseudorapidity (1) [Translated] Pseudorapidity (1) [Translated] Pseudorapidity (1) 2 04 0.6 0.8

[0.19, 0.21] [0.39, 0.41] [0.59, 0.61] Signal Efficiency

Restrict the phase space in very small mass and t,, bins:
Improvement in discrimination from new, unique, information learned by the

network

Deep correlation jet images

11

Pythia 8, W'— WZ, Vs =13 TeV

240< p_[/(leV <260 GeV,0.19 < 7, <0.21,79 <mass/GeV <81

Pythia 8, W'— WZ, Vs =13 TeV

240 < pT/GeV <260 GeV,0.39 < T, <0.41,79 <mass/GeV <81

s 10° s 2z 10° s
S 0.8F 19 208 1?8
c = = =
< o e < 10 &
< 0.6 an = 0.6 T
£ F & £ 18
2 0.4F & g 04 .
g “F 3 10
= 02F =02 102
2 F 2 4
% o % 0 10
8 0of E 10°
E-0.2 :— E-0.2 .
0.4F 0.4 10
r 10°
0.6 -0.6
E 107
0.8 :— -0.8 10°®
1L 10° -1 10°
-1 -08-06-04-02 0 02 04 06 08 1 -1 -08-06-04-02 0 02 04 06 08 1
[Translated] Pseudorapidity (n) [Translated] Pseudorapidity (n)
0.19 <t,,<0.21 0.39 <1,,< 041
z € s
~ L (o) ~ L
Ko} 0.6 © 2
o 1 = o 1
j = [} C L
<< L 8 < L
£ L 0.4 s £ [
=] 2 =]
E 051 § E 051
N r © N r
< [02 2 < [
T 8 =T r
[0} L Q L
8 o o 5§ ® o
g g 8
= L o [L
E T 0.2 E T ||
-0.5 -0.5
i 04 i B
1= -1—
i 0.6 L -
(] L l L L 11 ‘ L I - J_L 11 1 ‘ 11 L L l 11 O l 11 11 ‘ I L 111 L ‘ L 11 L l L L
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

[Translated] Pseudorapidity (1)

[Translated] Pseudorapidity (n)

Pearson Correlation Coefficient

[Translated] Azimuthal Angle (¢)

Pythia 8, W'— WZ, Vs =13 TeV

240 < pT/GeV <260 GeV,0.59 < 7, <0.61,79 <mass/GeV <81

S & & o o o o o
o OO Hh N O N A O @

1

[Translated] Azimuthal Angle (¢)

10°
102 O,
10 2

"1 -08-06-04-02 0 0.2 0.4 0.6 0.8 1

—_

0.5

-0.5

'
=y

eV]

Pixel

[Translated] Pseudorapidity (n)

0.59 <t,,< 0.61

Lo v b v v b v v b v 1y

-1 -0.5 0 0.5
[Translated] Pseudorapidity ()

.

Spatial information indicative of radiation pattern for W and QCD: where in
the image the network is looking for discriminating features

Pearson Correlation Coefficient

