

LASE surface: low SEY vs. surface resistance

O.B. Malyshev and R. Valizadeh,

ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK

31st March 2017

Existing e-cloud mitigation methods

Active means:

- Weak solenoid field (10-20 G) along the vacuum chamber
- Biased clearing electrodes
- Charged particle beam train parameters
 - Bunch charge and sizes
 - Distance between bunches

Advantages:

- Solenoids can be installed on existing facilities (if there is a space for them)
- Beam parameters have some flexibility Disadvantages:
- Requires:
 - Controllers
 - Power supplies
 - Cables
 - Vacuum compatible electric feedthroughs

Passive means:

- Low SEY material
- Low SEY coating
- Grooved surface
- LASE surfaces
- Special shape of vacuum chamber
 - An antechamber allows reducing PEY

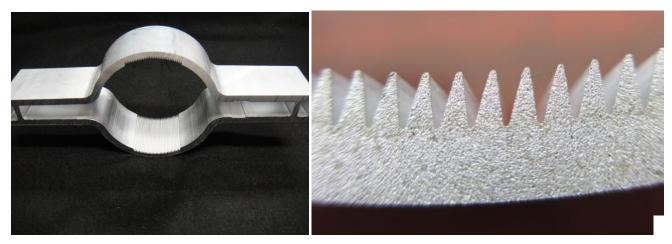
Advantages:

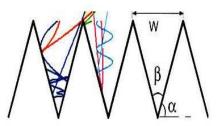
- No Controllers,
- No power supplies,
- No cables

Disadvantages:

- In-vacuum deposition
- Difficult to apply on existing facilities
- Durations of surface treatments
- Cost

All these methods work solving e-cloud problems in many accelerators. So the task is to choose one (or a few) which suit a machine the best.

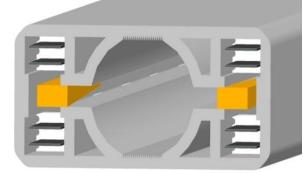

O.B. Malyshev FCC-hh impedance and beam screen workshop, CERN, 30-31 March 2017



Modifying the surface geometry

Woolfying the surface geometry

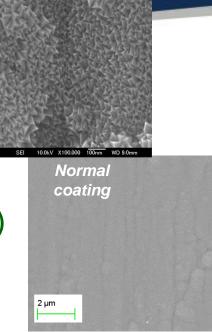
• making mechanical grooves



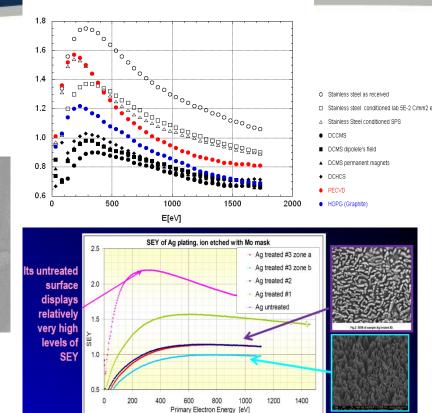
By A. Krasnov and By L Wang et.al

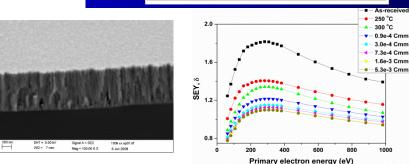
KEKB vacuum chamber (by courtesy of Y. Suetsugu)

- Modifying the vacuum chamber geometry
 - making an antechamber


ILC wiggler vacuum chamber

Coating with low SEY Materials




TiN coating (KEK)

• a-Carbon (CERN)

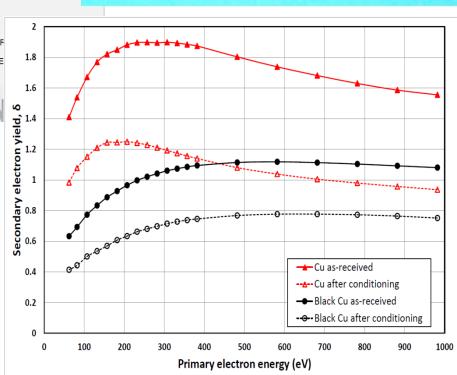
- Ag plating, ion etched with Mo Mask (I. Montero et.al, Proc. e-Cloud12)
- NEG coating (ASTeC)

It was well known that surface topography is often a key to low SEY
 Such surfaces look dark or black

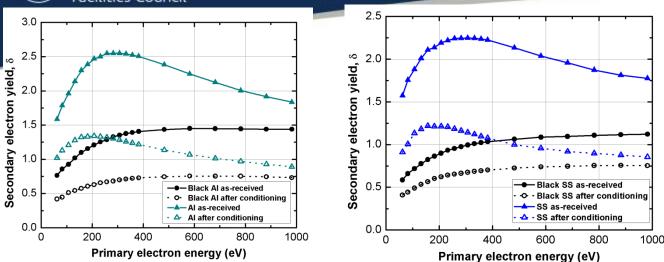
O.B. Malyshev

FCC-hh impedance and beam screen workshop, CERN, 30-31 March 2017

Discovery of LASE for SEY mitigation

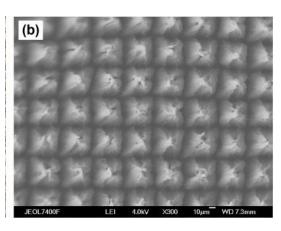

🛿 Mobile | Deutsch | Español | Français | 日本語 | 한국어 | Português | Русский | 中文 | البرية

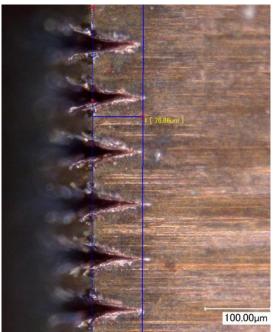
WIPO 💕		PATENTS	COPE					and E. Letter a.										
		Search Intern	ational and Nati	onal Patent Co	ollections							(8	-			(b)		
WORLD INTEL	LECTUAL PR	OPERTY ORG	NIZATION									"	4)			(6)		
Search B	rowse	Translate	Options	News	Login	Help					-	The second			Castalia		-	
lome > IP Services >	PATENTSCO	PE									E A							
1. (WO201518	89645) APPAF	RATUS AND MET				translation	DAND/OR S	ECONDARY	ELECTRON									
PCT Biblio. Data																		
Latest bibliographi	c data on file v	vith the Internation	al Bureau						PermaL	ink 📾								
Pub. No.: Publication Date:	WO/2015/189 17.12.2015		onal Applicatior															
IPC:	B23K 26	5/36 (2014.01), B 2	23K 26/00 (2014	.01) 😰							EX-	Part and			-			
Applicants:		THE SCIENCE AND TECHNOLOGY FACILITIES COUNCIL [GB/GB]; Daresbury Laboratory Sci-Tech Daresbury, Daresbur Warrington WA4 4AD (GB)							Daresbury			(a) Un	treated	d Cu	(b)	laser t	reate	d Cu
Inventors:		EH, Reza; (GB). EV, Oleg; (GB)																
Agent:		ITED; 4th Floor, M		ge 17-19 Whit	worth Street W	est Manchester	M1 5WG (G	B)	۰ L									
Priority Data:		.6 13.06.2014							4 F									
Title	YIEĹD	PARATUS AND MI							1.8		A A		****					
	(FR) APF RENDEN	AREIL ET PROCI	EDES ASSOCIE CTION D'ÉLEC	S A UN REND TRONS SECO	EMENT DE PR NDAIRES RÉE	RODUCTION DE DUITS	E PHOTOEL	ECTRONS E	1.0		×			-				
Abstract:	(SEY) of	ethod of reducing at least part of an	apparatus, the r	nethod compri	sing the steps	of providing an			1.6	/								
	produce	s, and ablating ma an array of period EY of the metal su	ic structures in t					N	ю р [°] 1.4									
	and/or Si								ield									


 Nanostructuring of Material Surfaces by Laser Ablation is well established science and manufacturing

 \supset

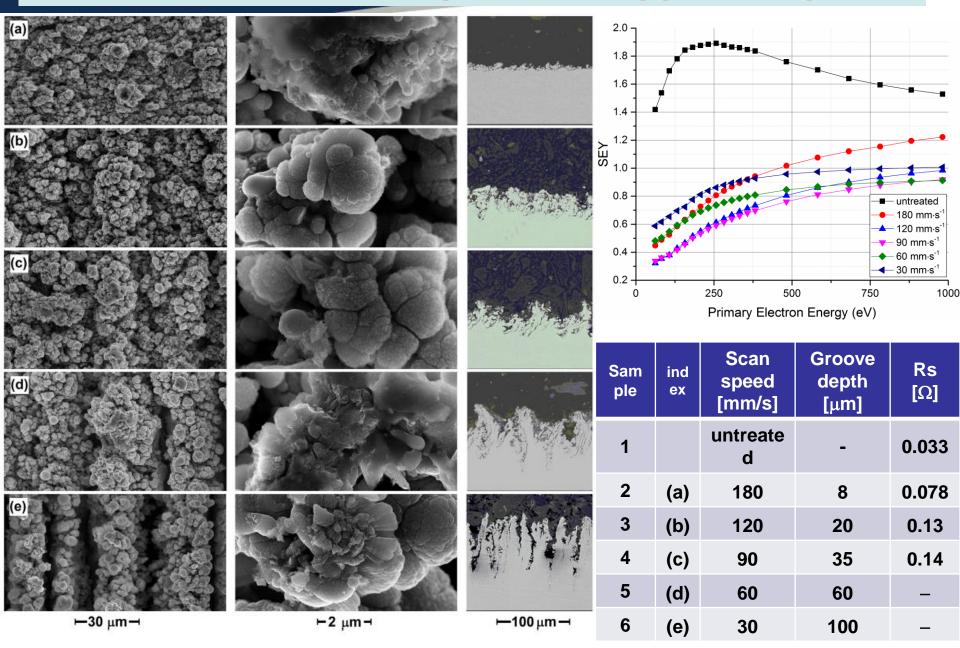
 The new is applying these surfaces to suppress PEY/SEY and to solve the e-cloud problem

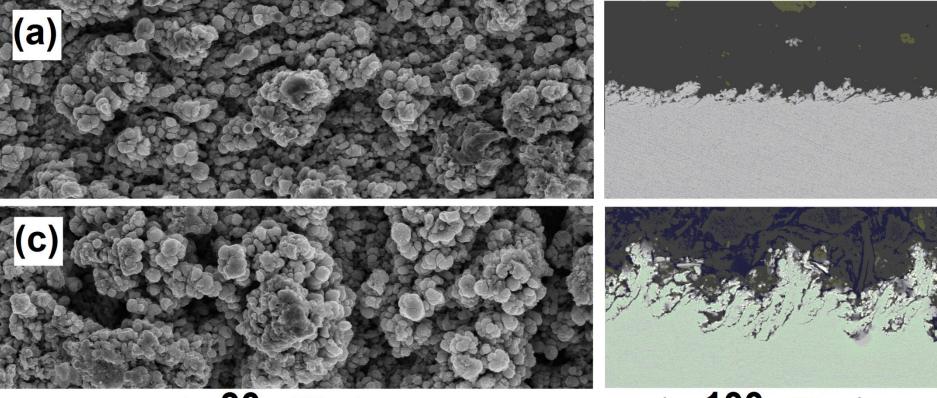



Low SEY studies: First results

Scieno Faciliti

- R. Valizadeh, O.B. Malyshev, S. Wang, S.A. Zolotovskaya, W.A. Gillespie and A. Abdolvand. Low secondary electron yield engineered surface for electron cloud mitigation. Appl. Phys. Lett. 105, 231605 (2014); doi: 10.1063/1.4902993
- <u>Main result</u>: SEY < 1 can be achieved on Cu, AI and stainless steel
- <u>Main question we had to ourselves</u> (and which was asked by other colleagues):
 - How 100-µm deep groves affect surface impedance




Recent low SEY studies

- Emphasis on physics:
 - How and why SEY is reduced on LASE surfaces
 - To further reduce SEY
 - To reduce impedance
 - To reduce particulate generation
- R. Valizadeh, O.B. Malyshev, S. Wang, T. Sian, L. Gurran, P. Goudket, M.D. Cropper, N. Sykes. Low secondary electron yield of laser treated surfaces of copper, aluminium and stainless steel. In Proc. of IPAC'16, 8-13 May 2016, Busan, Korea (2016), p. 1089.
- R.Valizadeh, O.B.Malyshev, S.Wang, T.Sian, M.D.Cropper, N.Sykes. *Reduction of Secondary Electron Yield for E-cloud Mitigation by Laser Ablation Surface Engineering*. Applied Surface Science 404 (2017) 370-379. <u>http://dx.doi.org/10.1016/j.apsusc.2017.02.013</u>

A role of laser scan speed on copper samples

Surface in more details

−−30 μm−

—100 µ**m —**

Treatment of copper using a λ = 355 nm laser resulted in creation of three different scales structures as presented:

- microstructure grooves ranging from 8 to 100 µm deep,
- coral-like submicron particles superimposed on the grooves which is made of agglomeration of
- nano-spheres

Science & Technology

O.B. Malyshev FCC-hh impedance and beam screen workshop, CERN, 30-31 March 2017

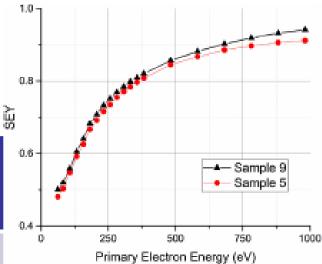
Science & Technology Facilities Council

Calculated and measured R_s at frequency f=7.8 GHz

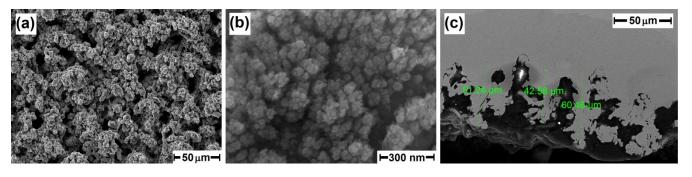
Sample	index	Scan speed [mm/s]	Groove depth for LASE (Roughness for untreated metals) [μm]	Rs [Ω] measured with a 7.8-GHz cavity	Rs [Ω] calc with formula		
1		untreated	0.4	0.028	0.029		
2	(a)	180	8	0.078	0.045		
3	(b)	120	20	0.13	0 0 46		
4	(c)	90	35	0.14	0.46		
5	(d)	60	60	-	0.046		
6	(e)	30	100	-	0.046		
AI		untreated	0.4	0.034	0.034		
Nb		untreated	1.0	0.071	0.080		
SS		untreated	1.4	0.17	0.16		

Hammerstad and Bekkadal formula:

$$R_{s} = \sqrt{\frac{\mu\omega}{2\sigma}} \left(1 + \frac{2}{\pi} \arctan\left(0.7\,\mu\omega\sigma R_{Q}^{2}\right) \right);$$

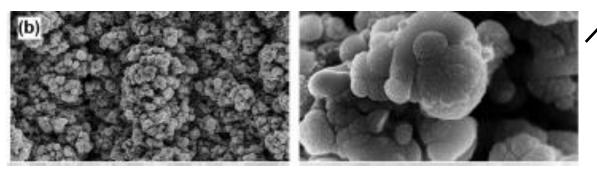


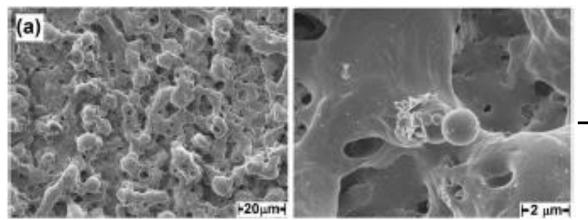
Science & Technology


A role of laser wavelength

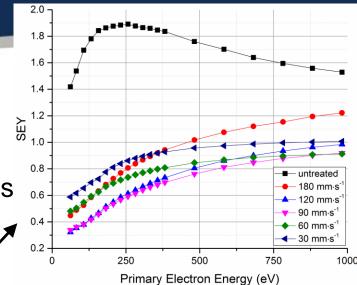
• Similar surfaces with similar SEY can be obtained with different laser wavelength after optimising the laser parameters:

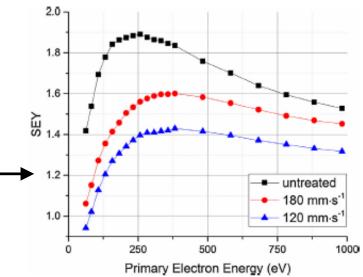
Sample	λ (nm)	Av. power (W)	Spot size (μm)	Pulse duratio n (ns)	f (kHz)	Pitch width (μm)	Scan speed (mm/s)	Energy per pulse (μJ)	Fluenc e (J/cm²)
5	355	3	15	25	40	10	60	75	42
9	1064	3.6	25	70	10	20	30	360	73


Similar surfaces with similar results for SEY can be can be produce using various lasers with different wavelength, such as λ =355 nm and λ =1064 nm.

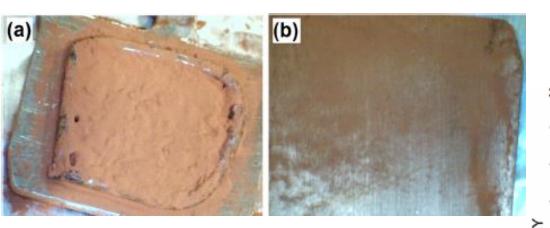

O.B. Malyshev FCC-hh impedance and beam screen workshop, CERN, 30-31 March 2017

A role of submicron and nanostructures


Sample 2 (180 mm/s). The topography of the surface consists of submicron structures and nanospheres superimposed on 8 µm deep grooves


Sample 2* after second laser treatment which removes submicron and nanostructures

O.B. Malyshev FCC-hh impedance and beam screen workshop, CERN1230-31h Marchin 2017 energy of Samples 2* and 3* th 2 lase



Removal of submicron and nanostructures lead to SEY increase

A role of micro and nanostructures

Samples 10 and 11 were covered with 5- μ m copper powder. No groves.

copper powder to ~1.

SEY reduced by

Primary Electron Energy (eV)

500

750

Fig. 13. SEY as function of primary electron energy of copper substrate (Sample 1) and copper powder with different thickness (Samples 10 and 11).

250

1000

- It was demonstrated that not only microstructure (groves) but the nano-structures as well are playing a role in reducing SEY. It was found that the most efficient nano-structure for SEY reduction is submicron and nano-spheres, which allows to keep SEY<1 even at much reduced groove depth.
- It was also demonstrated that these surfaces can be produce using various lasers with different wavelength, such as λ =355 nm and λ =1064 nm, with optimised laser parameters such as pulse length, repetition rate, power, fluence, beam size, scan speed and distance between scanned lines.
- There is a clear evidence that SEY < 1 can be obtained with LASE with very reduced surface resistance

How do we measure the surface resistance

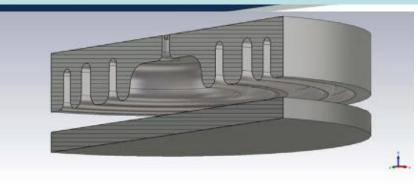
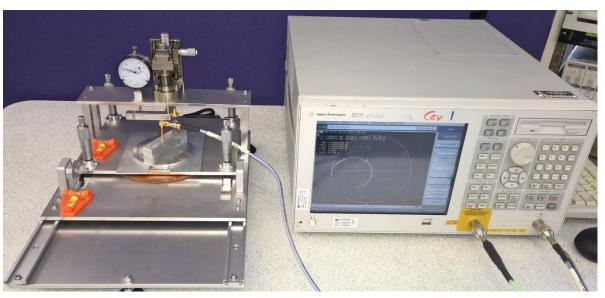



Fig. 1. A schematic of the triple choke RF cavity above a sample.

 $R_S^{sam} = \frac{G Q_0^{-1} - R_S^{cav} p_c}{p_s}$

- The surface resistance of the sample R_S^{sam} can be calculated for known
 - test cavity surface resistances R_S^{cav} and
 - measured Q_0 ,
- The magnetic field distribution in the cavity was calculated using CST Microwave Studio.

For our cavity, $G = 235 \Omega$, for a case using perfect electric conductor (PEC) boundary conditions, the field ratios are $p_c = 0.625$ and $p_s = 0.375$.

f = 7.8 GHz

Calculation of surface resistance

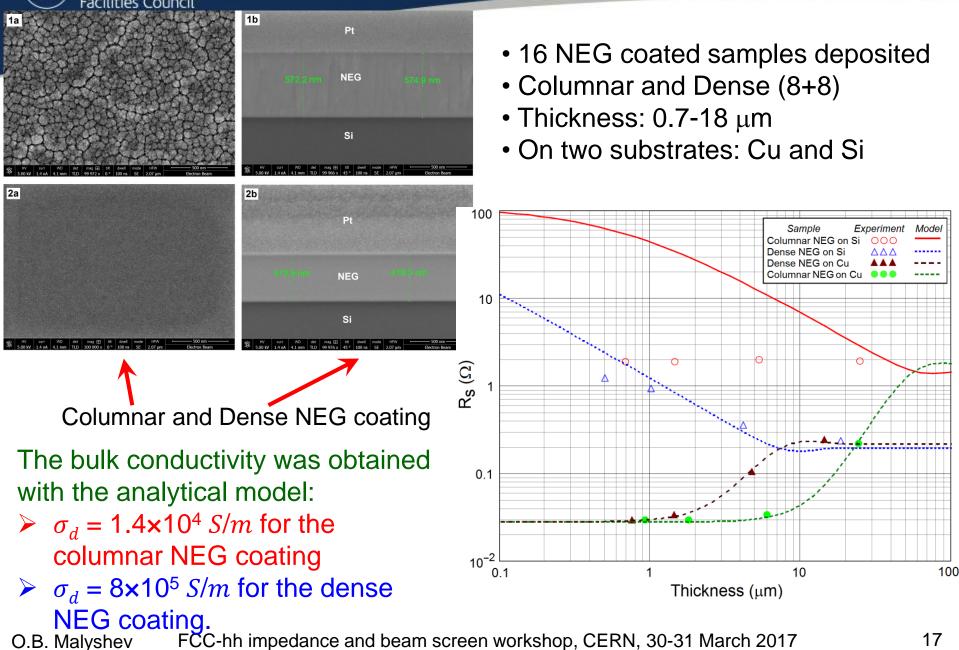
- A multilayer structure (metal-insulator-metal) was modelled
- By applying transmission line theory it can be shown that the surface impedance of this multi-layer structure is given by

$$Z_{S} = Z_{1} \frac{(Z_{1} + Z_{23}) - (Z_{1} - Z_{23}) \exp(2ik_{1}d_{1})}{(Z_{1} + Z_{23}) + (Z_{1} - Z_{23}) \exp(2ik_{1}d_{1})}$$

In case of metal-metal structure
 (d₂ = 0) it gives

$$R_{S} = R_{1} \frac{1 - \delta^{2} \exp(-4\kappa_{1}d_{1}) - 2\delta \sin(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})}{1 + \delta^{2} \exp(-4\kappa_{1}d_{1}) + 2\delta \cos(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})};$$

• In case of metal-insulator structure $(d_2 >> d_1)$ it gives


$$R_{S} = R_{1} \frac{1 - \exp(-4\kappa_{1}d_{1}) + 2\sin(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})}{1 + \exp(-4\kappa_{1}d_{1}) - 2\cos(2\kappa_{1}d_{1})\exp(-2\kappa_{1}d_{1})}$$

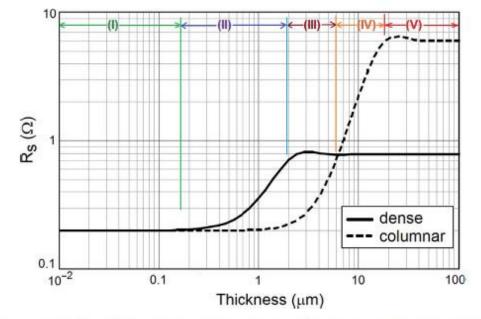
$$\sigma_{1}, \varepsilon_{1}, \mu_{1} \qquad d_{1}$$

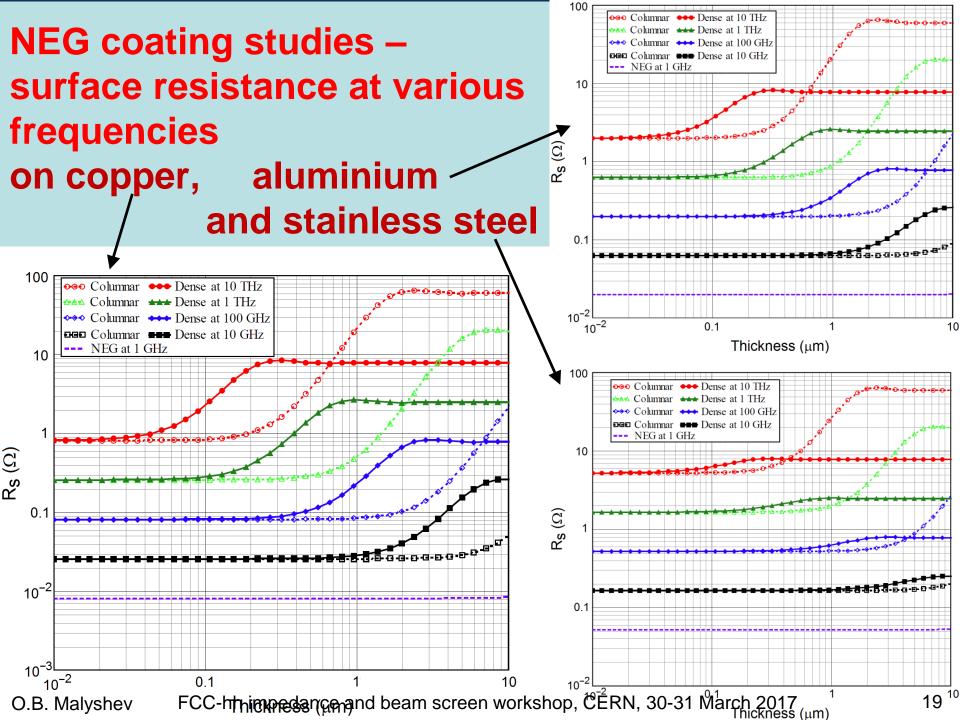
$$\sigma_{2}, \varepsilon_{2}, \mu_{2} \qquad d_{2}$$

$$\sigma_{3}, \varepsilon_{3}, \mu_{3}$$

NEG coating studies – surface resistance

NEG coating studies – surface resistance




Fig. 7. A comparison of surface resistance of columnar (solid line) and dense (dashed line) NEG films, zones (I)–(V) as described in the text.

Five zones:

- I. NEG coating's impact on the substrate surface resistance is negligible: $R_s(NEG) \approx R_s(Cu)$;
- II. R_s of dense NEG coating steadily increases to its maximum, the columnar NEG impact on R_s is still negligible: R_s(dense) > R_s(columnar) ≈ R_s(Cu);
- III. R_s of columnar NEG coating steadily increases and reaches a maximum value for dense NEG: R_s(Cu) < R_s(columnar) < R_s(dense);
- IV. R_s of columnar NEG coating steadily increases to its maximum:

R_s(Cu) < R_s(dense) < R_s(columnar);

- V. R_s of both dense and columnar NEG do not increase further with thickness.
- O.B. Malyshev FCC-hh impedance and beam screen workshop, CERN, 30-31 March 2017

NEG coating studies – surface resistance

For more details please refer to:

Nuclear Instruments and Methods in Physics Research A 844 (2017) 99-107

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

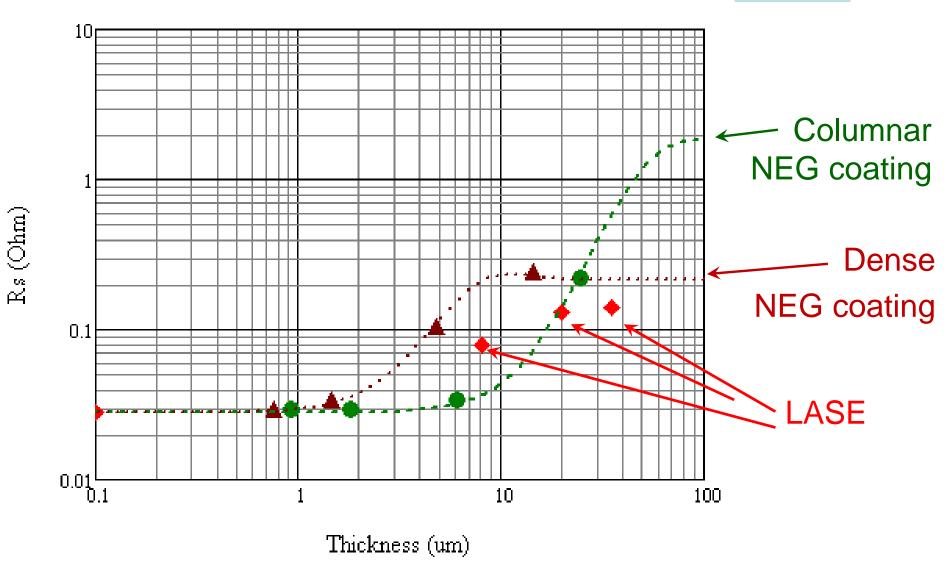
journal homepage: www.elsevier.com/locate/nima

RF surface resistance study of non-evaporable getter coatings

NUCLEAR NSTRUMENTS

Oleg B. Malyshev^{a,b,*}, Lewis Gurran^{a,b,c}, Philippe Goudket^{a,b}, Kiril Marinov^{a,b}, Stuart Wilde^{a,d}, Reza Valizadeh^{a,b}, Graeme Burt^{b,c}

^a ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire, UK


^b Cockcroft Institute, Daresbury, Warrington, WA4 4AD Cheshire, UK

^c Engineering, Lancaster University, Cockcroft Institute, Lancaster, UK

^d Loughborough University, Loughborough, UK

Surface resistance at 7.8 GHz for LASE and NEG coating

O.B. Malyshev

FCC-hh impedance and beam screen workshop, CERN, 30-31 March 2017

- The RF surface resistance of metal surfaces can be studied with a three-choke test cavity
 - Contactless method
 - Realised at 7.8 GHz
- Surface resistance of LASE surface was studied
 - To reduce R_s the depth of damaged layer should be reduced
- Surface resistance can be calculated for dense and columnar NEG coating as a function of:
 - Film thickness
 - RF frequency
- An open question:
 - R_s as a function of temperature
 - To be addressed in future
 - Possibilities for a dedicated facility are under investigation
- O.B. Malyshev FCC-hh impedance and beam screen workshop, CERN, 30-31 March 2017