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Lecture Topics /

* Recap of last time
— What 1s Machine Learning
— Linear Regression

— Logistic Regression

— Over fitting and Regularization

— Training procedures and cross validation
— Gradient descent

e This Lecture

— Neural Networks — Just an intro, more on this tomorrow!
— Decision Trees and Ensemble Methods

— Unsupervised Learning
* Dimensionality reduction
* Clustering

— No Free Lunch and Practical Advice



Neural Networks




Reminder of Logistic Regression

* Input output pairs {x, y;}, with

— Y €10,1§
* Linear decision boundary h(x;w) =w!x
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Reminder of Logistic Regression

* Input output pairs {x, y;}, with

- x, ER™
— Y €10,1§

* Linear decision boundary

* Distance from decision boundary  p(y = 1|x)
1s converted to class probability
using logistic sigmoid function

Logistic Sigmoid

—

T1x)

p(y=

=

h(x;w) =w' X

= o(h(x,w))
B 1
1 4+ e—W'x

= Fitted decision boundary

0@¢ Predicted probability
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Logistic Regression




Adding non-linearity /

* What it we want a non-linear decision boundary?



Adding non-linearity /

* What it we want a non-linear decision boundary?
— Choose basis functions, e.g:  ¢(x) ~ {x? sin(x), log(x), ...}

1

py = 1|x) =

1+ e_WT¢(X)




Adding non-linearity /

* What it we want a non-linear decision boundary?
— Choose basis functions, e.g:  ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)
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e What if we don’t know what basis functions we want?



Adding non-linearity A

* What it we want a non-linear decision boundary?
— Choose basis functions, e.g:  ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)

ply = 1|x) =
e What if we don’t know what basis functions we want?

* Learn the basis functions directly from data
d(x;u)  Rm— R4

— Where u 1s a set of parameters for the transtormation



Adding non-linearity

S

* What it we want a non-linear decision boundary?
— Choose basis functions, e.g:  ¢(x) ~ {x? sin(x), log(x), ...}

1
1+ e_WT¢(X)

ply = 1|x) =
* What if we don’t know what basis functions we want?
* Learn the basis functions directly from data
d(x;u)  Rm— R4
— Where u 1s a set of parameters for the transtformation

— Combines basis selection and learning
— Several different approaches, focus here on neural networks
— Complicates the optimization



Neural Networks

* Define the basis functions j = {1...d}

Oi(x; u) = O'(uJ-TX)



Neural Networks

* Define the basis functions j = {1...d}

¢;(x; u) = o(u;'x)

e Put all u; & RX™ yectors into matrix U

o(x; U) = o(Ux) = [owXn| & Rd

o(u™)

— O 1s a pointwise sigmold acting on each vector element

A



Neural Networks

S

* Define the basis functions j = {1...d}

0i(x; u) = o(u, 'x)

e Put all u; & RX™ yectors into matrix U

o(u,'x)
o(x; U) = o(Ux) = |ow™| & Rd

o(u™)

— O 1s a pointwise sigmold acting on each vector element

 Full model becomes

h(x; w, U) = wl¢(x; U)



Feed Forward Neural Network A

— Hidden layer

Composed of neurons

¢(...) often called the
activation function




Multi-layer Neural Network

* Multilayer NN

— Each layer adapts basis based on previous layer



Universal approximation theorem /

* Feed-forward neural network with a single hidden
layer containing a finite number of neurons can
approximate continuous functions arbitrarily well on
a compact space of R”

— Only mild assumptions on non-linear activation function
needed. Sigmoid functions work, as do others



Universal approximation theorem A

* Feed-forward neural network with a single hidden
layer containing a finite number of neurons can
approximate continuous functions arbitrarily well on
a compact space of R”

— Only mild assumptions on non-linear activation function
needed. Sigmoid functions work, as do others

* But no information on how many neurons needed, or
how much data!



Universal approximation theorem A

* Feed-forward neural network with a single hidden
layer containing a finite number of neurons can
approximate continuous functions arbitrarily well on
a compact space of R”

— Only mild assumptions on non-linear activation function
needed. Sigmoid functions work, as do others

* But no information on how many neurons needed, or
how much data!

* How to find the parameters, given a dataset, to
perform this approximation?



Neural Network Optimization Problem A

* Neural Network Model:  h(x) = w! o(Ux)

* Classification: Cross-entropy loss function

pi = p(yi = 1]x;) = o(h(x;))

L(w,U) = — Zy In(p;) + (1 — y;) In(1 — p;)



Neural Network Optimization Problem /
* Neural Network Model:  h(x) = w! o(Ux)

* Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — y;) In(1 — p;)

* Regression: Square error loss function

L(w,U) = o 3" (i — h(x,))?

1



Neural Network Optimization Problem A
* Neural Network Model:  h(x) = w! o(Ux)

* Classification: Cross-entropy loss function

pi = p(y; = 1|x;) = o(h(x;))
L(w,U) = — Zy In(p;) + (1 — y;) In(1 — p;)

* Regression: Square error loss function

L(w,U) = o 3" (i — h(x,))?

1

* Minimize loss with respect to weights w, U



Gradient Descent

/e

* Minimize loss by repeated gradient steps

— Compute gradient w.r.t. parameters:

— Update parameters: W' < w — 7
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Gradient Descent

* Minimize loss by repeated gradient steps

— Compute gradient w.r.t. parameters: OL(w)
ow
, OL(w)
— Update parameters: w' <~ w — 7 T

* Now we need gradients w.r.t. wand U
* Gradients will depend on loss and network architecture

* Loss function 1s non-convex
(many local minimum / saddle points)

— Gradient descent may not find
global minimum

— Can be a major issue!

— Variants of stachastic gradient descent

can be helptul!




Chain Rule

— Zyi In(o(h(x;))) + (1 —y;) In(1 — o(h(x;)))

* Derivative of sigmoid: 6255) = o(z)(1 — o(x))

* Chain rule to compute gradient wr.t. w

ngv - gi gv}:r Zy@ (1 =0 (h(x4)))o(Ux) + (1 = y;)o(h(x))o(Ux;)

* Chain rule to compute gradient w.r.t. u;
OL _ OLOh do
811]' N Oh Oo (911j N

= w1 — o (hx))wjo(wyax) (1 — o (wja))x;

+ (1 = gi)o(h(x))wjo (uxi) (1 — o(u;x;))x;




Backpropagation A

* Loss function composed ot layers of nonlinearity

L(¢"(...¢" (x)))




Backpropagation A

* Loss function composed ot layers of nonlinearity
L(¢"(...¢" (x)))
* Forward step (f-prop)

— Compute and save intermediate computations

(-0 (%))



Backpropagation A

* Loss function composed ot layers of nonlinearity
L(¢"(...¢" (x)))
* Forward step (f-prop)

— Compute and save intermediate computations
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* Backward step (b-prop) OL :Z j OL




Backpropagation A

* Loss function composed ot layers of nonlinearity
L(¢"(...¢" (x)))
* Forward step (f-prop)

— Compute and save intermediate computations

(-0 (%))

* Backward step (b-prop) OL :Z j OL

. OL
* Compute parameter gradients 3ya Z Owe D




\ Training A

* Repeat gradient update of weights reduce loss
— Each iteration through dataset 1s called an epoch

* Use validation set to examine for overtraining, and
determine when to stop training

O Training ‘O Validation
0.5
0.4 underfitting overfitting
0.3
0.2
0.1
0.0

number of epochs

[graphic from H. Larochelle]



Regularization A

* L2 regularization: add Q(w) = | |w] |® to loss
— Also called “weight decay”

— Gaussian prior on weights, keep weights from getting too
large and saturating activation function

* Regularization inside network, example: Dropout
— Randomly remove nodes during training
— Avoid co-adaptation of nodes
— Essentially a large model averaging procedure

a) Standard Neural Net (b) After applying dropout. arXiv:1207.0580



Activation Functions /

ReLU(z)
1/(14e")
tanh(x)

-3 -2 -1 0 1 2 3

* Vanishing gradient problem * Rectified Linear Unit (ReLU)

— Derivative of sigmoid: — ReLU(x) = max {0, x}
90 (x — Derivative 1s constant!
Y s@-ow)
ox oReLU(x) | 1 whenx>0
— Nearly 0 when x 1s far from 0! dx 0 otherwise

— Gradient descent difficult! — ReLU gradient doesn’t vanish



Neural Network Decision Boundaries .
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Deep Neural Networks A

hidden layer 1 hidden layer 2 hidden layer 3
)

et . ~A

input layver

- 25 < output layer

a
P

—/

* As data complexity grows, need exponentially large number of neurons in
a single-hidden-layer network to capture all the structure in the data

* Deep neural networks have many hidden layers
— Factorize the learning of structure in the data across many layers

* Ditticult to train, only recently possible with large datasets, tast computing
(GPU) and new training procedures / network structures (hke dropout)
— More next time



Neural Network Architectures

A mostly complete chart of

* Structure of the networks, ows Neural Networks .........

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org .
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Neural Networks in HEP

36

Jets at the LHC

ATLAS

EXPERIMENT

Run Number: 2. ent Number: 17:

Date: T

3D schematic of
NOVA particle detector

Neutrino

from
Fermilab

Neutrino identification
Example: NOVA

View from the top Particle 1

Interaction
Point

Particle 2
Neutrino

from
Fermilab

Particle 3

PVC cell filled with
liquid scintillator

View from the side Particle 2

\}

Particle 1

Interaction
Point

Neutrino
from
Fermilab

1 meter

Particle 3



What do neural networks learn?

/s

* Find inputs that

most activate a
neuron:

— Separating boosted

W-jets from quark/
gluon jets

e | A2 I

L R L

e SN
Plane

Image Y-view === \Weights of First layer

99.33% signal

99.33% signal

Can visualize weights: neutrino decay classification

arXiv:1604.01444

=)  Qutput of convolution

https://arxiv.org/abs/1511.05190
99.00% sigqal 99.33% sigqal 99.33% sigqal

99.34% signal

.hlll

FUMEONE

()]

1.608% signal




Decision Tree Models

/e




Decision Trees

A

no

A
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* Partition data based on a sequence ot thresholds

* In a given partition, estimate the class probability from N _ examples

in partition m and N, of the examples in partition from class £:
N,
Nm

Pmk —



Single Decision Trees: Pros and Cons A

* Pros:
— Simple to understand, can visualize a tree

— Requires little data preparation, and can use continuous
and categorical inputs

— Can create complex models that overfit data
— Can be unstable to small variations in data

— Training a tree 1s an NP-complete problem
* Hard to find a global optimum of all data partitionings

* Have to use heuristics like greedy optimization where locally
optimal decisions are made

* We will discuss the ways to overcome these Cons,
including early stopping of training, and ensembles



Greedy Training of a Decision Tree A

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting



Greedy Training of a Decision Tree A

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting

* Given N _ examples in a node, for a candidate

splitting 0=(x; , t,) for teature x; and threshold t,,



Greedy Training of a Decision Tree A

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting

* Given N _ examples in a node, for a candidate

splitting b= (%, t,,) tor feature x; and threshold t,,

* If data partitioned into subsets Q,,, and Q
compute:

G(Q.0) = S H(Quen(0)) + 22 H Qg (6)

right

— Where H() 1s an impurity function



Greedy Training of a Decision Tree A

* Greedy Training: instead of optimizing all
splittings at the same time, optimize them one-by-
one, then move onto next splitting

* Given N _ examples in a node, for a candidate

splitting b= (%, t,,) tor feature x; and threshold t,,

* If data partitioned into subsets Q,,, and Q
compute:

G(Q.0) = S H(Quen(0)) + 22 H Qg (6)

right

— Where H() 1s an impurity function

* Choose splitting 0 using: 0" = arg m@in G(Q,0)



Impurity Functions A

e (lassification

: : Ny
— Proportion of class k£ 1n node m:  pmr = 57—

— GiInt: H(Xm) = ZPmk(l — Pmk)
k
— Cross entropy: H(Xm) == pmk 10g(Pmk)
k
— Miss-classification: H(X,,)=1- mkaX(pmk)
* Regression .
— Continuous target y, In region estimate:  ¢m = N Yi
€N
— Square error: H(X,,) = L D> (g —cm)?



When to stop splitting? A

* In principle, can keep splitting until every event 1s
properly classified...



When to stop splitting? %

* In principle, can keep splitting until every event 1s
properly classitied...

Variable 2

[Rogozhnikov]

Variable 1

* Single decision trees can quickly overfit

* Especially when increasing the depth of the tree



When to stop splitting? A

* In principle, can keep splitting until every event 1s
properly classified...

* Can stop splitting early. Many criteria:
— Fixed tree depth
— Information gain 1s not enough
— Fix minimum samples needed in node

— Fix minimum number ot samples needed to split node

— Combinations of these rules work as well



Mitigating Overfitting

-0.5 00 05 10

no pre-stopping

00 05 10 15

min # of samples in leaf

-1.0

05 10

max_depth

-05 00 05 10 15

maximal number of leaves

[Rogozhnikov]



Ensemble Methods A

e Can we reduce the variance of' a model without
increasing the bias?



Ensemble Methods A

e Can we reduce the variance ot a model without
increasing the bias?

* Yes! By training several slightly different models
and taking majority vote (classification) or
average (regression) prediction

— Bias does not largely increase because the average
ensemble performance 1s equal to the average of 1its
members

— Variance decreases because a spurious pattern picked

up by one model may not be picked up by other



Ensemble Methods A

Individual Models Average Model

Green = true function

0 1 0 1 [Bishop]

* Combining several weak learners (only small correlation
with target value) with high variance can be extremely

powertul

e (Can be used with decision trees to overcome their
problems of overtitting!



Bagging and Boosting A

* Bootstrap Aggregating (Bagging):
— Sample dataset D with replacement N-times, and train a
separate model on each derived training set

— Classify example with majority vote, or compute average
output from each tree as model output Ny

* Boosting:
— Train N models in sequence, giving more weight to
examples not correctly classified by previous models

— Take weighted vote to classity examples N
h _ Zizl ol (X)
(X) - Nt'rees .
— Boosting algorithms include: 2= o

AdaBoost, Gradient boost, XGBoost



Random Forest A

* One of the most commonly used algorithms in
industry 1s the Random Forest

— Use bagging to select random example subset

— Train a tree, but only use random subset of tfeatures
(\/m features) at each split. This increases the variance



Ensembles of Trees

e Tree Ensembles
tend to work well

— Relatively simple

e Bates Lt
PR P b

— Relatively easy to
train

— Tend not to overfit  data
(especially random
forests)

— Work with difterent
feature types:
continuous,
categorical, etc.

50 trees 2000 trees

Random Forest [Rogozhnikov]



CMS h—yy (8 TeV) — Boosted decision tree

56
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Decision Tree Ensembles in HEP

57

* Decision tree ensembles,
especlally with boosting, are
used very widely in HEP!
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Unsupervised Learning

* Learning without targets/labels,
find structure 1in data



Dimensionality Reduction

* Find a low dimensional (less complex)

representation of the data with a mapping
Z=h(X)



Principle Components Analysis A

* Given data {x.}._, ycan we find a directions In
features space that explain most variation ot data?
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* Given data {x.}._, ycan we find a directions In
features space that explain most variation ot data?

N
: 1
* Data covariance: S = N ;(Xz — 5_()2



Principle Components Analysis

S

* Given data {x.}._, ycan we find a directions In
features space that explain most variation of data?

N
: 1
* Data covariance: S = N ;(Xz — 5_()2

Let u, be the projected direction, we can solve:

Variance of projected data Unit length vector constraint

A A

| | |

u} = argmax ul Su; + )\(1 —uluy)
uj

— Su; = \uy



Principle Components Analysis A

* Given data {x.}._, ycan we find a directions In
features space that explain most variation of data?

N
: 1
* Data covariance: S = N ;(Xz — 5_()2

* Let u, be the projected direction, we can solve:

Variance of projected data Unit length vector constraint

A A

[ | \

u; = arg max uj 1Su; + )\(1 — u{ul)
uj

— Su; = \uy

* Princtple components are the eigenvectors ot the data
covariance matrix!
— Eigenvalues are the variance explained by that component



PCA Example

[Ng]



PCA Example

A

First principle component, projects on to this axis have large variance

[Ng]



PCA Example

66

Second principle component, projects have small variance

[Ng]



Fisher Discriminant A

* Suppose our {X;, ¥i}i_; x 1S separated In two classes,
we want a projection to maximize the separation
between the two classes.



Fisher Discriminant A

* Suppose our {X;, ¥i}i_; x 1S separated In two classes,
we want a projection to maximize the separation
between the two classes.

— Want means (m,) of two classes (C,) to be as far apart as
possible — large belween-class variation

SB — (m2 — ml)T(mQ — ml)



Fisher Discriminant A

* Suppose our {X;, ¥i}i_; x 1S separated In two classes,
we want a projection to maximize the separation
between the two classes.

— Want means (m,) of two classes (C,) to be as far apart as
possible — large belween-class variation

SB — (m2 — ml)T(mQ — ml)

— Want each class tightly clustered, as little overlap as
possible — small within-class variation

SW: Z(Xz'—ml) X; — 1M1 —I—Z —m2 Xi—mg)

1e(Cq 1€Cy



Fisher Discriminant A

* Suppose our {X;, ¥i}i_; x 1S separated In two classes,
we want a projection to maximize the separation
between the two classes.

— Want means (m,) of two classes (C,) to be as far apart as
possible — large belween-class variation

SB — (m2 — ml)T(mQ — ml)

— Want each class tightly clustered, as little overlap as
possible — small within-class variation

SW: Z(Xz'—ml) X; — 1M1 —I—Z —m2 Xi—mg)

1e(Cq 1€Cy

e Maximize Fisher criteria

T
J(w) = W' Spw

W X Sy (ms — my)

~N

wiSyw




Fisher Discriminant
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Comparing Techniques
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Fisher Discriminant /

http://arxiv.org/abs/1407.5675
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Clustering A

* Partition the data into groups D={D, U D, ... UD,}

* What 1s a good clustering?

* One where examples within a cluster are more “similar” than to
examples in other clusters

* What does similar mean? Use distance metric, e.g.

d(x,x") = \/Z(x — )2




K-means /

* Data x, € R™ which you want placed in K clusters

* Assoclate each example to a cluster by minimizing
within-class variance



K-means A

* Data x, € R™ which you want placed in K clusters

* Assoclate each example to a cluster by minimizing
within-class variance

— Give each cluster S, a prototype w,& R™ where k=1...K



K-means /

* Data x, € R™ which you want placed in K clusters

* Assoclate each example to a cluster by minimizing
within-class variance

— Give each cluster S, a prototype w,& R™ where k=1...K

— Assign each example to a cluster S,



K-means A

* Data x, € R™ which you want placed in K clusters

* Assoclate each example to a cluster by minimizing
within-class variance

— Give each cluster S, a prototype w,& R™ where k=1...K
— Assign each example to a cluster S,

— Find prototypes and assignments to minimize

L(S, ) =) > V(xi— )

k=11€S5

* This 1s an NP-hard problem, with many local minimum!



KR-means algorithm

A

* Initialize the w, at random (typically using K-means++ 1nitialization)

* Repeat until convergence:

— Assign each example to closest prototype

1
— Update prototypes U = — E X
Nk

1E€SL

min
ke{l..K)}

\/(Xz’ — pg)?

[Bishop]



Hierarchical Agglomerative Clustering A

* Algorithm

— Start with each example x. as its own cluster

— Take pairwise distance between examples
— Merge closest pair into a new cluster
— Repeat until one cluster

* Doesn’t require choice of number ot clusters
* Clusters can have arbitrary shape

* Clusters have intrinsic heirarchy

* No random initialization

What distance metric to use?

— Here use Euclidean distance between cluster centroid
(average of examples in cluster)



Hierarchical Agglomerative Clustering A

C

[Parkes]



Hierarchical Agglomerative Clustering A
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[Parkes]



Hierarchical Agglomerative Clustering A

:

NN

[Parkes]



Hierarchical Agglomerative Clustering A

e
e

NN

[Parkes]



Hierarchical Agglomerative Clustering A




Hierarchical Agglomerative Clustering A




Jet Algorithms

Sequential pairwise jet clustering algorithms
are hierarchical clustering, and are ,,
a form of unsupervised learning £’

Compute distance between pseudojets iand j ..
D

A% = (Y — ;) + (ds — ¢5)°

Distance between pseudojet and beam | d;5 = £27

Find smallest distance between pseudojets dij or d.p

— Combine (sum 4-momentum) of two  sew i, e
pseudojets 1f d;; smallest

— It d.; 1s smallest, remove pseudojet i,
call it a jet

— Repeat until all pseudojets are jets




Practical Advice

A




What To Use? So Many Choices

* Once you know what you want to do...

WHAT algorithm should you use?

— Linear model

— Nearest Neighbors

— (Deep?) Neural network
— Decision tree ensemble
— Support vector machine
— Gaussian processes

— ... and so many more ...



No Free Lunch - Wolpert (1996) A

* In the absence of prior knowledge, there 1s no a priori
distinction between algorithms, no algorithm that will
work best for every supervised learning problem

— You can not say algorithm X will be better without knowing
about the system

— A model may work really well on one problem, and really
poorly on another

— This 1s why data scientists have to try lots of algorithms!

* But there are some empirical heuristics that have been
observed...



Practical Advice — Empirical Analysis A

* Test 179 classifiers (no deep neural networks) on 121 datasets
http://jmlr.csail. mit.edu/papers/volumel5/delgado14a/delgado14a.pdf

— The classifiers most likely to be the bests are the random forest (RF’) versions,
the best of which (...) achieves 94.1% of the maximum accuracy
overcoming 90% in the 84.3% of  the data sets

From Kaggle

* For Structured data: “High level” features that have meaning

— Winning algorithms have been lots of feature engineering + random
forests, or more recently XGBoost (also a decision tree based
algorithm)

* Unstructured data: “Low level” features, no individual meaning

— Winning algorithms have been deep learning based, Convolutional

NN for image classification, and Recurrent NN for text and speech




More general advice A

* You will likely need to try many algorithms...
— Start with something simplel!
— Use more complex algorithms as needed
— Use cross validation to check for overcomplexity / overtraining

Check the literature

— It you can cast your (HEP) problem as something in the ML /
data science domain, there may be guidance on how to proceed

* Hyperparameters can be hard to tune

— Use cross validation to compare models with different
hyperparameter values!

* Use a training / validation / testing split of your data

— Don’t use training or validation set to determine final
performance

— And use cross validation as well!



Debugging Learning Algorithms A

* Is my model working properly?
— Where do [ stand with respect to bias and variance?
— Has my training converged?
— Did I choose the right model / objective?

— Where 1s the error in my algorithm coming from?

Section derived from [Ng]



Typical learning curve for high variance A

Cross validation
Validation error and RMS

error

Desired performance

/ Training error

m (training set size)
* Performance is not reaching desired level
* Error still decreasing with training set size
— suggests to use more data in training

* Large gap between training and validtalon error
— Some gap is expected (inherint bias towards training set)

[Ng]

* Better: Large Cross-validation RMS, large performance variation in trainings



Typical learning curve for high bias A

Cross validation
Validation error and RMS

/ Training error

/ Desired performance

error

[Ng]

m (training set size)
* Training error 1s unacceptably high

* Small gap between training and validation error
* Cross validation RMS 1s small



Potential Fixes A

* Fixes to try:

— Get more training data Fixes high variance
— Try smaller feature set size Fixes high variance
— Try larger feature set size Fixes high bias
— Try difterent features Fixes high bias

* Did the training converge?

— Run gradient descent a few more iterations Iixes optimization algorithm
* or adjust learning rate

— Try different optimization algorithm Fixes optimization algorithm

* Is it the correct model / objective for the problem?
— Try different regularization parameter value Fixes optimization objective

— Try different model Fixes optimization objective

* You will often need to come up with your own diagnostics to

understand what is happening to your algorithm Nl



Conclusions A

* Machine learning uses mathematical and statistical models
learned from data to characterize patterns and relations between
inputs, and use this for inference / prediction

* Machine learning provides a powerful toolkit to analyze data
— Linear methods can help greatly in understanding data

— Complex models like NN and decision trees can model intricate patterns
* Care needed to train them and ensure they don’t overtit

— Unsupervised learning can provide powerful tools to understand data,
even when no labels are available

— Choosing a model for a given problem is difficult, but there may be some
guidance In the literature
* Keep in mind the bias-variance tradeoft when building an ML model

* Deep learning is an exciting frontier and powerful paradigm in
ML research

— We will hear more about 1t tomorrow!



Advertisements

A

* Tomorrow’s lecture on deep learning and
computer vision from Jon Shlens from Google
Brain!

* Data Science (@ HEP workshop on machine
learning in high energy physics
— May 8-12, 2017 at Fermilab

— https://indico.tnal.gov/conferenceDisplay.py?
ovw=True&contld=13497




Useful Python ML software

A

Anaconda / Conda — easy to setup python ML / scientific computing
environments

— https://www.continuum.io/downloads
— http://conda.pydata.org/docs/get-started.html

Integrating ROOT / PyROOT into conda

— https://nlesc.gitbooks.io/cern-root-conda-recipes/content/index.html
— https://conda.anaconda.org/NLeSC

Converting ROOT trees to python numpy arrays / panda dataframes
— https://pypi.python.org/pypi/root numpy/
— https://github.com/ibab/root_pandas

Scikit-learn — general ML library
— http://scikit-learn.org/stable/

Deep learning frameworks / auto-difterentiation packages
— https://www.tensorflow.org/
— http://deeplearning.net/software/theano/

High level deep learning package build on top of Theano / Tensorflow
— https://keras.io/
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Example

10

* Classitying hand written digits

— 10-class classification

— Right plot shows projection of 10-class output onto 2

dimensions
FJ eS8/ 79 beal
675785 b34%s
2790/ 33¥6
L7l 90 /[ ¢ 8 9 Y
T4l ¥é4d /1560
1759265 %\ 99
A22ddBd34%4§gO0O
03 073857
Ol ¢l bg2yg?d
7/728n04q80/

PCA (16% Variance Expained)

“-OOND DN EWN -

=]




Error Analysis

* Anti-spam classifier using logistic regression.

* How much did each component of the system help?

* Remove each component one at a time to see how 1t

breaks

Component Accuracy
Overall system 99.9%
Spelling correction 99.0
Sender host features 98.9%
Email header features 98.9%
Email text parser features 95%
Javascript parser 94.5%
Features from images 94.0%

Removing text parser
— caused largest drop
in performance

[baseline]



Ensemble Methods 10

* Combine many decision trees, use the ensemble for prediction
1 Ntree
* Averaging: D(x)=—— E d.(x)
tree i=l
— Random Forest, averaging combined with:

* Bagging: Only use a subset of events for each tree training
* Feature subsets: Only use a subset of features for each tree

N,

* Boosting (weighted voting): D(x)= Ereeaidi(x)
i=1
— Weight computed such that events in
current tree have higher weight misclassified in previous trees

— Several boosting algorithms
e AdaBoost

* Gradient Boosting
* XGBoost



Non-Linear Activations 10

 The activation tfunction in the NN must be a non-linear function
— It all the activations were linear, the network would be linear:

fX)=W (W,_ (... W, X))=UX,  whereU=II W,

* Linear functions can only correctly classity linearly separable datal!

* For complex datasets, need nonlinearities to properly learn data
structure

Linear Classifier Non-linear Classifier



Neural Networks and Local Minima

* Large NN’s difficult to train...trapping in local minimum?

* Not in large neural networks hups//arzivorg/abs/1412.0233
— Most local minima equivalent, and resonable
— Global minima may represent overtraining

— Most bad (high error) critical points are saddle points (different than
small NN’s)



Weight Initializations and Training Procedures 10

* Used to set weights to some small
initial value

— Creates an almost linear classifier

* Now initialize such that node outputs
are normally distributed

X, —>
* Pre-training with auto-encoder % —>
— Network reproduces the inputs % —>

— Hidden layer 1s a non-linear AN hyy ()

dimensionality reduction
— Learn important features ot the input

X —>

Xs —>

— Not as common anymore, except 1n
certain clrcumstances. ..

Layer L, Layer L3

* Adversarial training, invented 2014
— Will potential HEP applications later



RelLU Networks

Output

Hidden layer 2

Hidden layer 1

Input
http://www.imlr.org/proceedings/papers/v15/glorotlla/glorotlla.pdf
* Sparse propagation of activations and gradients in a network of rectifier
units. The input selects a subset of active neurons and computation is

linear in this subset.

* Model is “linear-by-parts”, and can thus be seen as an exponential
number of linear models that share parameters

* Non-linearity in model comes from path selection



Convolutions 1n 2D 10

Stridg =1

D=4 Shared weights!!!
0O00000O0ooond =
| | Y M R R R OdO00O00000boooddt
| | Y M M R R OO0O00dtoboboodot
OO ooOoOoooondn L=W=5 O0O00oddodOodt
| | o | (| Y R R R OO000oO00Ooocooood
| | | Y R A R OdO00O0000dboooddt
OdO0O00dbobooodtn OdO000000b0ooddt
OJO0O0ddobooodOd OdO0O00ddbooodot
OO00odoodnoondn O0O000Oddoododt
Ooooddobooodot OO0 odot
OdO0O0ddbooododOn OdO0O00ddboooddt
N ) OdO00O00000boooddt
N O P 1 OdO0O00ddbooodot

- — L O0O000000000000C
Input image Convolved image

* Scan the filters over the 2D image, producing the
convolved 1mages



Max Pooling 11

8 oo

]
11 ]
1 11 1 1
‘11111
.-.-.-.- Max Pooling
Layer N Layer N+1

* Down-sample the input by taking MAX or

average over a region of Inputs

— Keep only the most useful information



Daya Bay




Daya Bay Neutrino Experiment 1

arXiv:1601.07621

N O U s WN K= O

0
1
2
3
4
5
6
7

* Aim to reconstruct inverse P-decay interactions from
scintillation light recorded in 8x24 PMT’s

* Study discrimination power using CNN’s

— Supervised learning — observed excellent performance (97%
accuracy)

— Unsupervised learning: ML learns itselt what 1s interesting!

2D distant preserving representation of

10D encoding of events

<—— Reconstructed inputs

AN

q

Nonlinear decoing layers
(using deconvolutions)

|
|
|
|
|
10DencodingTT TT : > O
I
|
|
|

50}

=50+

)

Nonlinear encoding layers }

(using convolutions)
-100}
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—— Inputs (8x24) S
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Jet-Images




Jet tagging using jet substructure

* Typical approach:
Use physics inspired variables to

provide signal / background

discrimination

* Typical physics inspired variables
exploit differences in:
* Jet mass

* N-prong structure:

o 1-prong (OCD)
o 2-prong (W,Z,H)

O 38-prong (top)
* Radiation pattern:

Soft gluon emission
o Color tlow

Boosted W Jet, R = 0.6
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Jet tagging using jet substructure 1

* Typical approach:
Use physics inspired variables to
provide signal / background

discrimination

* Typical physics inspired variables
exploit differences in:
* Jet mass

* N-prong structure:
o 1-prong (QCD)
o 2-prong (W,Z,H)

O 38-prong (top)
* Radiation pattern:

o Soft gluon emission
o Color tlow
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Pre-processing and space-time symmetries A

Pythia 8, /s =13 TeV

240 < pT/GeV <260 GeV, 65 <mass/GeV <95

Pre-processing steps

>

may not be Lorentz £ % m2 = Y EE,(1-cos(6)))

. o oy — No pixelation

InVal’lant _"5 — Only pixelation
&') 0.25 - - Pix+Translate (naive) (x0.75)
‘_é‘ - Pix+Translate

* Translations in 1 are S 02 "~ PoeTranslatesFlp

e Pix+Translate+m/2 Rotation
Lorentz bOOStS along Z-dXI18 —Pix+TransIate+pi norm (x170)
0.15

— Do not preserve the pixel
. P P Naive
energies ,
Translation

Image

normalization

— Use py rather than E as pixel 0.1
Intensity

0.05

e Jet mass 1s not invariant =T
under Image normalization 60 70 80 90 100 110




Restricted phase space 1

2-prong Tyq 1-prong 79 <m < 81 GeV
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Restrict the phase space in very small mass and t,, bins:
Improvement in discrimination from new, unique, information learned by the

network



Deep correlation jet images

11

Pythia 8, W'— WZ, Vs =13 TeV
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the image the network is looking for discriminating features
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