Machine Learning: Lecture II

Michael Kagan

SLAC

CERN Academic Training Lectures April 26-28, 2017

Lecture Topics

- Recap of last time
	- What is Machine Learning
	- Linear Regression
	- Logistic Regression
	- Over fitting and Regularization
	- Training procedures and cross validation
	- Gradient descent

• This Lecture

- $-$ Neural Networks \rightarrow Just an intro, more on this tomorrow!
- Decision Trees and Ensemble Methods
- Unsupervised Learning
	- Dimensionality reduction
	- Clustering
- No Free Lunch and Practical Advice

Neural Networks and $\frac{1}{3}$

Reminder of Logistic Regression

- Input output pairs $\{x_i, y_i\}$, with $- \mathbf{x}_{i} \in \mathbb{R}^{\mathrm{m}}$
	- $y_i \in \{0,1\}$
- Linear decision boundary $h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$

4

[Bishop]

Reminder of Logistic Regression

- Input output pairs $\{x_i, y_i\}$, with $- \mathbf{x}_{i} \in \mathbb{R}^{\mathrm{m}}$
	- $y_i \in \{0,1\}$
- Linear decision boundary
- Distance from decision boundary is converted to class probability using logistic sigmoid function

$$
h(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}
$$

$$
p(y = 1|\mathbf{x}) = \sigma(h(\mathbf{x}, \mathbf{w}))
$$

$$
= \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}
$$

Logistic Regression $\frac{1}{6}$

$$
p(y = 1|\mathbf{x}) = \sigma(h(\mathbf{x}, \mathbf{w}))
$$

$$
= \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}
$$

• What if we want a non-linear decision boundary?

• What if we want a non-linear decision boundary? – Choose basis functions, e.g: $\phi(x) \sim \{x^2, \sin(x), \log(x), ...\}$

$$
p(y=1|\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}}
$$

• What if we want a non-linear decision boundary? – Choose basis functions, e.g: $\phi(x) \sim \{x^2, \sin(x), \log(x), ...\}$

$$
p(y=1|\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}}
$$

• What if we don't know what basis functions we want?

• What if we want a non-linear decision boundary? – Choose basis functions, e.g: $\phi(x) \sim \{x^2, \sin(x), \log(x), ...\}$

$$
p(y=1|\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}}
$$

- What if we don't know what basis functions we want?
- Learn the basis functions directly from data

 $\phi(\mathbf{x}; \mathbf{u}) \qquad \mathbb{R}^m \longrightarrow \mathbb{R}^d$

– Where **u** is a set of parameters for the transformation

• What if we want a non-linear decision boundary? – Choose basis functions, e.g: $\phi(x) \sim \{x^2, \sin(x), \log(x), ...\}$

$$
p(y=1|\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \phi(\mathbf{x})}}
$$

- What if we don't know what basis functions we want?
- Learn the basis functions directly from data

 $\phi(\mathbf{x}; \mathbf{u}) \qquad \mathbb{R}^m \longrightarrow \mathbb{R}^d$

- Where **u** is a set of parameters for the transformation
- Combines basis selection and learning
- Several different approaches, focus here on neural networks
- Complicates the optimization

Neural Networks

• Define the basis functions $j = \{1...d\}$

$$
\varphi_j(\mathbf{x};\,\mathbf{u})=\sigma(\mathbf{u}_j^{\mathrm{T}}\mathbf{x})
$$

Neural Networks

• Define the basis functions $j = \{1...d\}$

$$
\varphi_j(\mathbf{x};\,\mathbf{u}) = \sigma(\mathbf{u}_j^{\mathrm{T}}\mathbf{x})
$$

• Put all $\mathbf{u}_i \in \mathbb{R}^{1 \times m}$ vectors into matrix **U** $\phi(\mathbf{x}; \mathbf{U}) = \sigma(\mathbf{U}\mathbf{x}) = \begin{bmatrix} \sigma(\mathbf{u}_2^T\mathbf{x}) \end{bmatrix} \in \mathbb{R}^d$ $σ($ **u**₁ T **x** $)$ </sup> σ(**u2** ^T**x**) **…** $\sigma(\mathsf{u_d}^\mathsf{T}\mathsf{x})$

– σ is a pointwise sigmoid acting on each vector element

Neural Networks

• Define the basis functions $j = \{1...d\}$

$$
\varphi_j(\mathbf{x};\,\mathbf{u})=\sigma(\mathbf{u}_j^{\mathrm{T}}\mathbf{x})
$$

- Put all **u**^j ∈ R1xm vectors into matrix **U** $\phi(\mathbf{x}; \mathbf{U}) = \sigma(\mathbf{U}\mathbf{x}) = \begin{bmatrix} \sigma(\mathbf{u}_2^T\mathbf{x}) \end{bmatrix} \in \mathbb{R}^d$ $σ($ **u**₁ T **x** $)$ </sup> σ(**u2** ^T**x**) **…** $\sigma(\mathsf{u_d}^\mathsf{T}\mathsf{x})$
	- σ is a pointwise sigmoid acting on each vector element
- Full model becomes

$$
h(\mathbf{x}; \mathbf{w}, \mathbf{U}) = \mathbf{w}^T \phi(\mathbf{x}; \mathbf{U})
$$

Feed Forward Neural Network

 $\phi(\mathbf{x}) = \sigma(\mathbf{U}\mathbf{x})$ $h(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$

Multi-layer Neural Network

- Multilayer NN
	- Each layer adapts basis based on previous layer

Universal approximation theorem

- Feed-forward neural network with a single hidden layer containing a finite number of neurons can approximate continuous functions arbitrarily well on a compact space of \mathbb{R}^n
	- Only mild assumptions on non-linear activation function needed. Sigmoid functions work, as do others

Universal approximation theorem

- Feed-forward neural network with a single hidden layer containing a finite number of neurons can approximate continuous functions arbitrarily well on a compact space of \mathbb{R}^n
	- Only mild assumptions on non-linear activation function needed. Sigmoid functions work, as do others
- But no information on how many neurons needed, or how much data!

Universal approximation theorem

- Feed-forward neural network with a single hidden layer containing a finite number of neurons can approximate continuous functions arbitrarily well on a compact space of \mathbb{R}^n
	- Only mild assumptions on non-linear activation function needed. Sigmoid functions work, as do others
- But no information on how many neurons needed, or how much data!
- How to find the parameters, given a dataset, to perform this approximation?

Neural Network Optimization Problem

- Neural Network Model: $h(\mathbf{x}) = \mathbf{w}^T \sigma(\mathbf{U}\mathbf{x})$
- **Classification**: Cross-entropy loss function $p_i = p(y_i = 1|\mathbf{x}_i) = \sigma(h(\mathbf{x}_i))$

$$
L(\mathbf{w}, \mathbf{U}) = -\sum_{i} y_i \ln(p_i) + (1 - y_i) \ln(1 - p_i)
$$

Neural Network Optimization Problem

- Neural Network Model: $h(\mathbf{x}) = \mathbf{w}^T \sigma(\mathbf{U}\mathbf{x})$
- **Classification**: Cross-entropy loss function $p_i = p(y_i = 1 | \mathbf{x}_i) = \sigma(h(\mathbf{x}_i))$

$$
L(\mathbf{w}, \mathbf{U}) = -\sum_{i} y_i \ln(p_i) + (1 - y_i) \ln(1 - p_i)
$$

• **Regression**: Square error loss function

$$
L(\mathbf{w}, \mathbf{U}) = \frac{1}{2} \sum_i (y_i - h(\mathbf{x}_i))^2
$$

Neural Network Optimization Problem

- Neural Network Model: $h(\mathbf{x}) = \mathbf{w}^T \sigma(\mathbf{U}\mathbf{x})$
- **Classification**: Cross-entropy loss function $p_i = p(y_i = 1 | \mathbf{x}_i) = \sigma(h(\mathbf{x}_i))$

$$
L(\mathbf{w}, \mathbf{U}) = -\sum_{i} y_i \ln(p_i) + (1 - y_i) \ln(1 - p_i)
$$

• **Regression**: Square error loss function

$$
L(\mathbf{w}, \mathbf{U}) = \frac{1}{2} \sum_i (y_i - h(\mathbf{x}_i))^2
$$

• Minimize loss with respect to weights **w**, **U**

Gradient Descent

- Minimize loss by repeated gradient steps
	- Compute gradient w.r.t. parameters: $L(\mathbf{w})$ $\partial\mathbf{w}$

\n- – Compute gradient w.r.t. parameters:
$$
\frac{\partial L}{\partial \mathbf{w}}
$$
\n- – Update parameters: $\mathbf{w}' \leftarrow \mathbf{w} - \eta \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$
\n

Gradient Descent

- Minimize loss by repeated gradient steps
	- Compute gradient w.r.t. parameters: $\partial L(\mathbf{w})$ $\partial {\bf w}$
	- Update parameters: $\mathbf{w}' \leftarrow \mathbf{w} \eta$ $\partial L(\mathbf{w})$ $\partial\mathbf{w}$
- Now we need gradients w.r.t. **w** and **U**
- Gradients will depend on loss and network architecture
- Loss function is non-convex (many local minimum / saddle points)
	- Gradient descent may not find global minimum
	- Can be a major issue!
	- Variants of stachastic gradient descent can be helpful!

Chain Rule

$$
L(\mathbf{w}, \mathbf{U}) = -\sum_{i} y_i \ln(\sigma(h(\mathbf{x}_i))) + (1 - y_i) \ln(1 - \sigma(h(\mathbf{x}_i)))
$$

- Derivative of sigmoid: $\partial\sigma(x)$ ∂x $= \sigma(x)(1 - \sigma(x))$
- Chain rule to compute gradient w.r.t. **w**

$$
\frac{\partial L}{\partial \mathbf{w}} = \frac{\partial L}{\partial h} \frac{\partial h}{\partial \mathbf{w}} = \sum_{i} y_i (1 - \sigma(h(\mathbf{x}_i))) \sigma(\mathbf{U}\mathbf{x}) + (1 - y_i) \sigma(h(\mathbf{x})) \sigma(\mathbf{U}\mathbf{x}_i)
$$

• Chain rule to compute gradient w.r.t. \mathbf{u}_i ∂L $\partial \mathbf{u}_j$ $=\frac{\partial L}{\partial l}$ ∂h ∂h $\partial \sigma$ $\partial \sigma$ $\partial \mathbf{u}_j$ = $=$ \sum *i* $y_i(1 - \sigma(h(\mathbf{x}_i)))w_j\sigma(\mathbf{u}_j\mathbf{x}_i)(1 - \sigma(\mathbf{u}_j\mathbf{x}_i))\mathbf{x}_i$ $+(1 - y_i)\sigma(h(\mathbf{x}_i))w_j\sigma(\mathbf{u}_j\mathbf{x}_i)(1 - \sigma(\mathbf{u}_j\mathbf{x}_i))\mathbf{x}_i$

• Loss function composed of layers of nonlinearity $L(\phi^a(...\phi^1(\mathbf{x})))$

- Loss function composed of layers of nonlinearity $L(\phi^a(...\phi^1(\mathbf{x})))$
- Forward step (f-prop)
	- Compute and save intermediate computations

$$
\phi^a(...\phi^1({\bf x}))
$$

- Loss function composed of layers of nonlinearity $L(\phi^a(...\phi^1(\mathbf{x})))$
- Forward step (f-prop)
	- Compute and save intermediate computations

$$
\phi^a(...\phi^1(\mathbf{x}))
$$

• Backward step (b-prop) $\frac{\partial L}{\partial x}$ $\partial \phi^a$ $=$ \sum *j* $\partial \phi_j^{(a+1)}$ $\partial \phi^{a}_j$ ∂L $\partial \phi_j^{(a+1)}$

- Loss function composed of layers of nonlinearity $L(\phi^a(...\phi^1(\mathbf{x})))$
- Forward step (f-prop)
	- Compute and save intermediate computations

$$
\phi^a(...\phi^1(\mathbf{x}))
$$

• Backward step (b-prop) $\frac{\partial L}{\partial x}$ $\partial \phi^a$ $=$ \sum *j* $\partial \phi_j^{(a+1)}$ $\partial \phi^{a}_j$ ∂L $\partial \phi_j^{(a+1)}$

• Compute parameter gradients

Training

- Repeat gradient update of weights reduce loss – Each iteration through dataset is called an epoch
- Use validation set to examine for overtraining, and determine when to stop training

[[]graphic from H. Larochelle]

Regularization

- L2 regularization: add $\Omega(\mathbf{w}) = ||\mathbf{w}||^2$ to loss – Also called "weight decay"
	- Gaussian prior on weights, keep weights from getting too large and saturating activation function
- Regularization inside network, example: **Dropout**
	- Randomly remove nodes during training
	- Avoid co-adaptation of nodes
	- Essentially a large model averaging procedure

(b) After applying dropout.

Activation Functions

• **Vanishing gradient problem**

– Derivative of sigmoid:

$$
\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))
$$

- Nearly 0 when x is far from 0!
- Gradient descent difficult!
- **Rectified Linear Unit (ReLU)**
	- $-$ ReLU(x) = max {0, x}
	- Derivative is constant!

 $\frac{\partial \text{Re}LU(x)}{\partial x} = \begin{cases} 1 \\ 0 \end{cases}$ *when* $x > 0$ *otherwise* \int {
ነ $\overline{}$ \lfloor

– ReLU gradient doesn't vanish

Neural Network Decision Boundaries $\frac{2}{33}$

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/ http://junma5.weebly.com/data-blog/build-your-own-neural-network-classifier-in-r

4-class classification 2-hidden layer NN **ReLU** activations L2 norm regularization

 X_1

Deep Neural Networks

- As data complexity grows, need exponentially large number of neurons in a single-hidden-layer network to capture all the structure in the data
- Deep neural networks have many hidden layers
	- Factorize the learning of structure in the data across many layers
- Difficult to train, only recently possible with large datasets, fast computing (GPU) and new training procedures / network structures (like dropout) \rightarrow More next time

Neural Network Architectures

- Structure of the networks, and the node connectivity can be adapted for problem at hand
- **Convolutions**: shared weights of neurons, but each neuron only takes subset of inputs

Neural Networks in HEP

3D schematic of NOvA particle detector **Neutrino** from
Fermilab \rightarrow \rightarrow Neutrino Neutrino from
Fermilab

View from the top Particle 1 Interaction
Point Particle 2 Particle 3 PVC cell filled with liquid scintillator View from the side Particle 2 Particle 1 Interaction
Point from
Fermilab 1 meter

Particle 3

Jets at the LHC **Neutrino** identification Example: NOvA
What do neural networks learn?

• Can visualize weights: neutrino decay classification

- Find inputs that most activate a neuron:
	- Separating boosted W-jets from quark/ gluon jets

99 33% signal

1 608% signal

1 264% signal

99.33% signal 99.33% signal 1 509% signal

https://arxiv.org/abs/1511.05190

2 249% signal

Decision Trees

- Partition data based on a sequence of thresholds
- In a given partition, estimate the class probability from N_m examples in partition *m* and N_k of the examples in partition from class *k*:

$$
p_{mk} = \frac{N_k}{N_m}
$$

Single Decision Trees: Pros and Cons

• Pros:

- Simple to understand, can visualize a tree
- Requires little data preparation, and can use continuous and categorical inputs

• Cons:

- Can create complex models that overfit data
- Can be unstable to small variations in data
- Training a tree is an NP-complete problem
	- Hard to find a global optimum of all data partitionings
	- Have to use heuristics like *greedy optimization* where locally optimal decisions are made
- We will discuss the ways to overcome these Cons, including early stopping of training, and ensembles

• **Greedy Training**: instead of optimizing all splittings at the same time, optimize them one-byone, then move onto next splitting

- **Greedy Training**: instead of optimizing all splittings at the same time, optimize them one-byone, then move onto next splitting
- Given N_m examples in a node, for a candidate splitting $\hat{\theta} = (x_j, t_m)$ for feature x_j and threshold t_m

- **Greedy Training**: instead of optimizing all splittings at the same time, optimize them one-byone, then move onto next splitting
- Given N_m examples in a node, for a candidate splitting $\hat{\theta} = (x_j, t_m)$ for feature x_j and threshold t_m
- If data partitioned into subsets Q*left* and Q*right* , compute:

$$
G(Q, \theta) = \frac{n_{\text{left}}}{N_m} H(Q_{\text{left}}(\theta)) + \frac{n_{\text{right}}}{N_m} H(Q_{\text{right}}(\theta))
$$

– Where *H()* is an impurity function

- **Greedy Training**: instead of optimizing all splittings at the same time, optimize them one-byone, then move onto next splitting
- Given N_m examples in a node, for a candidate splitting $\hat{\theta} = (x_j, t_m)$ for feature x_j and threshold t_m
- If data partitioned into subsets Q*left* and Q*right* , compute:

$$
G(Q, \theta) = \frac{n_{\text{left}}}{N_m} H(Q_{\text{left}}(\theta)) + \frac{n_{\text{right}}}{N_m} H(Q_{\text{right}}(\theta))
$$

- Where *H()* is an impurity function
- Choose splitting θ using: $\theta^* = \arg\min_{\theta} G(Q, \theta)$
- **Classification**
	- $-$ Proportion of class *k* in node *m*: $p_{mk} =$ *N^k N^m*
	- Gini: $H(X_m) = \sum p_{mk}(1 - p_{mk})$ *k*
	- Cross entropy: $H(X_m) =$ p_{mk} $\log(p_{mk})$
	- Miss-classification:

$$
H(X_m) = -\sum_k p_{mk} \log(p_{mk})
$$

$$
H(X_m) = 1 - \max_k(p_{mk})
$$

- **Regression**
	- Continuous target y, in region estimate:

$$
c_m = \frac{1}{N_m} \sum_{i \in N_m} y_i
$$

– Square error:

$$
H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} (y_i - c_m)^2
$$

When to stop splitting?

• In principle, can keep splitting until every event is properly classified…

When to stop splitting?

• In principle, can keep splitting until every event is properly classified…

[Rogozhnikov]

- Single decision trees can quickly overfit
- Especially when increasing the depth of the tree
- In principle, can keep splitting until every event is properly classified…
- Can stop splitting early. Many criteria:
	- Fixed tree depth
	- Information gain is not enough
	- Fix minimum samples needed in node
	- Fix minimum number of samples needed to split node
	- Combinations of these rules work as well

Mitigating Overfitting $\sqrt{49}$

 -1.0

 -0.5

[Rogozhnikov]

 $\overline{20}$

min $#$ of samples in leaf maximal number of leaves

 -1.0

 -0.5

 2.0

• Can we reduce the variance of a model without increasing the bias?

- Can we reduce the variance of a model without increasing the bias?
- Yes! By training several slightly different models and taking majority vote (classification) or average (regression) prediction
	- Bias does not largely increase because the average ensemble performance is equal to the average of its members
	- Variance decreases because a spurious pattern picked up by one model may not be picked up by other

Ensemble Methods

- Combining several weak learners (only small correlation with target value) with high variance can be extremely powerful
- Can be used with decision trees to overcome their problems of overfitting!

Bagging and Boosting

- **Bootstrap Aggregating (Bagging)**:
	- Sample dataset D with replacement N-times, and train a separate model on each derived training set
	- Classify example with majority vote, or compute average output from each tree as model output *N*

$$
h(\mathbf{x}) = \frac{1}{N_{trees}} \sum_{i=1}^{N_{trees}} h_i(\mathbf{x})
$$

 $\sum_{i=1}^{N_{trees}} \alpha_i h_i(\mathbf{x})$

 $\sum_{i=1}^{N_{trees}} \alpha_i$

 $h(\mathbf{x}) =$

• **Boosting**:

- Train N models in sequence, giving more weight to examples not correctly classified by previous models
- Take weighted vote to classify examples

– Boosting algorithms include: AdaBoost, Gradient boost, XGBoost

Random Forest

• One of the most commonly used algorithms in industry is the **Random Forest**

- Use bagging to select random example subset
- Train a tree, but only use random subset of features $(\sqrt{m} \text{ features})$ at each split. This increases the variance

Ensembles of Trees

- Tree Ensembles tend to work well
	- Relatively simple
	- Relatively easy to train
	- Tend not to overfit (especially random forests)
	- Work with different feature types: continuous, categorical, etc.

optimal boundary

50 trees

Random Forest **2000 trees**

CMS h→γγ **(8 TeV) – Boosted decision tree** ⁵⁶

Decision Tree Ensembles in HEP

• Decision tree ensembles, especially with boosting, are used very widely in HEP!

Generated decay mode

• Learning without targets/labels, find structure in data

• Find a low dimensional (less complex) representation of the data with a mapping $Z=h(X)$

• Given data $\{x_i\}_{i=1...N}$ can we find a directions in features space that explain most variation of data?

- Given data $\{x_i\}_{i=1...N}$ can we find a directions in features space that explain most variation of data?
- Data covariance: $s =$ 1 *N* \sum *N i*=1 $(\mathbf{x}_i - \bar{\mathbf{x}})^2$

- Given data $\{x_i\}_{i=1...N}$ can we find a directions in features space that explain most variation of data?
- Data covariance: $s =$ 1 *N* \sum *N i*=1 $(\mathbf{x}_i - \bar{\mathbf{x}})^2$
- Let **u**₁ be the projected direction, we can solve:

$$
\mathbf{u}_1^* = \arg\max_{\mathbf{u}_1} \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 + \lambda (1 - \mathbf{u}_1^T \mathbf{u}_1)
$$
\n
$$
\rightarrow \mathbf{S} \mathbf{u}_1 = \lambda \mathbf{u}_1
$$

- Given data $\{x_i\}_{i=1...N}$ can we find a directions in features space that explain most variation of data?
- Data covariance: $s =$ 1 *N* \sum *N i*=1 $(\mathbf{x}_i - \bar{\mathbf{x}})^2$
- Let **u**₁ be the projected direction, we can solve:

- *Principle components* are the eigenvectors of the data covariance matrix!
	- Eigenvalues are the variance explained by that component

PCA Example $\frac{1}{64}$

PCA Example $\frac{1}{65}$

First principle component, projects on to this axis have large variance

PCA Example $\frac{1}{66}$

Second principle component, projects have small variance

• Suppose our $\{x_i, y_i\}_{i=1...N}$ is separated in two classes, we want a projection to maximize the separation between the two classes.

- Suppose our $\{x_i, y_i\}_{i=1...N}$ is separated in two classes, we want a projection to maximize the separation between the two classes.
	- $-$ Want means (\mathbf{m}_i) of two classes (C_i) to be as far apart as possible → large *between-class* variation

$$
\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)^T (\mathbf{m}_2 - \mathbf{m}_1)
$$

- Suppose our $\{x_i, y_i\}_{i=1...N}$ is separated in two classes, we want a projection to maximize the separation between the two classes.
	- $-$ Want means (\mathbf{m}_i) of two classes (C_i) to be as far apart as possible → large *between-class* variation

$$
\mathbf{S}_B = (\mathbf{m}_2 - \mathbf{m}_1)^T (\mathbf{m}_2 - \mathbf{m}_1)
$$

– Want each class tightly clustered, as little overlap as possible → small *within-class* variation

$$
\mathbf{S}_W = \sum_{i \in C_1} (\mathbf{x}_i - \mathbf{m}_1)^T (\mathbf{x}_i - \mathbf{m}_1) + \sum_{i \in C_2} (\mathbf{x}_i - \mathbf{m}_2)^T (\mathbf{x}_i - \mathbf{m}_2)
$$

- Suppose our $\{x_i, y_i\}_{i=1...N}$ is separated in two classes, we want a projection to maximize the separation between the two classes.
	- $-$ Want means (\mathbf{m}_i) of two classes (C_i) to be as far apart as possible → large *between-class* variation ${\bf S}_B = ({\bf m}_2 - {\bf m}_1)^T ({\bf m}_2 - {\bf m}_1)$

– Want each class tightly clustered, as little overlap as possible → small *within-class* variation

$$
\mathbf{S}_W = \sum_{i \in C_1} (\mathbf{x}_i - \mathbf{m}_1)^T (\mathbf{x}_i - \mathbf{m}_1) + \sum_{i \in C_2} (\mathbf{x}_i - \mathbf{m}_2)^T (\mathbf{x}_i - \mathbf{m}_2)
$$

• Maximize Fisher criteria

$$
J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} \rightarrow \boxed{\mathbf{w} \propto \mathbf{S}_W (\mathbf{m}_2 - \mathbf{m}_1)}
$$

Fisher Discriminant $\frac{1}{11}$

Comparing Techniques $\frac{1}{2}$

Fisher Discriminant $\frac{1}{3}$

Clustering

- Partition the data into groups $D = \{D_1 \cup D_2 \dots \cup D_k\}$
- *What is a good clustering*?
	- One where examples within a cluster are more "similar" than to examples in other clusters
	- What does similar mean? Use distance metric, e.g.

$$
d(\mathbf{x}, \mathbf{x}') = \sqrt{\sum_{i} (x_i - x'_i)^2}
$$

- Data $\mathbf{x}_i \in \mathbb{R}^m$ which you want placed in K clusters
- Associate each example to a cluster by minimizing within-class variance
- Data $\mathbf{x}_i \in \mathbb{R}^m$ which you want placed in K clusters
- Associate each example to a cluster by minimizing within-class variance
	- Give each cluster S_k a prototype $\mu_k \in \mathbb{R}^m$ where $k=1...K$
- Data $\mathbf{x}_i \in \mathbb{R}^m$ which you want placed in K clusters
- Associate each example to a cluster by minimizing within-class variance
	- Give each cluster S_k a prototype $\mu_k \in \mathbb{R}^m$ where $k=1...K$
	- $-$ Assign each example to a cluster S_k
- Data $\mathbf{x}_i \in \mathbb{R}^m$ which you want placed in K clusters
- Associate each example to a cluster by minimizing within-class variance
	- Give each cluster S_k a prototype $\mu_k \in \mathbb{R}^m$ where $k=1...K$
	- $-$ Assign each example to a cluster S_k
	- Find prototypes and assignments to minimize

$$
L(S, \mu) = \sum_{k=1}^{K} \sum_{i \in S_k} \sqrt{(\mathbf{x}_i - \mu_k)^2}
$$

• This is an NP-hard problem, with many local minimum!

K-means algorithm

Initialize the μ_k at random (typically using K-means++ initialization)

min *k*2*{*1*...K}* $\sqrt{({\mathbf{x}}_i - \mu_k)^2}$

- **Repeat until convergence**:
	- Assign each example to closest prototype
	- $-$ Update prototypes $\mu_k =$ 1 n_k \sum x*i*

Hierarchical Agglomerative Clustering

• **Algorithm**

- Start with each example \mathbf{x}_i as its own cluster
- Take pairwise distance between examples
- Merge closest pair into a new cluster
- Repeat until one cluster
- Doesn't require choice of number of clusters
- Clusters can have arbitrary shape
- Clusters have intrinsic heirarchy
- No random initialization
- What distance metric to use?
	- Here use Euclidean distance between cluster centroid (average of examples in cluster)

Hierarchical Agglomerative Clustering $\frac{1}{81}$

[Parkes]

Hierarchical Agglomerative Clustering /82

[Parkes]

Hierarchical Agglomerative Clustering /83

Hierarchical Agglomerative Clustering $\frac{1}{84}$

Hierarchical Agglomerative Clustering /85

Hierarchical Agglomerative Clustering $\frac{1}{86}$

Jet Algorithms

- Sequential pairwise jet clustering algorithms are hierarchical clustering, and are a form of unsupervised learning
- Compute distance between pseudojets i and j

$$
d_{ij} = \min\left(k_{\mathrm{T}i}^{2p}, k_{\mathrm{T}j}^{2p}\right) \frac{\Delta_{ij}}{D}
$$

$$
\left[\frac{2p}{\mathrm{T}i}, k_{\mathrm{T}j}^{2p}\right] \left[\frac{\Delta_{ij}}{D}\right] \qquad \qquad \Delta_{ij}^{2} = (y_i - y_j)^2 + (\phi_i - \phi_j)^2
$$

• Distance between pseudojet and beam

$$
\boxed{d_{iB}=k_{\mathrm{T}i}^{2p}}
$$

- Find smallest distance between pseudojets d_{ij} or d_{iB}
	- Combine (sum 4-momentum) of two pseudojets if d_{ii} smallest
	- $-$ If d_{iB} is smallest, remove pseudojet i, call it a jet
	- Repeat until all pseudojets are jets

Practical Advice and Advice the set of the set

- Once you know what you want to do…
	- *WHAT* algorithm should you use?
	- Linear model
	- Nearest Neighbors
	- (Deep?) Neural network
	- Decision tree ensemble
	- Support vector machine
	- Gaussian processes
	- … and so many more …

No Free Lunch - Wolpert (1996)

- In the absence of prior knowledge, there is no a priori distinction between algorithms, no algorithm that will work best for every supervised learning problem
	- You can not say algorithm X will be better without knowing about the system
	- A model may work really well on one problem, and really poorly on another
	- This is why data scientists have to try lots of algorithms!
- But there are some empirical heuristics that have been observed…

Practical Advice – Empirical Analysis

- Test 179 classifiers (no deep neural networks) on 121 datasets http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf
	- *The classifiers most likely to be the bests are the random forest (RF) versions, the best of which (…) achieves 94.1% of the maximum accuracy overcoming 90% in the 84.3% of the data sets*

From Kaggle

- For Structured data: "High level" features that have meaning
	- Winning algorithms have been lots of feature engineering + random forests, or more recently XGBoost (also a decision tree based algorithm)
- Unstructured data: "Low level" features, no individual meaning
	- Winning algorithms have been deep learning based, Convolutional NN for image classification, and Recurrent NN for text and speech

More general advice

- You will likely need to try many algorithms...
	- Start with something simple!
	- Use more complex algorithms as needed
	- Use cross validation to check for overcomplexity / overtraining
- Check the literature
	- If you can cast your (HEP) problem as something in the ML / data science domain, there may be guidance on how to proceed
- Hyperparameters can be hard to tune
	- Use cross validation to compare models with different hyperparameter values!
- Use a training / validation / testing split of your data
	- Don't use training or validation set to determine final performance
	- And use cross validation as well!

Debugging Learning Algorithms

- Is my model working properly?
	- Where do I stand with respect to bias and variance?
	- Has my training converged?
	- Did I choose the right model / objective?
	- Where is the error in my algorithm coming from?

Typical learning curve for high variance

m (training set size)

- Performance is not reaching desired level
- Error still decreasing with training set size
	- suggests to use more data in training
- Large gap between training and validtaion error
	- Some gap is expected (inherint bias towards training set)
- Better: Large Cross-validation RMS, large performance variation in trainings

Typical learning curve for high bias

m (training set size)

- Training error is unacceptably high
- Small gap between training and validation error
- Cross validation RMS is small

Potential Fixes

- Fixes to try:
	- Get more training data Fixes high variance
	- Try smaller feature set size Fixes high variance
	- Try larger feature set size Fixes high bias
	- Try different features Fixes high bias

- Did the training converge?
	- Run gradient descent a few more iterations Fixes optimization algorithm
		- or adjust learning rate
	- Try different optimization algorithm Fixes optimization algorithm

- Is it the correct model / objective for the problem?
	- Try different regularization parameter value Fixes optimization objective
	- Try different model Fixes optimization objective
- You will often need to come up with your own diagnostics to understand what is happening to your algorithm

Conclusions

- Machine learning uses mathematical and statistical models learned from data to characterize patterns and relations between inputs, and use this for inference \int prediction
- Machine learning provides a powerful toolkit to analyze data
	- Linear methods can help greatly in understanding data
	- Complex models like NN and decision trees can model intricate patterns
		- Care needed to train them and ensure they don't overfit
	- Unsupervised learning can provide powerful tools to understand data, even when no labels are available
	- Choosing a model for a given problem is difficult, but there may be some guidance in the literature
		- Keep in mind the bias-variance tradeoff when building an ML model
- Deep learning is an exciting frontier and powerful paradigm in ML research
	- We will hear more about it tomorrow!

• Tomorrow's lecture on deep learning and computer vision from Jon Shlens from Google Brain!

- Data Science @ HEP workshop on machine learning in high energy physics
	- May 8-12, 2017 at Fermilab
	- https://indico.fnal.gov/conferenceDisplay.py? ovw=True&confId=13497

Useful Python ML software

- Anaconda / Conda \rightarrow easy to setup python ML / scientific computing environments
	- https://www.continuum.io/downloads
	- http://conda.pydata.org/docs/get-started.html
- Integrating ROOT / PyROOT into conda
	- https://nlesc.gitbooks.io/cern-root-conda-recipes/content/index.html
	- https://conda.anaconda.org/NLeSC
- Converting ROOT trees to python numpy arrays / panda dataframes
	- https://pypi.python.org/pypi/root_numpy/
	- https://github.com/ibab/root_pandas
- $Sch (i$ -learn \rightarrow general ML library
	- http://scikit-learn.org/stable/
- Deep learning frameworks / auto-differentiation packages
	- https://www.tensorflow.org/
	- http://deeplearning.net/software/theano/
- High level deep learning package build on top of Theano / Tensorflow
	- https://keras.io/

References

10 Ω

- http://scikit-learn.org/
- [Bishop] Pattern Recognition and Machine Learning, Bishop (2006)
- [ESL] Elements of Statistical Learning (2nd Ed.) Hastie, Tibshirani & Friedman 2009
- \lceil Murray \lceil Introduction to machine learning, Murray
	- http://videolectures.net/bootcamp2010_murray_iml/
- [Ravikumar] What is Machine Learning, Ravikumar and Stone
	- http://www.cs.utexas.edu/sites/default/files/legacy_files/research/documents/MLSS-Intro.pdf
- [Parkes] CS181, Parkes and Rush, Harvard University
	- http://cs181.fas.harvard.edu
- $\lceil N_g \rceil$ CS229, Ng, Stanford University
	- http://cs229.stanford.edu/
- [Rogozhnikov] Machine learning in high energy physics, Alex Rogozhnikov
	- https://indico.cern.ch/event/497368/

Example

- Classifying hand written digits
	- 10-class classification
	- Right plot shows projection of 10-class output onto 2 dimensions

10 2

Error Analysis

- Anti-spam classifier using logistic regression.
- How much did each component of the system help?
- Remove each component one at a time to see how it breaks

moving text parser used largest drop performance

10 3

seline]

Ensemble Methods

• Combine many decision trees, use the ensemble for prediction

10 4

- Averaging: $D(x) =$ 1 $N_{\rm\scriptscriptstyle tree}$ $d_i(x)$ *i*=1 *Ntree* ∑
	- **Random Forest**, averaging combined with:
		- **Bagging:** Only use a subset of events for each tree training
		- **Feature subsets**: Only use a subset of features for each tree
- Boosting (weighted voting): $D(x) = \sum \alpha_i d_i(x)$ *i*=1 *Ntree* ∑
	- Weight computed such that events in current tree have higher weight misclassified in previous trees
	- Several boosting algorithms
		- AdaBoost
		- Gradient Boosting
		- XGBoost

Non-Linear Activations

- The activation function in the NN must be a non-linear function – If all the activations were linear, the network would be linear: $f(X) = W_{n}(\mathbf{W}_{n-1}(\dots \mathbf{W}_{1} | X)) = \mathbf{U}X, \qquad \text{where } \mathbf{U} = \Pi_{i} \mathbf{W}_{i}$
- Linear functions can only correctly classify linearly separable data!
- For complex datasets, need nonlinearities to properly learn data structure

Neural Networks and Local Minima

- Large NN's difficult to train...trapping in local minimum?
- Not in large neural networks *https://arxiv.org/abs/1412.0233*
	- Most local minima equivalent, and resonable
	- Global minima may represent overtraining
	- Most bad (high error) critical points are saddle points (different than small NN's)

Weight Initializations and Training Procedures

- Used to set weights to some small initial value
	- Creates an almost linear classifier
- Now initialize such that node outputs are normally distributed
- Pre-training with auto-encoder
	- Network reproduces the inputs
	- Hidden layer is a non-linear dimensionality reduction
	- Learn important features of the input
	- Not as common anymore, except in certain circumstances…
- Adversarial training, invented 2014 – Will potential HEP applications later

10 7

ReLU Networks

http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf

- Sparse propagation of activations and gradients in a network of rectifier units. The input selects a subset of active neurons and computation is linear in this subset.
- Model is "linear-by-parts", and can thus be seen as an exponential number of linear models that share parameters
- Non-linearity in model comes from path selection
Convolutions in 2D

Input image Convolved image

• Scan the filters over the 2D image, producing the convolved images

Max Pooling

Layer_N

• Down-sample the input by taking MAX or average over a region of inputs – Keep only the most useful information

Daya Bay Neutrino Experiment

- Aim to reconstruct inverse β-decay interactions from scintillation light recorded in 8x24 PMT's
- Study discrimination power using CNN's
	- Supervised learning \rightarrow observed excellent performance (97% accuracy)

11 $\overline{2}$

arXiv:1601.07621

– Unsupervised learning: ML learns itself what is interesting!

Jet-Images

Jet tagging using jet substructure **12 a** $\frac{1}{2}$

Jet tagging using jet substructure −0.2 0 0.2 0.4 0.6 0.8 1 1 1.2 1.4 1.6 1.8 2 2.2 η φ−1.2 $\overline{\phi}$ | \overline{P} 4.6 4.8 5 5.2 5.4 5.6 5.8 Boosted QCD Jet, R = 0.6 φ−0.2 0 0.2 0.4 0.6 0.8 1 −1.2 −1 −0.8 −0.6 −0.4 −0.2 4.6 4.8 5 5.2 5.4 5.6 5.8 Boosted QCD Jet, R = 0.6 η φ $\begin{bmatrix} 1 & 0.00 \\ 0 & 0.00 \end{bmatrix}$ sequences in $\begin{bmatrix} 1 & 0 \\ 0 & 0.00 \end{bmatrix}$ $\begin{array}{c|c|c|c|c} \n\text{5-6} & \text{0.07} & \text{N-subjettiness} & \text{0.02} \\
\hline\n\end{array}$ invariant mass through multiple splittings. Right: Typical event displays for $\frac{1}{2}$ jets and (d) W jets and (d) QCD jets with invariant mass near m^W . The jets are clustered with the anti-k^T jet algorithm [31] $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ dashed the $\frac{1}{\sqrt{2}}$ of $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ an \mathbb{F}_q is \mathbb{F}_q or the particle energies in the cell \mathbb{F}_q in the cell \mathbb{V}_q and \mathbb{F}_q in the cell cells are colored according to how the exclusive k^T algorithm divides the cells into two candidate subjects. The open square indicates the total jet \mathbf{z}_1 is direction and the open circles indicate the two \mathbf{z}_2 \mathcal{L}_{max} is directions. The discrimination of the \mathcal{L}_{max} energy along the open circles compared to the open square \mathbb{R} , \mathbb{R} with the candidate all their radiation aligned with the candidate subject of $\mathbf{y}_\mathbf{z}$ therefore have N (or fewer) subjets. Jets with τ^N ≫ 0 have a large fraction of their energy **W** jet $\left| \begin{array}{c} 5.6 \\ 5.6 \end{array} \right|$ **QCD** jet ΔR 0 0.2 0.4 0.6 0.8 1 0 0.02 τ 1 of jet $\frac{1}{2}$ Figure 2: Distributions of (a) τ¹ and (b) τ² for boosted W and QCD jets. For these plots, we impose and invariant mass window of $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\Delta R = 4.8$ $\frac{1}{2\sqrt{1+\frac{1}{2}}}\int_{0}^{\frac{1}{2}} \frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac{1}{2}}\frac{1}{1+\frac$ 0.01 0.02 0.04 0.05 0.06 0.07 0.08 Relative occurence 65 GeV < mj < 95 GeV Thaler & • **Typical approach:** Use physics inspired variables to provide signal / background discrimination Typical physics inspired variables exploit differences in: • **Jet mass** • **N-prong structure**: o 1-prong (QCD) o 2-prong (W,Z,H) \circ 3-prong (top) $\mathscr{A}\!\!\mathbb{R}$ • **Radiation pattern:**

QCD jets with invariant mass near m^W . The jets are clustered with the anti-k^T jet algorithm [31] $\tau_{N} = -\frac{1}{2} \sum_{l} p_{\tau_{l}}$ min $\{\Delta K_{l}\}$ f_{α} is proportional to the particle energies in the particle energies in the particle energies in the cell. The cell

distributed away from the candidate subjet directions and therefore have at least N + 1

 $\frac{L_2}{1}$ or jet Γ expect to be Γ $\tau_N = \frac{1}{J} \sum p_{T,k} \min\{\Delta R_{k, axis-1}, ..., \Delta R_{k, axis-n}\}$

 π ₂/ π ₁ of jet

 $\sum p_{T,k}$ min{ $\Delta R_{k, axis-1}, ..., \Delta R_{k, axis-n}$ }

W jets QCD jets

 $\begin{array}{cccc} 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 \end{array}$

 γ

 $d^{\,}_{0}$

- o Soft gluon emission
- ϵ and ϵ and ϵ is typically composed of two distinct lobes of energy, a ϵ of energy, a ϵ and ϵ and ϵ and ϵ and ϵ and ϵ accurrence of ϵ and ϵ and ϵ and ϵ and ϵ and ϵ and ϵ $\sum_{i=1}^n a_i$ in the splitting splitting splitting splittings. Right: Typical event displays for b_i Color flow

Pre-processing and space-time symmetries

Pre-processing steps may not be Lorentz Invariant

- Translations in η are Lorentz boosts along z-axis
	- Do not preserve the pixel energies
	- Use p_T rather than E as pixel intensity
- Jet mass is not invariant under Image normalization

/GeV < 260 GeV, 65 < mass/GeV < 95 ^T 240 < p

11 6

Restricted phase space

Restrict the phase space in very small mass and τ_{21} **bins:**

Improvement in discrimination from new, unique, information learned by the network

Deep correlation jet images $\sqrt{\frac{11}{2}}$

Spatial information indicative of radiation pattern for W and QCD: where in the image the network is looking for discriminating features