11 October 2017 7th Amsterdam-Paris-Stockholm meeting, Kasteel Woerden

The motivation for and status of WIIVIPs

Or: how we fell in love with WIMPs and should not dump them (yet)

Marco Cirelli (CNRS LPTHE Jussieu Paris)

11 October 2017 7th Amsterdam-Paris-Stockholm meeting, Kasteel Woerden

The motivation for and status of WIIVIPs

Or: how we fell in love with WIMPs and should not dump them (yet)

Marco Cirelli (CNRS LPTHE Jussieu Paris)

WIMPs

MMPs SU(2)L

new physics at the TeV scale

thermal freeze-out

WIMPs

Susy DM in 2 minutes

Susy DM in 2 minutes

 $\overline{m_{\rm h} \simeq 125~{
m GeV}}$

$$\frac{h}{t} - \frac{h}{t} \Delta m_h \propto 10^{19} \text{ GeV}$$

SuSy DM in 2 minutes

 $m_{\rm h} \simeq 125 \; {\rm GeV}$

Susy DM in 2 minutes

 $m_{\rm h} \simeq 125 \ {\rm GeV}$

$$\left(\frac{h}{t} - \left(\frac{h}{t}\right) - \frac{h}{t}\right)$$

 $\Delta m_{\rm h} \propto 10^{19} \; {\rm GeV}$

SuSy DM in 2 minutes

 $m_{\rm h} \simeq 125~{\rm GeV}$

$$h - \frac{h}{t}$$

 $\Delta m_{\rm h} \propto 10^{19} \; {\rm GeV}$

$$R = -1$$

h \tilde{t} h $\Delta m_{\rm h} \propto -10^{19} \, {\rm GeV}$

Susy DM in 2 minutes

Susy DM in 2 minutes

R = -1

prevent proton decay

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle}$$

Relic $\Omega_{
m DM}\simeq 0.23$ for $\langle\sigma_{
m ann}v
angle=3\cdot 10^{-26}{
m cm}^3/{
m sec}$

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \text{ TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$
 (WIMP)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle}$$

Relic $\Omega_{
m DM} \simeq 0.23$ for $\langle \sigma_{
m ann} v
angle = 3 \cdot 10^{-26}
m cm^3/sec$

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \text{ TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$
 (WIMP)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle}$$

Relic $\Omega_{
m DM}\simeq 0.23$ for $\langle\sigma_{
m ann}v
angle=3\cdot 10^{-26}{
m cm}^3/{
m sec}$

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \text{ TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$
 (WIMP)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle}$$

Relic $\Omega_{
m DM}\simeq 0.23$ for $\langle\sigma_{
m ann}v
angle=3\cdot 10^{-26}{
m cm}^3/{
m sec}$

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \text{ TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$
 (WIMP)

Boltzmann equation in the Early Universe:

$$\Omega_X \approx \frac{6 \ 10^{-27} \text{cm}^3 \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle}$$

Relic $\Omega_{\rm DM} \simeq 0.23$ fg

$$\langle \sigma_{\rm ann} v \rangle = 3 \cdot 10^{-26}$$

WIMPs naturally have **multi-TeV** masses. Actually, pure WIMPs **necessarily** so. E.g.:

- pure WIMP doublet (aka pure higgsino): ~I TeV
- pure WIMP triplet (aka pure wino): 2.7 TeV
- pure WIMP 5plet (aka Minimal DM): ~9.4 TeV

$$\langle \sigma_{\rm ann} v \rangle \approx \frac{\alpha_w^2}{M^2} \approx \frac{\alpha_w^2}{1 \text{ TeV}^2} \Rightarrow \Omega_X \sim \mathcal{O}(\text{few } 0.1)$$
 (WIMP)

I. even without a larger framework, WIMPs are still appealing

3.

I. even without a larger framework, WIMPs are still appealing2. the frontier is multi-TeV

- I. even without a larger framework, WIMPs are still appealing
- 2. the frontier is multi-TeV
- 3. searches are complementary and still have ground to cover

SM weak scale SI interactions

SM weak scale SI interactions

tree level, vector

$$\sigma_{
m SI} \sim rac{lpha^2 \ m_N^2}{M_Z^4}$$

SM weak scale SI interactions

tree level, vector

SM weak scale SI interactions

tree level, vector

SM weak scale SI interactions

tree level, vector

$$\sigma_{
m SI} \sim rac{lpha^2 \, m_N^2}{M_Z^4}$$

tree level, scalar

$$\sigma_{
m SI} \sim rac{lpha^2 \, m_N^4}{M_h^6}$$

SM weak scale SI interactions

tree level, vector

tree level, scalar

SM weak scale SI interactions

tree level, vector

tree level, scalar

SM weak scale SI interactions

tree level, vector

$$\sigma_{
m SI} \sim rac{lpha^2 \, m_N^2}{M_Z^4}$$

tree level, scalar

$$\sigma_{
m SI} \sim rac{lpha^2 \ m_N^4}{M_h^6}$$

$$\sigma_{
m SI} \sim rac{lpha^4 \ m_N^4}{M_W^6}$$

SM weak scale SI interactions

tree level, vector

tree level, scalar

SM weak scale SI interactions

tree level, vector

tree level, scalar

SM weak scale SI interactions

tree level, vector

Still viable under which conditions?

tree level, scalar

SM weak scale SI interactions

Still viable under which conditions?

tree level, scalar - real particle (Majorana fermion, real scalar)

WIMP DD: 'theory'

SM weak scale SI interactions

one loop

Still viable under which conditions?

- real particle (Majorana fermion, real scalar)
- hypercharge Y=0

WIMP DD: 'theory'

SM weak scale SI interactions

one loop

Still viable under which conditions?

- real particle (Majorana fermion, real scalar)
- hypercharge Y=0
- SD interactions only
- inelastic scattering

Candidates

- I. even without a larger framework, WIMPs are still appealing
- 2. the frontier is multi-TeV
- 3. searches are complementary and still have ground to cover

Candidates

thermal new physics at the TeV scale freeze-out WIMPs Direct LHC AMS, Fermi, CTA Detection Antares, Icecube

- I. even without a larger framework, WIMPs are still appealing
- 2. the frontier is multi-TeV
- 3. searches are complementary and still have ground to cover

y from MDM annihilations

+
$$W^{\pm}, Z \to \bar{p}, e^{+}, \gamma ...$$

y from MDM annihilations

+
$$W^{\pm}, Z \to \bar{p}, e^{+}, \gamma ...$$

y from MDM annihilations

+
$$W^{\pm}, Z \to \bar{p}, e^{+}, \gamma ...$$

(channels for MDM with Y=0)

continuum

line(s) (+ continuum)

y from MDM annihilations

+
$$W^{\pm}, Z \rightarrow \bar{p}(e^{+})\gamma \dots$$

(channels for MDM with Y=0)

continuum

+ ICS

7 from MDM annihilations

+
$$W^{\pm}, Z \to \bar{p}, e^{+}, \gamma ...$$

(channels for MDM with Y=0)

Enhanced cross section due to 'Sommerfeld corrections'

Hisano et al., 2004, 2005 Cirelli, Strumia, Tamburini 2007

Cirelli, Hambye, Panci, Sala, Taoso 1507.05519

FERMI diffuse galactic:

MW center area, search for γ -ray lines:

FERMI: 1506.00013

HESS: 1301.1173

MW center area, search for γ -ray lines:

FERMI: 1506.00013

HESS: 1301.1173

Uncertainties in DM profile:

MW center area, search for γ -ray lines:

FERMI: 1506.00013

HESS: 1301.1173

Uncertainties in DM profile:

e.g. Cirelli et al., 1012.4515

MDM excluded if cuspy MDM not probed if cored

Bound state formation is relevant

Pospelov, Ritz 2009 March-Russell, West 2009 Shepherd, Tait, Zaharijas 2009 K.Petraki+, 2014+

Bound state formation is relevant

Pospelov, Ritz 2009 March-Russell, West 2009 Shepherd, Tait, Zaharijas 2009 K.Petraki+, 2014+

Bound state formation is relevant

range

Sommerfeld enhanced

Pospelov, Ritz 2009 March-Russell, West 2009 Shepherd, Tait, Zaharijas 2009 K.Petraki+, 2014+

Bound state formation is relevant

Pospelov, Ritz 2009 March-Russell, West 2009 Shepherd, Tait, Zaharijas 2009 K.Petraki+, 2014+

tree level annihilation

size of the XX system If $\alpha M/m_V \gtrsim 1$, the force is long range: Sommerfeld enhanced

binding energy of the XX system If $\alpha^2 M/2m_V \gtrsim 1$, bound states form emitted mediator

Bound state formation is relevant

Pospelov, Ritz 2009 March-Russell, West 2009 Shepherd, Tait, Zaharijas 2009 K.Petraki+, 2014+

tree level annihilation

size of the XX system If $\alpha M/m_V \gtrsim 1$, the force is long range: Sommerfeld enhanced

binding energy of the XX system $\text{If } \alpha^2 M/2m_V \gtrsim 1 \text{, bound states form }$ emitted mediator

Bound state formation is relevant

Pospelov, Ritz 2009 March-Russell, West 2009 Shepherd, Tait, Zaharijas 2009 K.Petraki+, 2014+

tree level annihilation

size of the XX system If $\alpha M/m_V \gtrsim 1$, the force is long range: Sommerfeld enhanced

binding energy of the XX system If $\alpha^2 M/2m_V \gtrsim 1$, bound states form emitted mediator

Bound state formation

Mitridate, Redi, Smirnov, Strumia 1702.01141

impact on thermal mass and indirect detection

Bound state formation

Mitridate, Redi, Smirnov, Strumia 1702.01141

impact on thermal mass and indirect detection

Bound state formation

Mitridate, Redi, Smirnov, Strumia 1702.01141

impact on thermal mass and indirect detection

Mitridate, Redi, Smirnov, Strumia 1702.01141**v2**

Candidates

- I. even without a larger framework, WIMPs are still appealing
- 2. the frontier is multi-TeV
- 3. searches are complementary and still have ground to cover

EW processes:

Mono-X

VBF

di-jets + MET

Disappearing tracks

or: indirect searches

EW processes: everything depends on the DM mass

For triplet WIMP (a.k.a. pure wino DM)

For 5plet MDM

	$\sqrt{s}=8~{ m TeV}$				$\sqrt{s}=14~{ m TeV}$					
Model	ATLAS		CMS		Exclude			Discover		
			Expected	Observed	500%	100%	20%			
Wino	224	238	203	195	354	483	635			514
Majorana Fiveplet	256	267	234	226	410	524	668	340	448	576
Dirac Fiveplet	283	293	259	251	465	599	743	381	503	639

Ostdiek, 1506.0344

Indirect searches at a future Linear Collider:

Indirect searches at a future Linear Collider:

Harigaya, Ichikawa, Matsumoto..., 1504.03402

Even if $\sqrt{s} < M_{\rm DM}$, one can see the effects in precision measurements

Indirect searches at a future Linear Collider:

Harigaya, Ichikawa, Matsumoto..., 1504.03402

Even if $\sqrt{s} < M_{\rm DM}$, one can see the effects in precision measurements

Result:

Indirect searches at a future Linear Collider:

Harigaya, Ichikawa, Matsumoto..., 1504.03402

Even if $\sqrt{s} < M_{
m DM}$, one can see the effects in precision measurements

Result:

How to read the plot: a LC with $\sqrt{s} = 1 \, \text{TeV}$, assuming only stat uncertainties, will be sensitive to $m_{DM} - \sqrt{s/2} \sim 800 \, \text{GeV}$ i.e. $m_{DM} \sim 1.3 \, \text{TeV}$ (indeed see the dotted isocontours of the DM mass)

similar plots for other channels & for other candidates

Indirect searches at a future Linear Collider:

Harigaya, Ichikawa, Matsumoto..., 1504.03402

Even if $\sqrt{s} < M_{\rm DM}$, one can see the effects in precision measurements

Result:

How to read the plot: a LC with $\sqrt{s} = 1 \, \text{TeV}$, assuming only stat uncertainties, will be sensitive to $m_{DM} - \sqrt{s/2} \sim 800 \, \text{GeV}$ i.e. $m_{DM} \sim 1.3 \, \text{TeV}$ (indeed see the dotted isocontours of the DM mass)

similar plots for other channels & for other candidates

one can go beyond the collider energy, but not by much

Conclusions

- I. even without a larger framework, WIMPs are still appealing
- 2. the frontier is multi-TeV
- 3. searches are complementary and still have ground to cover